用户名: 密码: 验证码:
基于大涡模拟—颗粒二阶矩的两相流动与反应数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固两相流的流动与反应现象普遍存在于能源、化工、电力等领域,一个典型的工业应用就是流化床反应器。流化床以其颗粒掺混性强、操作温度易控制、燃料适应性广等优势被广泛应用,深入认识和研究流化床内气固两相流动与反应机理有着重要的现实意义。计算机技术的发展使得数值模拟方法已经在气固两相流的预测与研究中广泛应用。然而,流化床内气相湍流、颗粒碰撞耗散以及气固相间多向耦合作用等问题增加了模拟的复杂性。另外,均相反应与气固异相反应的同时存在,反应过程的吸放热温度变化,使得气固相间的流动与反应过程相互影响,对研究模型精度的要求更高。因此,正确合理地构建和完善数学模型对流化床内气固两相流动与反应的研究有重要的指导意义。
     本文采用大涡模拟方法模拟气相湍流,推导了考虑气固相间作用影响的气相亚格子湍动能方程,建立了亚格子湍动能模型。颗粒相考虑了颗粒速度脉动各向异性,采用颗粒速度脉动二阶矩模型。对于气固相间作用,不但考虑了气固相间作用力影响,而且补充了气固相间二阶脉动能量作用的影响,类比Simonin模型,通过气相亚格子湍动能与颗粒相速度脉动二阶矩之间的脉动能量传递来封闭气固相间作用二阶模型。考虑气相湍流、颗粒相速度脉动各向异性及气固相间的一阶与二阶相互作用建立了气相大涡模拟-颗粒相二阶矩双流体模型(LES-SOM Model)。将LES-SOM模型拓展到反应领域,补充了组分方程和能量方程,同时考虑了反应过程中气相与颗粒相质量改变对流动的影响。将涡耗散概念(Eddy Dissipation Concept, EDC)反应模型思想应用于气相大涡模拟反应中,通过比较亚格子过滤尺度与微细结构尺度的大小关系,在微细结构上建立亚格子反应模型进行封闭。
     应用LES-SOM双流体模型分别对低质量流率和高质量流率提升管内气固两相流动特性进行数值模拟。与Jiradilok等低质量流率情况和Herbert等高质量流率情况的实验数据吻合均较好。模拟结果显示提升管内颗粒浓度中心低边壁高,颗粒速度中心高边壁低,呈典型的“环-核”流动结构。气相亚格子湍动能与亚格子能量耗散呈中心高边壁低的分布趋势。颗粒速度脉动各向异性明显,颗粒相轴向速度脉动二阶矩大于径向速度脉动二阶矩,分散颗粒的速度脉动二阶矩及速度脉动各向异性比颗粒聚团明显。颗粒相雷诺应力型二阶矩与气相雷诺应力型二阶矩分布一致,数值上小于气相雷诺应力型二阶矩。同时比较了不同气相大涡模拟亚格子模型、不同气固相间二阶作用模型下气固流动特性,分析了颗粒弹性恢复系数、气体表观速度及颗粒入口质量流率对气固流动的影响。随着气体速度增加和颗粒循环流量降低,颗粒轴向二阶矩与径向二阶矩的比值呈幂函数增加,其比值可达到4-4.5。颗粒浓度径向分布由“U型”变为“倒U型”,分布出现反转。获得了所研究的颗粒直径和密度为300m和2500kg/m~3时径向颗粒浓度分布出现反转、流动由“稀相流态化”变为“快速流态化”的界限气体表观速度与界限颗粒循环流量。
     应用LES-SOM双流体模型,对流化床内煤颗粒的流动燃烧过程进行数值模拟。建立了煤燃烧反应模型,比较了气相亚格子反应模型对燃烧过程模拟结果的影响,模拟得到的出口处各气体组分含量与Topal等实验数据吻合较好。模拟结果给出了煤燃烧过程中煤颗粒与脱硫剂颗粒的浓度、速度、颗粒速度脉动二阶矩及雷诺应力型二阶矩分布规律,并对不同组分速度脉动各向异性进行了研究。同时得到了煤热解、碳燃烧、挥发分燃烧、NOx气体排放及脱硫过程中气体及颗粒各组分分布及温度场分布特点。总结了提升管煤燃烧过程中,反应速率随温度和浓度的变化规律。亚格子反应速率随温度升高而增大。随颗粒浓度的增加,挥发分均相反应速率升高,而碳颗粒燃烧异相反应速率逐渐降低。
     考虑了高颗粒浓度下的摩擦应力影响,将LES-SOM双流体模型应用于鼓泡流化床内生物质木材颗粒的气化过程。建立了生物质气化反应模型,比较了气相亚格子反应模型对气化过程模拟结果的影响,模拟得到的出口处各气体组分含量在实验数据允许范围内。分析了鼓泡床内气泡的存在对流动与反应的影响,着重研究了粒径不同的两种碳颗粒在反应过程中浓度、速度、颗粒速度脉动二阶矩及雷诺应力型二阶矩变化特性。同时分析了焦油热解、燃气氧化和碳颗粒燃烧及气化过程特点,模拟结果给出了气体各组分分布以及温度场分布,并总结了流化床生物质气化过程中,反应速率随温度和浓度的变化规律。亚格子反应速率随温度升高而增大。随着颗粒浓度的增加,气体均相反应速率和碳的氧化反应速率先增加,达到最大值后,再逐渐降低。在低颗粒浓度时,碳还原反应速率随浓度增加而增加;在高颗粒浓度时,随颗粒浓度变化不大。水煤气反应和甲烷化反应与颗粒浓度基本无关。
Reactive gas-solid two-phase flows are widespread in energy conversion,chemical and oil industries, electric power and other fields. A typical industrialapplication is fluidized bed reactors. Fluidized bed reactor has achieved a wideindustry uses over the past decades due to its advantages such as mixingefficiently of particles, ability to control temperature easily, fuel flexibility.In-depth understanding and grasp of the mechanisms of gas-solid flows has verypractical significance. With the advancement of computational fluid dynamics(CFD), numerical simulations have been widely utilized in the research ofgas-solid flows. However, challenges such as gas-solid turbulence, dissipation ofparticle collision and multi-coupling between gas and solid phases increase thecomplexity of numerical simulation. Besides, the coexistence of homogeneousand heterogeneous reactions and variation of temperature due to heat exchange ofreactions lead to severe coupling between the interdependent process of turbulentgas-solid flow and reactive process. Up to now, there is no universal numericalmodel applicable to the reactive gas-solid process in fluidized bed reactor in theopen literature. Current mathematical models from different researchers based onsome assumptions are only valid under certain circumstances. Therefore,development of mathematical models plays an important role in researchingreactive gas-solid flow process.
