用户名: 密码: 验证码:
菌丝球生物载体的构建及其强化废水处理效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物强化技术对改善废水处理系统的出水水质及提高运行的稳定性具有重要的作用,也是废水处理领域的热门研究方向之一。该技术以生物载体为依托,在保持功能菌数量和活性的基础上,强化功能菌对目标污染物的去除作用。因此,开发相容性好、不改变现有处理系统工艺的生物载体,以期最大限度地发挥生物强化技术的效能是十分必要的。特别是利用生物质材料如稻草、竹丝等为生物载体,成为目前的热点。基于此,本研究致力于菌丝球的研发,将其作为一种新型的生物载体用于难降解污染物的去除。
     以黑曲霉Y3形成的菌丝球为对象,研究了载体菌丝球的制备条件和生长、结构等特性。结果表明,蔗糖和氯化铵是菌丝球生长的最适碳源和氮源,最佳量分别为10g/L和1g/L。环境因子中温度和剪切力对菌丝球制备过程影响显著,在一定范围内升高温度有利于菌丝球生物量的增加,160r/min形成的剪切力条件下菌丝球生物量达到最大,约为5.25g/L培养基。菌丝球生长迅速(从孢子接种到菌丝球成熟只需要72h),沉降性能良好(球径3mm的菌丝球沉速约为0.01m/s),其属于大孔隙结构载体、表面带正电荷、菌丝表面附有以糖和蛋白为主的胞外聚合物。通过吸附实验证明,菌丝球对细菌具有良好的吸附性能,吸附量达7.7×10~(10)cfu/g菌丝干重,且可以将菌丝球或固定特定功能菌的混合菌丝球冷冻干燥保存。
     菌丝球大孔隙结构的特点,造成其应用过程中存在结构稳定性差、易破损的问题。为此,通过投加生物絮凝剂的方法,提高菌丝球的结构稳定性。研究发现,培养菌丝球的同时添加生物絮凝剂,可以不改变菌丝球的内部结构,其完整率由75.1%提高到83.6%,干重由0.0677g/100mL提高到0.0767g/100mL。另外,改变反应器的结构,实现定向导流,避免混乱剪切力对菌丝球造成的破坏,也可以提高菌丝球结构的稳定性,延长其使用寿命。
     采用序批式反应器(SBR),考察了菌丝球作为生物质载体固定苯胺降解菌,对目标污染物的降解效能。结果显示,系统运行7周期后,对苯胺的去除稳定,达到0.9mg/(mg生物量·d),而活性污泥系统的去除量仅有0.6mg/(mg生物量·d),证明菌丝球作为生物质载体是可行的,能够有效地实现工程菌群的固定化、维持系统菌群结构的稳定性和对目标污染物的高效降解。为了进一步提高功能菌的活性,在系统中添加电气石,反应系统的启动时间从7个周期缩短到1个周期,系统启动加速,且系统的运行更加稳定。
     运用生态位分离理论和微生物协同代谢的原则,实现载体菌丝球固定菌群的多样性和功能性,将多种功能菌群固定在菌丝球上,并投加到序批式气升反应器(SBAR)系统中。系统运行结果表明,逐步提高进水苯胺浓度,系统出水指标稳定,对冲击负荷有较强的抵抗能力,苯胺降解和硝化反硝化过程顺利进行,氮的去除率达到80%左右,解决了苯胺废水处理出水氨氮浓度过高的问题。群落组成分析表明,菌群主要由变形细菌门(Proteobacteria)和放线菌门(Actinobacteria)组成,菌群组成稳定、多样性丰富,固定的功能菌能稳定存在。
     为了验证菌丝球作为生物质载体对底物适应的广谱性,选择菌丝球固定苯酚降解菌,探讨此类废水的处理效能。研究结果表明,苯酚降解菌在系统中稳定存在,运行5个周期后,系统对酚类化合物和TOC的净化效果稳定,对总酚的去除效能达到0.5mg/(mg生物量·d),高于对照活性污泥系统的0.4mg/(mg生物量·d)。系统群落菌群主要由变形细菌门(Proteobacteria)、放线菌门(Actinobacteria)和杆菌门(Bacteroidetes)组成,菌群组成稳定、多样性丰富,证明菌丝球作为生物质载体,能够有效地实现工程菌群的固定化、维持系统菌群结构的稳定和实现对目标污染物的降解。
Bioaugmentation was one of popular directions in wastewater treatmentresearches and played an important role in the field of improving water quality andsystem operational stability. The technology enhanced the removal efficiency totarget pollutants relied on biological carrier to maintain the concentration andactivity of functional bacteria. Therefore, the development of biological carrierswith compatibility and without changing the treatment process was necessary tomaximize the effectiveness of bioaugmentation technology. Biomass materials suchas straw, bamboo and others had been the research focus as biological carriersrecently. Based on this, the study was to develop mycelial pellet as a new biomasscarrier in bioaugmentation, and mycelial pellet as a carrier immobilized functionalbacteria was used to remove recalcitrant pollutants.
     The preparation conditions and characterizations of growth and structure werestudied with Aspergillus Y3. The results showed that sucrose and ammoniumchloride were the best carbon and nitrogen sources for the growth of mycelial pellet,and the best concentrations were10g/L and1g/L, respectively. Temperature andshear force influenced the preparation process of mycelial pellet significantly. Thebiomass of mycelia increased by the temperature rose within a certain range, and themaximum biomass of mycelia about5.25g/L was gained under the shear force of160r/min rotation speed. Mycelial pellet grew rapidly (72h was used from sporesinoculated to mycelial pellet maturation), and had good settlement performance(Settling velocity of mycelial pellet with3mm diameter was about0.01m/s).Mycelial pellet had a good adsorption to bacteria (7.7×1010cfu/g dry weightmycelia) because of its large pore structure, positive surface charged, adhesioncoursed by extracellular polymeric substances. And mycelial pellet or combinedpellet with functional bacteria could be freeze-dried.
     There was a poor structural stability in application process of mycelial pellet asa biomass carrier because its large pore structure characteristic. Therefore,structural stability of mycelial pellet was enhanced by adding bio-flocculant. It wasfound that the integrity rate of mycelial pellet was raised from75.1%to83.6%and the dry weight from0.0677g/100mL to0.0767g/100mL by adding bio-flocculantwithout changing the internal structure. In addition, directional shear stress tomycelial pellet obtained by improving reactor hydraulics conditions so that thedamage caused by confusion stress could be avoided. It was also an effective meanto improve the structural stability extend service life of mycelial pellet.
     The feasibility of target pollutants removal by mycelial pellet as a biomasscarrier was studied in sequencing batch reactors (SBR). The results showed thatpurification of aniline was stable after7cycles running of the system, and theremoval efficiency of aniline was0.9mg/(mg biomass·d), significantly higher thanthe control system with activated sludge,0.6mg/(mg biomass·d). It was proved thatmycelial pellets as biomass carrier is feasible. The effectively immobilized offunctional bacteria, stability maintaining of bacterial structure in system, and targetpollutants degradation were achieved. Tourmaline was used to improve thedegradation ability and adaptability of combined mycelial pellet, and reduced thestart-up time of SBR system from7cycles to only1cycle with more stability.
     Diversity and functional of bacteria immobilized on mycelial pellet wererealized based on the theory of niche separation and principle of microbialco-metabolism. And the combined mycelial pellet was used in sequencing batchair-lift reactor (SBAR) system. The results showed that the effluent indicators of thesystem were stable and had a strong resistance to the impact load with graduallyincreasing of influent aniline concentration. Aniline degradation andnitrification-denitrification processes were well conducted, with nitrogen removalrate about80%solving the problem that ammonia concentration was high ineffluent of aniline wastewater treatment system. The bacterial structure in systemwas stable and rich in diversity, and was mainly formed by Proteobacteria andActinobacteria, including the bacteria enhanced.
     Mycelial pellet immobilized phenol-degrading bacteria was selected to degradewastewater contained phenolic compounds in SBR as a supplement experiment toverify it had common adaptability to substrates as a biomass carrier. The resultsshowed that phenol-degrading bacteria grew and worked continuously in system.Phenolic compounds and TOC were removed stable after5cycles running, withtotal phenol removal efficiency of0.5mg/(mg biomass·d), significantly higher thanthe control activated sludge system0.4mg/(mg biomass·d). The bacterial structure in system was stable and rich in diversity, and was mainly formed by Proteobacteria,Actinobacteria and Bacteroidetes. Immobilization of function bacteria, maintainingthe bacteria structure and system stability, and degradation of target pollutants wereachieved by mycelial pellet as a biomass carrier.
引文
[1]姚秀清,徐军祥,张全.复合菌剂生物强化SBR降解芳香烃及其衍生物的研究[J].化学与生物工程,2007,8(24):59-62.
    [2] SHEN X F, SUN X F, XU T T, JIN P K. Treatment of Printing and DyeingWastewater with Multi-strain Bioaugmentation Process of SBR[J]. Journal ofXi’an Polytechnic University,2009,23(2):573-577.
    [3]王建芳,赵庆良,林佶侃,等.生物强化技术及其在废水生物处理中的应用[J].环境工程学报,2007,9(1):40-45.
    [4]杨云龙,孟建丽.污水中难降解有机物的生物强化处理[J].山西建筑,2004,1(30):66-67.
    [5]宋秀娟.生物强化技术在土壤修复和废水处理中的应用[J].高师理科学刊,2011,3(31):76-79.
    [6] Wang S J, Loh K C. New Cell Growth Pattern on Mixed Substrates andSubstrate Utilizatioincometabolic Transformation of4-Chlorophenol[J]. WaterResearch,2000,34(15):3786-3794.
    [7] Lopes R, Olinda R, Souza B, et al. Efficiency of Bioaugmentation in theRemoval of Organic Matter in Aquaculture Systems[J]. Brazilian Journal ofBiology,2011,71(2):409-419.
    [8]罗明,田鑫,杨可,等.生物强化生态系统处理养殖沼液的研究[J].养猪,2011,(1):54-56.
    [9]钱伟,陆开宏,郑忠明,等.生物强化反应器净化循环养殖废水的研究[J].水产学报,2011,35(1):104-115.
    [10]陈桂娥,李啸寰,许振良,等. EM技术在MBR中的应用研究[J].应用化工,2011,40(2):222-225.
    [11]蔡勋江,范洪波,吕斯濠,等.高效微生物菌剂用于城镇污水分散式处理的研究[J].中国给水排水,2010,26(7):58-61.
    [12]郭频.投加生物填料强化低温条件下局部改造后AB工艺研究[J].城镇给排水,2010,36(增刊):7-11.
    [13]杨华,曲媛媛,王竞,等.生物强化MBR处理溴氨酸废水实验研究[J].大连理工大学学报,2009,49(2):187-192.
    [14]包焕忠,曹国强,王丽.高效生物强化技术处理焦化废水的中试研究[J].环境工程,2009,27(2):42-45.
    [15]包焕忠,曹国强,王丽.生物强化法处理精细化工污水[J].清洁生产与综合治理,2009,25(3):56-58.