     Based on the Large Eddy Simulation (LES) of gas turbulence, the turbulentkinetic energy equations considering interaction of gas-solid phases are present,and the subgrid turbulent energy model is proposed. The transport equations forthe second-order moment (SOM) of particle fluctuating velocity are used,considering anisotropic characteristic of particle velocity fluctuating. For theinteractions between gas and solid phases, not only consider gas-solidinter-phase force, but the second order fluctuating energy are implementedtransferring between gas subgrid turbulent energy and second-order moment ofsolids. The LES-SOM model is presented considering gas turbulence, anisotropyof solid fluctuating velocity and first order and second order interaction betweengas and solid phases. With the extension of LES-SOM model into reactions, theequations of species and energy of gas and solid phases are presented. Applyingthe eddy dissipation concept (EDC) reaction model into LES simulation of gasreactions, by comparing subgrid scale and “fine structure” scale, the subgrid reaction model is presented within fine structure.
     Numerical simulations of hydrodynamics of gas-solid two-phase flows inrisers are performed based on LES-SOM model. The simulations are in goodagreement with low mass flux experiment results by Jiradilok et al. and highmass flux experiment results by Herbert et al. Simulations predict a typicalcore-annular flow structure of low solid concentration and upward flow in thecore, and high solid concentration and downward flow in the annular region. Thedistribution of subgrid turbulent kinetic energy and subgrid energy dissipation ishigh in the middle and low near the wall. The anisotropic behavior of fluctuatingvelocity of particles is obvious. The axial second-order moment of particle ishigher than radial second-order moment of particles. Dispersed particlesdemonstrate more anisotropic behavior of fluctuating velocity than particles inclusters. The distribution of solid Reynolds stress has the similar trend with thoseof gas phase, but the value is lower. Compare gas-solid flow behaviors withdifferent sub-grid LES model of gas phase and with different gas-solidinteraction model between phases. The effects of different restitution coefficients,superficial gas velocities and mass flow rates are analyzed. As the gas velocityincreases and particle circulating flow reduces, the ratio of axial and radialsecond-order moments is increased as a power function. The ratio can be up to4-4.5. The distribution of particle concentration along radial direction changesfrom "U" type to "inverted U" type, and the distribution is occurred reversal. Itobtained the critical gas superficial velocity and critical particle circulation flowwith diameter and density of particles of300m and2500kg/m~3.
     The LES-SOM model is applied to simulate the flow and combustionbehavior of coal particles in fluidized bed combustor. The comprehensive coalcombustion model is presented. By comparing simulating results with subgridreaction model of gas phase, the simulating gas components in the outlet agreewell with experiment of Topal et al. Simulations also take coal devolatisation,carbon particles combustion, volatile matter combustion and desulfurizationprocess into account. The results capture the distribution of concentration,velocity, second-order moment, and Reynolds stresses of coal particles anddesulfurizer particles. The distributions of gas components and temperaturefields are studied. The reaction rates of coal combustion process are alsoconsidered as a function of temperature and concentration. The subgrid reactionrates increase with temperature rising. With the increase of particle concentration,volatile homogeneous reaction rates increase, and carbon heterogeneous reaction rates decrease gradually.
     Considering solids frictional stress in high volume fraction of particles, theLES-SOM model is applied to simulate the gasification process of wood particlesin bubbling fluidized bed. The comprehensive wood gasification model ispresented. By comparing simulating results with subgrid reaction model of gasphase, gas species in the outlet are in agreement with experimental data withinacceptable error. The influence of bubbles on flow and reaction behavior isstudied. It is especially addressed that distribution of particle concentration,velocity, second-order moment and Reynolds stresses of two groups of particleswith different sizes in the gasification process.The process of tar devolatisation,wood gas combustion, char combustion and gasification are also analyzed.Simulation also presents the distributions of gas species molar fraction andtemperature field in the reactor. The reaction rates of biomass gasificationprocess are also considered the relation with temperature and concentration. Thesubgrid reaction rates increase with temperature rising. With the increase ofparticle concentration, homogeneous reaction and carbon oxidation rates increasefirst, reach the maximum, and then decrease gradually. At low particleconcentration, carbon reduction reaction rate increases with the increase ofconcentration, but at high particle concentration, little changes with theconcentration of particles. Water gas reaction and methanation reaction rates areundepedent upon particle concentrations.
引文
[1] Pant H. J., Sharma V. K., Vidya K. M., Investigation of Flow Behaviour of CoalParticles in a Pilot-scale Fluidized Bed Gasifier (FBG) using RadiotracerTechnique[J]. Applied Radiation and Isotopes,2009,67:1609-1615.
    [2]蔡新桃,郭照立,郑林,等.方腔内微细颗粒物运动特性的格子Boltzmann方法模拟[J].计算物理,2011,28(3):355-360.
    [3] Schalk C., Stein T. J., Shahriar A. An Assessment of the Ability of ComputationalFluid Dynamic Models to Predict Reactive Gas-solid Flows in a Fluidized Bed[J].Powder Technology,2012,215-216:15-25.
    [4] Srujal S., Jouni R., Timo H.. Space Averaging on a Gas-solid Drag Model forNumerical Simulations of a CFB Riser[J]. Powder Technology,2012,218:131-139.
    [5] Rahul G., Janine G., Tingwen L. Open-source MFIX-DEM Software for Gas-solidsFlows: Part I—Verification Studies[J]. Powder Technology,2012,220:122-137.
    [6] Maziar D., Hassan B. T. On Near-wall Behavior of Particles in a Dilute TurbulentGas-solid Flow Using Kinetic Theory of Granular Flows[J]. Powder Technology,2012,224:273-280.
    [7] Benjapon C., Dimitri G., Pornpote P. Two-and Three-dimensional CFD Modelingof Geldart A Particles in a Thin Bubbling Fluidized Bed: Comparison ofTurbulence and Dispersion Coefficients[J]. Chemical Engineering Journal,2011,171:301-313.
    [8] Meire P. de S. B., Andreza T. M., Helio A. N. The Effect of Numerical Diffusionand the Influence of Computational Grid over Gas-solid Two-phase Flow in aBubbling Fluidized Bed[J]. Mathematical and Computer Modellin,.2010,52:1390-1402.
    [9] Norouzi H. R., Mostoufi N., Mansourpour Z. Characterization of Solids MixingPatterns in Bubbling Fluidized Beds[J]. Chemical Engineering Research andDesign,2011,89:817-826.