    [16]山丹,马放,王金生,等.生物强化技术提高SBR系统对低温苯胺废水处理能力的研究[J].环境工程学报,2009,3(4):577-580.
    [17]张鑫,袁林江,陈光秀,等. SBR脱氮系统污泥对磷的去除研究[J].环境工程学报,2010,4(5):1003-1007.
    [18]邓海华,沈滨,仝武钢,等.曝气生物流化池生物强化处理高氨氮制革废水研究[J].环境污染与防治,2009,31(3):48-51.
    [19] Hu X Z, Zhang P Y, Li J S, et al. Treatment of Washing and Dying Wastewaterwith Coagulation-Electrofloatation-Adsorption[J]. Journal of Electric PowerScience and Technology,2006,23(2):45-49.
    [20]周秀凤.生物强化法在屠宰废水处理中的应用[J].工业用水与废水,2009,40(4):40-43.
    [21]吴香波,谢益民.生物强化技术在造纸废水处理中的应用[J].环保与节能,2009,40(2):42-45.
    [22]傅妍芳,马邕文,万金泉.制浆造纸废水生物强化技术研究进展[J].环境科学与技术,2007,30(1):111-114.
    [23]马放,郭静波,赵立军,等.生物强化工程菌的构建及其在石化废水处理中的应用[J].环境科学学报,2008,28(5):885-891.
    [24]徐炜,曾明,刘田.生物强化技术处理冷轧废水实践研究[J].工业水处理,2009,29(8):69-72.
    [25]王哲,魏利,马放,等.苯胺废水SBR工艺生物强化处理效能[J].哈尔滨工业大学学报,2010,42(6):949-953.
    [26]李久安,周后珍,刘庆华,等.废水生物强化处理技术研究进展[J].应用与环境生物学报,2011,17(2):273-279.
    [27]李亚峰,姚敬博,郝滢,等.投加聚氨酯泡沫微生物固定化载体的SBBR脱氮除磷实验研究[J].环境工程学报,2011,5(1):38-42.
    [28]魏云霞,李斌,李彦锋,等. PVA大孔载体固定化微生物SBBR脱氮[J].环境科学与技术,2011,34(6):43-48.
    [29]蒋侃,马放,孙铁珩.电气石强化生物接触氧化法处理石化废水[J].环境科学,2009,30(6):1669-1673.
    [30]郭静波,马放,蒋侃,等.用于石化废水处理的聚氨酯泡沫球形载体的挂膜方法[J].环境工程学报,2008,2(10):1322-1326.
    [31]周成林,李彦锋,白雪,等.固定化微生物工艺处理印染废水[J].兰州大学学报(自然科学版),2008,44(5):63-68.
    [32]赵昕,倪晋仁,叶正芳.盐度对固定化曝气生物滤池中微生物的影响[J].环境科学,2007,28(7):1553-1559.
    [33]高艳玲,许春生,张旭红,等.一体式悬浮载体生物流化床啤酒废水处理研究[J].环境工程学报,2010,4(1):71-75.
    [34]陈洪斌,朱冠楠,张东宇,等.石化废水深度处理及脱盐的中试研究[J].中国环境科学,2009,29(9):929-934.
    [35]李芙蓉,董有,宋钰容.悬浮载体SBR工艺处理生活污水的实验研究[J].武汉工业学院学报,2010,29(1):38-41.
    [36]覃将伟,吕斌,鲁敏,等.循环载体生物膜SBR反应器处理生活污水实验研究[J].能源与环境,2008,(2):30-32.
    [37]王森,张延青,刘鹰.载体填料高度对生物滤池处理高浓度含氮海水效果的影响[J].青岛理工大学学报,2008,29(1):55-60.
    [38]曾志果,康媞,李晓波,等.颗粒载体上硝化生物膜的硝化状况初探[J].环保科技,2009,15(1):8-12.
    [39]杨皓洁,吕坤山,郭勇,等.膜生物反应器对玻璃纤维生产废水的深度处理[J].环境工程,2009,27(增刊):47-50.
    [40]潘涌璋,张志永,师波.磁性载体生物膜反应器处理生活污水的实验研究[J].中国环境科学,2011,31(5):734-739.
    [41]李敬宝.新型MBR处理微污染景观水试验研究[J].工业水处理,2009,29(2):38-40.
    [42]张海耿,马绍赛,李秋芬,等.循环水养殖系统(RAS)生物载体上微生物群落结构变化分析[J].环境科学,2011,32(1):231-239.
    [43]李杰,张冬冬,袁旭峰,等.固定载体卧式厌氧反应器处理糖蜜废水的快速启动[J].微生物学通报,2011,384(4):474-480.
    [44]韩菲,完颜华,迟毅超,等.活性炭纤维载体生物膜法处理洗车废水研究[J].环境工程学报,2010,4(4):751-755.
    [45]韩虹,韦朝海.引用原水中微量NH3-N的生物膜脱除[J].环境化学,2010,29(1):68-72.
    [46]管秀琼,陈俊杰,徐伟涛.厌氧附着膨胀床处理生活废水的研究[J].四川理工学院学报(自然科学版),2010,23(1):81-84.
    [47]唐奕,黄健盛,杨皓洁,等.颗粒活性炭载体新型生物转盘去除生活污水[J].四川环境,2009,28(6):41-45.
    [48]程丽,王鹤立, Kenneth P.颗粒载体生物滴滤床处理低浓度污水对比试验研究[J].环境科学与技术,2009,32(2):117-121.
    [49]陆丽芳.生物沸石在水处理中的应用[J].科技致富向导,2008,(5):34.
    [50]鲁剑,张勇,侯少沛,等.固定化微生物-曝气生物滤池(IBAF)技术用于微污染水处理的实验研究[J].环境科学与管理,2010,35(4):111-115.
    [51]邵留,徐祖信,王晟,等.新型反硝化固定碳源释碳性能研究[J].环境科学,2011,32(8):2323-2327.
    [52]曹文平,张永明,李亚峰,等.竹丝填充床对高有机负荷及低C/N水质的脱氮特性[J].中国环境科学,2010,30(8):1067-1072.
    [53] Berovic M. Submerged Citric Acid Fermentation: Rheological Properties ofAspergillus niger Broth in a Stirred Tank Reactor[J]. Applied Microbiologyand Biotechnology,1991,34:579-581.
    [54] Kim J H. Comparative Study on Rheological Properties of Mycelial Broth inFilamentous and Pelleted Forms[J]. Applied Microbiology and Biotechnology,1983,18:11-16.
    [55] Zhou Y. Mycelial Pellet Formation by Rhizopus oryzae ATCC20344[J]. Appl.Biochemistry and Biotechnology,2000,84-86:779-789.
    [56] Wucherpfennig T, Kiep K A, Driouch H, et al. Morphology and Rheology inFilamentous Cultivations[J]. Advances in Applied Microbiology,2010,72:89-136.
    [57]刘效梅,辛宝平,徐文国.微生物颗粒在废水处理中的应用与研究[J].工业水处理,2005,25(8):1-4.
    [58] Metz B, Kossen N W F. The Growth of Molds in the Form of Pellets-ALiterature Review[J]. Biotechnology and Bioengineering,1977,19:781-799。
    [59] Nielsen J. Modeling the Morphology of Filamentous Microorganisms[J].Trends of Biotechnology,1996,14:438-443.
    [60] Nielsen J. Pellet Formation and Fragmentation in Submerged Cultures ofPenicillium chrysogenum and its Relation to Penicillin Production[J].Biotechnology and Bioengineering,1995,11:93-98.
    [61] Grimm L H. Kinetic Studies on the Aggregation of Aspergillus niger Conidia[J].Biotechnology and Bioengineering,2004,87:213-218.
    [62] Grimm L H. Morphology and Productivity of Filamentous Fungi[J]. AppliedMicrobiology and Biotechnology,2005,69:375-384.
    [63] Amanullah A. Dynamics of Mycelial Aggregation in Cultures of Aspergillusoryzae[J]. Bioprocess and Biosystems Engineering,2001,24:101-107.
    [64] Hille A, Neu T R, Hempel D C, et al. Oxygen Profiles and BiomassDistribution in Biopellets of Aspergillus niger[J]. Biotechnology andBioengineering,2005,92(5):614-623.
    [65] Wittler R. Investigations of Oxygen Transfer into Penicillium chrysogenumPellets by Microprobe Measurements[J]. Biotechnology and Bioengineering,1986,28:1024-1036.
    [66] Barry D J. Morphological Quantification of Filamentous Fungal DevelopmentUsing Membrane Immobilization and Automatic Image Analysis[J]. Journal ofIndustrial Microbiology and Biotechnology,2009,36:787-800.
    [67] White S. The Autolysis of Industrial Filamentous Fungi[J]. Critical Reviews inBiotechnology,2002,22:1-14.
    [68] Bizukojc M, Ledakowicz S. The Morphological and Physiological Evolution ofAspergillus terreus Mycelium in the Submerged Culture and its Relation to theFormation of Secondary Metabolites[J]. World Journal of Microbiology andBiotechnology,2010,26:41-54.
    [69]朱虹.菌丝球形成过程及其影响因素的研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:22-23,29-39.
    [70]曹晓婷,熊小京,郑天凌,等.黑曲霉菌丝球对直接耐晒翠蓝FBL的脱色特性[J].华侨大学学报(自然科学版),2008,29(1):34-37.
    [71]贺新生,王茂,欧文婧,等.树舌灵芝菌丝体发酵工艺条件试验[J].食品科学,2008,19(3):288-292.
    [72] Hosobuchi M, Ogawa K, Yoshikawa H. Morphology Study in Production ofML-236B, a Precursor of Pravastatin Sodium by Penicillium citrinum[J].Journal of Ferment Bioengineering,1993,76:470-475.
    [73] Cui Y Q. Effects of Dissolved Oxygen Tension and Mechanical Forces onFungal Morphology in Submerged Fermentation[J]. Biotechnology andBioengineering,1998,57:409-419.
    [74] Eleazar M E S. A Method to Evaluate the Isothermal Effectiveness Factor forDynamic Oxygen into Mycelial Pellets in Submerged Cultures[J].Biotechnology Progress,2001,17:95-103.
    [75] Lejeune R V, Baron G. Simulation of Growth of a Filamentous Fungus in3Dimensions[J]. Biotechnology and Bioengineering,1997,53:139-150.
    [76] Hille A. Effective Diffusivities and Mass Fluxes in Fungal Biopellets[J].Biotechnology and Bioengineering,2009,103:1202-1213.
    [77] Hamanaka T. Mycelial Pellet Intrastructure and Visualization of Mycelia andIntracellular Lipid in a Culture of Mortierella alpina[J]. Applied Microbiologyand Biotechnology,2001,56:233-238.
    [78] el-Enshasy H, Hellmuth K, Rinas U. Fungal Morphology in SubmergedCultures and its Relation to Glucose Oxidase Excretion by RecombinantAspergillus niger[J]. Applied Biochemistry and Biotechnology,1999,81(1):1-11.