    [10] Rahel Y., Britt H., Morten C. M. An Experimental and Computational Study ofWall to Bed Heat Transfer in a Bubbling Gas-solid Fluidized Bed[J]. InternationalJournal of Multiphase Flow,2012,42:9-13.
    [11] Yerushalmi J., Turner D. H., Squires A. M. The Fast Fluidized Bed[J]. Ind. Eng.Chem. Process Des. Develop,1976,15:47-53.
    [12] Xueyao W., Liangliang L., Baoguo F. Experimental Validation of the Gas-solidFlow in the CFB Riser[J]. Fuel Processing Technology,2010,91:927-933.
    [13] Esmail R. M., Lawrence J. S., Joseph S. M., James S. Identification andCharacteristics of Different Flow Regimes in a Circulating Fluidized Bed[J].Powder Technology,2005,155:17-25.
    [14] James C. M., Leon R. G. Mean and Fuctuating Gas Phase Velocities Inside aCirculating Fuidized Bed[J]. Chemical Engineering Science,2003,58:1867-1878.
    [15] Satish B., Miryan C., Muthanna H. A.. Dynamical Features of the Solid Motion inGas-solid Risers[J]. International Journal of Multiphase Flow,2007,33:164-181.
    [16] Ronald W. B.. An Analysis of Clustering Flows in a CFB Riser[J]. PowderTechnology,2012,220:79-87.
    [17] Xuecheng W., Qinhui W., Zhongyang L. Experimental Investigation ofInterparticle Collision in the Upper Dilute Zone of a Cold CFB Riser[J].International Journal of Multiphase Flow,2008,34:924-930.
    [18] Abdelghafour Z., Herve B., Rene O. Solids Behavior in Dilute Zone of a CFBRiser Under Turbulent Conditions[J]. Particuology,2011,9:598-605.
    [19] Peng B., Xu J., Zhu J., et al. Numerical and Experimental Studies on the FlowMultiplicity Phenomenon for Gas-solids Two-phase Flows in CFB Risers[J].Powder Technology,2011,214:177-187.
    [20] Ellis N., Bi H. T., Lim C. J., Grace J. R. Hydrodynamics of Turbulent FluidizedBeds of Different Diameters[J]. Powder Technology,2004,141:124-136.
    [21] Thanh D. B. N., Myung W. S., Young-Il L. CFD Simulation with Experiments in aDual Circulating Fluidized Bed Gasifier[J]. Computers and Chemical Engineering,2012,36:48-56.
    [22] Luben C. G., Fernando E. M. Numerical Study on the Influence of VariousPhysical Parameters Over the Gas-solid Two-phase Flow in the2D Riser of aCirculating Fluidized Bed[J]. Powder Technology,2003,132:216-225.
    [23] Mansoori Z., Saffar-Avval M., Basirat T. H., et al. Experimental Study ofTurbulent Gas-solid Heat Transfer at Different Particles Temperature[J].Experimental Thermal and Fluid Science,2004,28:655-665.
    [24] Coroneo M., Mazzei L., Lettieri P., et al. CFD Prediction of Segregating FluidizedBidisperse Mixtures of Particles Differing in Size and Density in Gas-solidFluidized Beds[J]. Chemical Engineering Science,2011,66:2317-2327.
    [25] Nicoleta H., Matthias S., Christoph E. A Comparative Study of DifferentCFD-codes for Numerical Simulation of Gas-solid Fluidized Bed Hydrodynamics[J]. Computers and Chemical Engineering,2012,39:41-46.
    [26] Xiaobo Q., Hui Z., Jesse Z. Friction Between Gas-solid Flow and CirculatingFluidized Bed Downer Wall[J]. Chemical Engineering Journal,2008,142:318-326.
    [27] Yuefa W., Zhongxi C., De C., et al. SE-SMR Process Performance in CFBReactors: Simulation of the CO2Adsorption/desorption Processes with CaO BasedSorbents[J]. International Journal of Greenhouse Gas Control,2011,5:489-497.
    [28] Schalk C., Stein T. J., Shahriar A. An Assessment of the Ability of ComputationalFluid Dynamic Models to Predict Reactive Gas-solid Flows in a Fluidized Bed[J].Powder Technology,2012,215-216:15-25.