    [79] Hellendoorn L. Intrinsic Kinetic Parameters of the Pellet Forming FungusAspergillus awamori[J]. Biotechnology and Bioengineering,1998,58:478-485.
    [80] Cronenberg C C H. Influence of Age and Structure of Pencillium chrysogenumPellets on the Internal Concentration Profiles[J]. Bioprocess and BiosystemsEngineering,1994,10:209-216.
    [81] Huang M Y, Bungay H R. Microprobe Measurements of OxygenConcentrations in Mycelial Pellets[J]. Biotechnology and Bioengineering,1973,15:1193-1197.
    [82] Papagianni M. Fungal Morphology and Metabolite Production in SubmergedMycelial Processes[J]. Biotechnology Advances,2004,22:189-259.
    [83] Miura Y, Miyamoto K. Oxygen Transfer within Fungal Pellets[J].Biotechnology and Bioengineering,1977,19:1407-1409.
    [84] Wucherpfennig T, Kiep KA, Driouch H, et al. Morphology and Rheology inFilamentous Cultivations[J]. Advances in Applied Microbiology,2010,72:89-136.
    [85] Kossen N W. The Morphology of Filamentous Fungi[J]. Advances inBiochemical Engineering and Biotechnology.2000,70:1-33.
    [86] Deckwer W D. Systems Biology Approaches to Bioprocess Development[J].Engineering in Life Sciences,2006,6:455-469.
    [87] Cho Y J. Effect of Carbon Source and Aeration Rate on Broth Rheology andFungal Morphology During Red Pigment Production by Paecilomycessinclairii in a Batch Bioreactor[J]. Journal of Biotechnology,2002,95:13-23.
    [88] Jonsbu E, Mclntyre M, Nielsen J. The Influence of Carbon Sources andMorphology on Nystatin Production by Streptomyces noursei[J]. Journal ofBiotechnology,2002,95(2):133-144.
    [89] Saraswathy A, Hallberg R. Mycelial Pellet Formation by Penicilliumochrochloron Species Due to Exposure to Pyrene[J]. Microbiological Research,2005,160(4):375-383.
    [90] Park E Y, Koike Y, Higashiyama K, et al. Effect of Nitrogen Source onMycelial Morphology and Arachidonic Acid Production in Cultures ofMortierella alpina[J]. Journal of Bioscience and Bioengineering,88(1):61-67.
    [91] Kim S W, Xu C P, Hwang H J, et al. Production and Characterization ofExopolysaccharides from an Enthomopathogenic Fungus CordycepsmilitarisNG3[J]. Biotechnology Progress,2003,19(2):428-435.
    [92] Koike Y, Cai H J, Higashiyama K, et al. Effect of Consumed Carbon toNitrogen Ratio of Mycelial Morphology and Arachidonic Acid Production inCultures of Mortierella alpina[J]. Journal of Bioscience and Bioengineering,2001,91(4):382-389.
    [93] Higashiyama K, Yaguchi T, Akimoto K, et al. Effects of Mineral Addition onthe Growth Morphology and Arachidonic Acid Production by Mortierellaalpina1S-4[J]. Journal of the American Oil Chemists Society,1998,75:1815-1819.
    [94]高敏.生物质载体菌丝球的形成机制及脱色效能的研究[D].哈尔滨:哈尔滨工业大学学位论文,2006:49-61.
    [95] Higashiyama K, Murakami K, Tsujimura H, et al. Effects of Dissolved Oxygenon the Morphology of an Arachidonic Acid Production by Mortierella alpina1S-4[J]. Biotechnology and Bioengineering.1999,63:442-448.
    [96] Oncu S. Effect of Various Process Parameters on Morphology, Rheology, andPolygalacturonase Production by Aspergillus sojae in a Batch Bioreactor[J].Biotechnology Progress,2007,23:836-845.
    [97] Cui Y Q, van der Lans R G, Luyben K C. Effect of Agitation Intensities onFungal Morphology of Submerged Fermentation[J]. Biotechnology andBioengineering,1997,55(5):715-726.
    [98] Taguchi H, Yoshida T, Tomita Y, et al. The Effects of Agitation on Disruptionof the Mycelial Pellets in Stirred Fermenters[J]. Journal of FermentationTechnology,1968,46:814-822.
    [99] Bhavaraju S M, Blanch H W. A Model for Pellet Breakup in FungalFermentations[J]. Journal of Fermentation Technology,1976,54:466-468.
    [100]Van Suijdam J C, Metz B. Fungal Pellet Breakup as a Function of Shear in aFermenter[J]. Journal of Fermentation Technology,1981,59:329-333.
    [101]Sven K, Luis H G, Jan H, et al. Agitation Effects on Submerged Growth andProduct Formation of Aspergillus niger[J]. Bioprocess and BiosystemsEngineering,2004,26:315-323.
    [102]Xu J. Increased Heterologous Protein Production in Aspergillus nigerFermentation through Extracellular Proteases Inhibition by Pelleted Growth[J].Biotechnology and Bioengineering,2000,16:222-227.
    [103]Bizukojc M, Ledakowicz S. Physiological, Morphological and Kinetic Aspectsof Lovastatin Biosynthesis by Aspergillus terreus[J]. Journal of Biotechnology,2009,4:647-664.
    [104]Braun S, Vecht-Lifshitz S E. Mycelial Morphology and MetaboliteProduction[J]. Trends of Biotechnology,1991,9:63-68.
    [105]Carlsen M. Morphology and Physiology of an alpha Amylase Producing Strainof Aspergillus oryzae during Batch Cultivations[J]. Biotechnology andBioengineering,1996,49:266-276.
    [106]Lejeune R. Influence of the pH on the Morphology of Trichoderma reeseiQM9414in Submerged Culture[J]. Biotechnology Letters,1995,17:341-344.
    [107]Mainwaring D O. Effect of pH on Hen Egg White Lysozyme Production andEvolution of a Recombinant Strain of Aspergillus niger[J]. Journal ofBiotechnology,1999,75:1-10.
    [108]O’Donnell D. Enhanced Heterologous Protein Production in Aspergillus nigerthrough pH Control of Extracellular Protease Activity[J]. BiochemicalEngineering Journal,2001,8:187-193.
    [109]Pirt S J, Callow D S. Continuous-flow Culture of the Filamentous MouldPenicillium chrysogenum and the Control of its Morphology[J]. Nature.1959,184:307-310.
    [110]Vats P. Production of Phytase (myo-inositolhexakisphosphatephosphohydrolase) by Aspergillus niger van Teighem in Laboratory-scaleFermenter[J]. Biotechnology Progress,2004,20:737-743.
    [111]Vecht-Lifshitz S. Pellet Formation and Cellular Aggregation in Streptomycestendae[J]. Biotechnology and Bioengineering,1990,35:890-896.
    [112]Kim H M, Park M K, Yun J W. Culture pH Affects ExopolysaccharideProduction in Submerged Mycelial Culture of Ganoderma lucidum[J]. AppliedBiochemistry and Biotechnology,2006,134(3):249-262.
    [113]蒋雪薇,罗晓明,盛灿梅,等.米根霉L-乳酸发酵菌丝球成球条件的研究[J].食品科学,2010,31(15):216-220.
    [114]Reichl,U. Characterization of Pellet Morphology During Submerged Growthof Streptomyces tendae by Image Analysis[J]. Biotechnology andBioengineering,1992,39:164-170.
    [115]Johansen C L, Coolen L, Hunik J H. Infuence of Morphology on ProductFormationin Aspergillus awamori during Submerged Fermentations[J].Biotechnology Progress,1998,14:233-240
    [116]Dominques F C, Queiroz J A, Cabral J M, et al. The Influence of Cultures onMycelial Structure and Cellulase Production by Trichoderma reesei RutC-30[J]. Enzyme and Microbial Technology,2000,26(5-6):394-401.
    [117]姜绍通,吴学凤,潘丽军,等.米根霉菌丝球半连续发酵产乳酸的工艺研究[J].农业机械学报,2009,40(11):150-155.
    [118]Tobon G J, Kurzatkowski W, Rozbicka B, et al. In Situ Localization ofManganese Peroxidase Production in Mycelial Pellets of Phanerochaetechrysosporium[J]. Microbiology.2003,149:3121-3127.
    [119]Vecht-Lifshitz S E, Sasson Y, Braun S. Nikkomycin Production in Pellets ofStreptomyces tendae[J]. Journal of Applied Bacteriology,1992,72(3):195-200.
    [120]Tripathi C K, Rastogi S, Bihari V, et al. Production of Calcium Gluconate byFermentation[J]. Indian journal of experimental biology,1999,37(7):731-733.
    [121]van Wezel G P, Krabben P, Traag B A, et al. Unlocking Streptomyces spp. ForUse as Sustainable Industrial Production Platforms by MorphologicalEngineering[J]. Applied and Environmental Microbiology,2006,72(8):5283-5288.
    [122]Du J, Cao N, Gong C S, et al. Production of L-lactic Acid by Rhizopus oryzaein a Bubble Column Fermenter[J]. Applid Biochemistry and Biotechnology,1998,70-72:323-329.
    [123]Neelavar S R, Liliya G N, Felix B. Pellet Size Affects Mycelial ErgosterolContent in Aquatic Hyphomycetes[J]. Mycologia,2004,96(2):388-392.
    [124]Taskin T, Erdal S. Reactive Dye Bioaccumulation by Fungus Aspergillus nigerIsolated from the Effluent of Sugar Fabric-contaminated Soil[J]. Toxicologyand Industrial Health,2010,26(4):239-247.
    [125]范天黎,席宇姚,东升,等.土曲霉M11菌丝球对结晶紫的吸附脱色研究[J].化学与生物工程,2010,27(3):77-79.
    [126]王国惠.霉菌菌丝球WY对酸性棕染料PR的脱色研究[J].中山大学学报(自然科学版),2009,48(4):107-112.
    [127]王国惠.霉菌菌丝球WL对孔雀绿染料脱色性能研究[J].微生物学杂志,2008,28(6):19-23.
    [128]徐淑霞,冯航标,张世敏,等.黄孢原毛平革菌对孔雀石绿生物脱色条件的研究[J].河南农业大学学报,2009,43(4):437-440.
    [129]肖继波,胡勇有.真菌菌丝球HX对活性艳红X-3B的脱色作用[J].工业用水与废水,2004,35(1):5-8.
    [130]肖继波,胡用有.烟曲霉菌吸附染料的解析及其机理[J].环境科学与技术,2008,31(5):18-22.
    [131]刘桂萍,陈晓霞,刘长风,等.霉菌TM-3的成球条件及其对染料的吸附脱色研究[J].环境保护科学,2008,34(2):28-31.
    [132]吴香波,谢益民,冯晓静,等. Coriolus versicolor菌丝球用于造纸废水脱色的探讨[J].中华纸业,2009,30(12):53-57.
    [133]高恩丽,张树江,夏黎明.云芝菌丝球在流化床反应器中产漆酶的研究[J].浙江大学学报(工学版).2006,40(3):533-536.
    [134]吴绵斌,夏黎明.应用Coriolus vericolor菌丝球脱色染料及印染废水的研究[J].微生物学报,2002,42(3):364-369.