    [29] Zhou W., Zhao C. S., Duan L. B., et al. Two-dimensional Computational FluidDynamics Simulation of Coal Combustion in a Circulating Fluidized BedCombustor[J]. Chemical Engineering Journal,2011,166:306-314.
    [30] Parinya K., Dimitri G. Compact Fluidized Bed Sorber for CO2Capture[J].Particuology,2010,8:531-535.
    [31]段伦博,周骛,屈成锐,等.50kW循环流化床O2/CO2气氛下煤燃烧及污染物排放特性[J].中国电机工程学报,2011,31(5):7-12.
    [32] Armin S., Ting W. Effect of Turbulence and Devolatilization Models on CoalGasification Simulation in an Entrained-flow Gasifier[J]. International Journal ofHeat and Mass Transfer,2010,53:2074-2091.
    [33] Liang Y., Jing L., Xiangping Z., et al. Numerical Simulation of the BubblingFluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow(KTGF)[J]. Fuel,2007,86:722-734.
    [34]王小芳,金保升,钟文琪.基于欧拉多相流模型的流化床煤气化过程三维数值模拟[J].东南大学学报,2008,38(3):454-460.
    [35] Peijun J., Feng W., Biaohua C. Production of Ultrapure Hydrogen from BiomassGasification with Air[J]. Chemical Engineering Science,2009,64:582-592.
    [36] Hao L., Bernard M. G. Modeling NH3and HCN Emissions from BiomassCirculating Fluidized Bed Gasifiers[J]. Fuel,2003,82:1591-1604.
    [37] Davide R., Reji N., Masayuki H., et al. Axial Gas Profiles in a Bubbling FluidisedBed Biomass Gasifier[J]. Fuel,2007,86:1417-1429.
    [38] Yu-Hong Q., Jie F., Wen-Ying L. Formation of Tar and Its Characterizationduring Air-steam Gasification of Sawdust in a Fluidized Bed Reactor[J]. Fuel,2010,89:1344-1347.
    [39] Maria L. M., Lucio Z., Umberto A. Co-gasification of Coal, Plastic Waste andWood in a Bubbling Fluidized Bed Reactor[J]. Fuel,2010,89:2991-3000.
    [40] Priyanka K., Jalal A., Nader M. A Comprehensive Mathematical Model forBiomass Gasification in a Bubbling Fluidized Bed Reactor[J]. Fuel,2010,89:3650-3661.
    [41] Chanchal L., Pradip K. C., Himadri C. Performance of Fluidized Bed SteamGasification of Biomass-Modeling and Experiment[J]. Energy Conversion andManagement,2011,52:1583-1588.
    [42] Thanh D.B.N., Son I. N., Young-Il L., et al. Three-stage Steady-state Model forBiomass Gasification in a Dual Circulating Fluidized-bed[J]. Energy Conversionand Management,2012,54:100-112.
    [43] Son I. N., Thanh D.B.N., Young-Il L., et al. Performance Evaluation for DualCirculating Fluidized-bed Steam Gasifier of Biomass Using Quasi-equilibriumThree-stage Gasification Model[J]. Applied Energy,2011,88:5208-5220.
    [44] Gomez-Barea A., Leckner B. Modeling of Biomass Gasification in FluidizedBed[J]. Progress in Energy and Combustion Science,2010,36:444-509.
    [45] Jia-Hong K., Chiou-Liang L., Ming-Yen W. Effect of Agglomeration/Defluidization on Hydrogen Generation During Fluidized Bed Air Gasification ofModified Biomass[J]. International Journal of Hydrogen Energy,2012,37:1409-1417.
    [46] Priyanka K., Tobias P., Hermann H. Model for Biomass Char Combustion in theRiser of a Dual Fluidized Bed Gasification Unit: Part1-Model Development andSensitivity Analysis[J]. Fuel Processing Technology,2008,89:651-659.
    [47] Anshul G., Pushpavanam S., Ravi K. V. Modeling and Simulation ofCo-gasification of Coal and Petcoke in a Bubbling Fluidized Bed Coal Gasifier[J].Fuel Processing Technology,2010,91:1296-1307.
    [48] Qi M., Jesse Z., Shahzad B., et al. Modeling Biomass Gasification in CirculatingFluidized Beds[J]. Renewable Energy,2013,50:655-661.
    [49] Piyarat W., Masayuki H., Chaiyot T. Effects of Gasifying Conditions and BedMaterials on Fluidized Bed Steam Gasification of Wood Biomass[J]. BioresourceTechnology,2009,100:1419-1427.