    [135]阮晓东,张惠文,蔡颖慧,等.短刺小克银汉霉菌丝球对孔雀绿的吸附研究[J].水处理技术,2009,25(8):50-54.
    [136] Wu J, Yu H Q. Biosorption of2,4-Dichlorophenol from Aqueous Solution byPhanerochaete chrysosporium Biomass: Isotherms, Kinetics andThermodynamics[J]. Journal of Hazardous Materials,2006,137(1):498-508.
    [137]陈翠雪,李清彪,邓旭,等.黄孢展齿革菌菌丝球同时吸附铅镉离子的动力学[J].离子交换与吸附,2003,19(2):133-138.
    [138]刘长风,刘桂萍,高峰,等.霉菌菌丝球吸附Cr(Ⅵ)的研究[J].化学工程师,2005,116(5):12-14.
    [139]王国惠.霉菌菌丝球对重金属Cr(Ⅵ)的吸附特性[J].中山大学学报(自然科学版),2007,46(3):112-116.
    [140]刘桂萍,刘长风,关丽杰,等.霉菌菌丝球对Pb2+的吸附研究[J].沈阳化工学院学报,2005,19(2):93-96.
    [141]刘桂萍,陈晓霞.霉菌Dh-B1菌丝球吸附铅离子的研究[J].沈阳化工大学学报,2008,22(3):218-221.
    [142]吴涓,钟升,李玉成.黄孢原毛平革菌对Pb2+的生物吸附特性及吸附机理[J].环境科学研究,2010,23(6):754-761。
    [143]吴涓,肖亚中.黄孢原毛平革菌菌丝球对Pb2+的动态吸附及其洗脱[J].安徽大学学报(自然科学报),2002,26(1):101-106.
    [144]李薇,吴涓.黄孢展齿革菌菌丝球上铅的解析[J].厦门大学学报(自然科学版),2000,39(4):481-484.
    [145]王慕华,徐宏英,苏槟楠.黑曲霉菌丝球还原水中六价铬的研究[J].科学技术与工程,2010,10(26):6472-6477.
    [146]金科,李小明,杨麒,等.黄孢原毛平革菌吸附六价铬的研究[J].工业安全与环保,2006,32(7):9-12.
    [147]赵立军,马放,山丹,等.曲霉菌丝球Y3对细菌的固定化效能[J].江苏大学学报(自然科学版),2007,28(5):446-449.
    [148]山丹.耐冷苯胺降解菌的特性及其对苯胺废水处理的强化作用[D].哈尔滨:哈尔滨工业大学学位论文,2008:101-119.
    [149]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    [150]Catelani D, Colombi A, Sorlini C.2-Hydroxy-6-oxo-phenylhexa-2,4-dienoate:the meta-cleavage Product from2,3-Dihydroxybiphenyl by Pseudomonasputida[J]. Biochemical Journal,1973,134:1063-1066.
    [151]李昂.菌株Dyella ginsengisoli LA-4降解联苯及基因的克隆与表达[D].大连:大连理工大学学位论文,2009:47-48.
    [152]孙玉梅,朱蓓薇,刘阳,等.黑曲霉菌丝凝集机制的研究[J].大连轻工业学院学报,1994,13(4):16-20.
    [153]李盼盼,臧淑艳,袁博,等.黑曲霉对模拟废水中汞的吸附[J].沈阳化工大学学报,2011,25(1):1-6.
    [154]虞丹尼,周光明,吉芳英,等.三峡水库溶解有机质的三维荧光光谱研究[J].化学学报,2011,69(8):960-966.
    [155]廖日红,战楠,申颖洁,等.活性炭吸附受污染河水中有机物的三维荧光分析[J].中国给水排水,2011,27(1):92-95.
    [156]严赟,杜树新,吴元清.基于三维荧光光谱特征峰的水体有机污染物综合指标检测[J].环境工程学报,2011,5(3):519-522.
    [157]赖波,周岳溪,宋玉栋,等.一种定性分析ABS生产废水中溶解性有机物的方法[J].光谱学与光谱分析,2011,31(3):784-788.
    [158]杜嬛.天然植物基多孔炭材料的制备及其电化学性能研究[D].天津:天津大学学位论文,2009:29.
    [159]Wang Q, Ma F, Wang H, et al. Analysis for Flocculation Morphology ofCompound Bioflocculant[J]. Journal of Functional Materials,2006,37:746-748.
    [160]Ma F, Cheng L, Chi Y. Applications of Biological Flocculants (BFs) forCoagulation Treatment in Water Purification: Turbidity Elimination[J].Chemical and Biochemical Engineering Quarterly,2008,22(3):321-326.
    [161]Ma F, Wang W. Study on Preliminary Extraction and Purification ofCompound Bioflocculant[J]. Information Technology and EnvironmentalSystem Sciences.2008,3:763-768.
    [162]Liu Y, Tay J H. The Essential Role of Hydrodynamic Shear Force in theFormation of Bioflim and Granular Sludge[J]. Water Research,2002,36:1653-1665.
    [163]Bloodaxe E S. Links Between Chemistry and Structure in Titanites andTourmalines[D]. Ph. D thesis. Department of Geology, Miami University,Oxford Ohio, USA.1999.
    [164]Yavuz F, Gultekin A H, Karakay M C. CLASTOUR: A Computer Program forClassification of the Minerals of the Tourmaline Group[J]. Computers andGeosciences,2002,28:1017-1036.