    [50] Michael O., Stephan G., Frank B. Euler-Lagrange/DEM Simulation of WoodGasification in a Bubbling Fluidized Bed Reactor[J]. Particuology,2009,7:307-316.
    [51] Gerber S., Behrendt F., Oevermann M. An Eulerian Modeling Approach of WoodGasification in a Bubbling Fluidized[J]. Fuel,2010,89:2903-2917.
    [52]李乾军,潘效军,张东平,等.流化床中生物质气化的数值模拟[J].动力工程学报,2011,31(8):624-629.
    [53] Perrine P., Olivier D. Numerical Analysis of the Dynamics of two-and three-dimensional Fluidized Bed Reactors using an Euler-Lagrange Approach[J].Powder Technology,2012,220:104-121.
    [54] Ernst-Ulrich H., Lars R., Reiner W., et al. CFD-Simulation of a CirculatingFluidized Bed Riser[J]. Particuology,2009,7:283-296.
    [55] Hamid R. N., Hassan B. T. Development of Boundary Transfer Method inSimulation of Gas-Solid Turbulent Flow of a Riser[J]. Applied MathematicalModelling,2012.
    [56] Liu Y., Zhou L. X., Xu C. X. Large Eddy Simulation of Swirling Gas-ParticleFlows using a USM Two-Phase SGS Stress Model[J]. Powder Technology,2010,198(2):183-188.
    [57] Chris D. D., Nicholas S. V.. Large Eddy Simulation of Gas-Particle TurbulentChannel Flow with Momentum Exchange Between the Phases[J]. InternationalJournal of Multiphase Flow,2011,37(7):706-721.
    [58] Francisco J. de S., Ricardo de V. S., Diego A. de M. M. Large Eddy Simulation ofthe Gas-Particle Flow in Cyclone Separators[J]. Separation and PurificationTechnology,2012,94:61-70.
    [59] Passalacqua A., Marmo L. A Critical Comparison of Frictional Stress ModelsApplied to the Simulation of Bubbling Fluidized Beds[J]. Chemical EngineeringScience,2009,160:2795-2806.
    [60] Maziar D., Hassan B. T. On Near-wall Behavior of Particles in a Dilute TurbulentGas-solid Flow using Kinetic Theory of Granular Flows[J]. Powder Technology,2012,224:273-280.
    [61] Junwu W., vander Hoef M. A., Kuipers J. A. M. CFD Study of the MinimumBubbling Velocity of Geldart A Particles in Gas-fluidized Beds[J]. ChemicalEngineering Science,2010,65:3772-3785.
    [62]刘道银,陈晓平,陆利烨,等.流化床密相区颗粒扩散系数的CFD数值预测[J].化工学报,2009,60(9):2183-2190.
    [63]刘忠,刘含笑,冯新新,等.超细颗粒物聚并模型的比较研究[J].燃烧科学与技术,2012,18(3):212-216.
    [64] Marchioli C., Soldati A., Kuerten J. G. M., et al. Statistics of Particle Dispersion inDirect Numerical Simulations of Wall-bounded Turbulence: Results of anInternational Collaborative Benchmark Test[J]. International Journal of MultiphaseFlow,2008,34:879-893.
    [65] Jingsen M., Wei G., Qingang X., et al. Direct Numerical Simulation of ParticleClustering in Gas-solid Flow with a Macro-scale Particle Method[J]. ChemicalEngineering Science,2009,64:43-51.
    [66] Catalano P., Tognaccini R. RANS Analysis of the Low-Reynolds Number FlowAround the SD7003Airfoil[J]. Aerospace Science and Technology,2011,15(8):615-626.
    [67] Balogh M., Parente A., Benocci C. RANS Simulation of ABL Flow over ComplexTerrains Applying an Enhanced k-Model and Wall Function Formulation:Implementation and Comparison for Fluent and OpenFOAM[J]. Journal of WindEngineering and Industrial Aerodynamics,2012,104-106:360-368.
    [68] Gaggero S., Villa D., Brizzolara S. RANS and PANEL Method for Unsteady FlowPropeller Analysis[J]. Journal of Hydrodynamics,2010,22(5):564-569.
    [69] Smarnorinsky G. CirculaLion Experirnents with Porimitive Equation[J]. MonthlyWeather Peview,1963,91-99.