    [165]Meng J, Jin W, Liang J, et al. Effect of Particle Size on Far Infrared EmissionProperties of Tourmaline Superfine Powders[J]. Journal of Nanoscience andNanotechnology,2010,10(3):2083-2087.
    [166]Xia M S, Xu Z R, Zhang H M, et al. Effect of Tourmaline on Liquid WaterClusters and Dehydrogenase Activity of Rhodopseudomonas Palustris[J].Journal of Chinese Ceramic Society,2005,33(8):1006-1011.
    [167]Jiang K, Sun T H, Sun L N, et al. Adsorption Characteristics of Copper, Lead,Zinc and Cadmium Ions by Tourmaline[J]. Journal of Environmental Science,2006,18(6):1221-1225.
    [168]Qiu S, Xu S W, Ma F, et al. The Biological Promotion Effect of a NewBiological Promotive Ceramsite[J]. Journal of Wuhan University Technology,2010,25(4):604-608.
    [169]Yao Z T, Xia M S, Zhang H M, et al. Effect of Tourmaline on Growth inNitrifying Bacteria and Formation and Maturation of Biofilm[J]. FisheriesScience,2007,26(8):461-464.
    [170]Jiang K, Ma F, Sun T H, et al. Effect of Tourmaline on DenitrificationCharacteristics of Aerobic Denitrifying Bacteria[J]. Journal of ChineseCeramic Society,2007,35(8):1066-1069.
    [171]Sun S, Wei C D, Liu Y X. Characterization and Water Activation ofTourmaline Nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2010,10(3):2119-2124.
    [172]Qiu S, Ma F, Wo Y, et al. Study on the Biological Effect of Tourmaline on theCell Membrane of E. coli[J]. Surface and Interface Analysis,2010(DOI:10.1002/sia.3694).
    [173]Zhan J, Ge B H, Wang P, et al. Study on the Microstructure of NaturalTourmaline and Mechanism of its Influence on pH Value of Water[J]. Journalof Functional Materials,2009,40(4):556-559.
    [174]Ni H, Li L, Li H H. Tourmaline Ceramic Balls Stimulate Growth andMetabolism of Three Fermentation Microorganisms[J]. World Journal ofMicrobiology and Biotechnology,2008,24:725-731.
    [175]Jin H M, Hang G B, Zhang G P. Effects of Tourmaline on the Proliferation ofHuman Endothelial Cells Using Millicell Membrane Culture Dish[J]. Journalof China Microcircul,2003,7:309-311.
    [176]张逸飞.土壤酶活性、微生物功能多样性及苯胺降解微生物研究[D].南京:南京师范大学学位论文,2006:27-29.
    [177]Xiao C B, Ning J, Yan H, et al. Biodegradation of Anline by a Newly IsolatedDelftia sp. XYJ6[J]. Biotechnology and Bioengineering,2009,17(3):500-505.
    [178]Bai Y H, Sun Q H, Sun R H, et al. Bioaugmentation and Adsorption Treatmentof Coking Wastewater Containing Pyridine and Quinoline UsingZeolite-biological Aerated Filters[J]. Environmental Science and Technology,2011,45(5):1940-1948.
    [179]Shimizu S, Ueno A, Ishijima Y. Microbial Communities Associated withAcetate-rich Gas-petroleum Reservoir Surface Facilities[J]. BioscienceBiotechnology Biochemistry,2011,75(9):1835-1837.
    [180]Adav S S, Lee D J, Lai J Y. Microbial Community of Acetate UtilizingDenitrifiers in Aerobic Granules[J]. Applied Microbiology and Biotechnology,2010,85(3):753-762.
    [181]Yu Z T, Mohn W W. Bacterial Diversity and Community Structure in anAerated Lagoon Revealed by Ribosomal Intergenic Spacer Analyses and16SRibosomal DNA Sequencing[J]. Applied Environmental Microbiology,2001,67:1565-1574.
    [182]Salmeron-Alcocer A, Ruiz-Ordaz N, Juarez-Ramirez J, et al. ContinuousBiodegradation of Single and Mixed Chlorophenols by a Mixed MicrobialCulture Constituted by Burkholderia sp., Microbacterium phyllosphaerae, andCandida tropicalis[J]. Biochemical Engineering Journal,2007,37:201-211.
    [183]山丹,马放.低温苯胺降解菌固定化菌丝球方法与特征[J].北京工业大学学报,2008,34(6):636-641.
    [184]张超杰,周琪,陈玲,等.间氟苯酚的好氧生物降解性及降解途径研究[J].环境科学,2006,9(27):1841-1845.
    [185]马海娟,李光明,张志刚.产碱菌株F-3-4降解2,6-二叔丁基苯酚机理研究[J].上海环境科学,2006,4(25):139-143.
    [186]王一惠,向述荣,张银定,等.微生物降解苯酚的研究进展及其工程菌的应用前景[J].高技术通讯,2001,12:98-101.
    [187]Solomon E I, Brunold T C, Davis M L. Geometric and ElectronicStructure/Function Correlations in Non-heme Iron Enzymes[J]. ChemicalReview,2000,100(l):235-349.
    [188]李丽,李钦.邻苯二酚1,2-双加氧酶的催化性质[J].生物化学与生物物理进展,1990,17(2):157-160.
    [189]徐亮.苯酚衍生物作用模式的分类及其生物降解过程中氧分子通道的结构与功能[D].大连:大连理工大学学位论文,2009:4-5.
    [190]Yamahara R, Ogo S, Masuda H.(Cateeholato) Iron (III) Complexes: Structuraland Funetional Models for the Catechol-bound Iron (III) form of CatecholDioxygenases[J]. Journal of Inorganic Biochemistry,2002,88(3-4):254-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700