    [70] Deardorff J. W. A Nurnecial Study of Three-dimensional Turbulent Channel Flowat Large Reynolds Nurnbers[J]. J Fluid Mechanics,1970,41(2):453-480.
    [71] Schurnarm U. Subgrid Scale Model for Finite-Difference SirnulaLions ofTurbulent Flows in Plane Channels and Annuli[J]. Comp Phvs.,1975,18(3):376-404.
    [72] Grotzbach G. Direct Numerical and Large Eddy Simulation of Turbulent ChannelFlow.[J] Encyclopedia of Fluid Mechanics West Orange,1987,1337-1391.
    [73]苏铭德.大涡模拟的代数模型[J].力学学报,1987,19(suppl.):1-8.
    [74]段广涛,陈斌.基于大涡模拟的移动粒子半隐式算法[J].工程热物理学报,2012,33(4):619-622.
    [75]张健,何国威,陆利蓬,等.大涡模拟中的条件滤波耗散和扩散的统计特性[J].力学学报,2006,38(4):433-437.
    [76]刘顺隆,赵仕厂,郑洪涛,等.等离子点火器三维燃烧流场的大涡模拟[J].哈尔滨工程大学学报,2004,25(4):464-467.
    [77] Mathiesen V., Solberg T., Hjertager B. H. An Experimental and ComputationalStudy of Multiphase Flow Behavior in a Circulating Fluidized Bed[J].International Journal of Multiphase Flow,2000,26:387-419.
    [78]王兵,张会强,王希麟.稀疏两相湍流的惯性颗粒倾向性弥散[J].力学学报,2009,41(6):821-827.
    [79]陈雷,刘向军,徐旭常.单颗粒尾涡特性的大涡模拟[J].北京科技大学学报,2006,28(4):380-382.
    [80] Abba A., Cercignani C., Valdettaro L. Analysis of Subgrid Scale Models[J].Computers and Mathematics with Applications,2003,46:521-535.
    [81]马威,方乐,邵亮,等.可解尺度各向同性湍流的标度律[J].力学学报,2011,43(2):267-276.
    [82]张斌,王彤,谷传纲,等.基于小波分析后台阶流动中得湍动能能谱分布[J].上海交通大学学报,2008,42(8):1221-1225.
    [83] Zhou H., Gilles F., Daniel G. Modelling of the Turbulent Gas-particleFlowstructure in a Two-dimensional Circulating Fluidized Bed Riser[J]. ChemicalEngineering Science,2007,62:269-280.
    [84] Germano M., Piomelli U., Moin P., et al. A Dynamic Subgrid-scale Eddy ViscosityModel[J]. Physics of Fluids,1991,3A(7):1760-1765.
    [85] Noma P., Krishnan M. A Velocity-estimation Subgrid Model Constrained bySubgrid Scale Dissipation[J]. Journal of Computational Physics,2008,227:4190-4206.
    [86] Adam M. S., James F. D. Stretch-rate Relationships for Turbulent PremixedCombustion LES Subgrid Models Measured using Temporally ResolvedDiagnostics[J]. Combustion and Flame,2010,157:1422-1435.
    [87] Sherman C. P. Cheung, G. H. Yeoh. A Fully-coupled Simulation of VorticalStructures in a Large-scale Buoyant Pool Fire[J]. International Journal of ThermalSciences,2009,48:2187-2202.
    [88]杨世亮,罗坤,张科,等.后台阶气固两相流动的大涡模拟[J].工程热物理学报,2012,33(4):627-630.
    [89] Xie Z., Li J. An SGS Model and Its Application[J]. Communications in NonlinearScience&Numerical Simulation,1999,4(2):87-90.
    [90] Roger H. S., Edward G. P. Canopy Element Influences on Resolved-andSubgrid-scale Energy within a Large-eddy Simulation[J]. Agricultural and ForestMeteorology,2003,115:5-17.
    [91] Sinisa K., Lars D. A Mixed One-equation Subgrid Model for Large-eddySimulation[J]. International Journal of Heat and Fluid Flow,2002,23:413-425.
    [92] Nansheng L., Xiyun L. Large Eddy Simulation of Turbulent Flows in a RotatingConcentric Annular Channel[J]. International Journal of Heat and Fluid Flow,2005,26:378-392.
    [93] Niceno B., Dhotre M. T., Deen N. G. One-equation Sub-grid Scale (SGS)Modelling for Euler-Euler Large Eddy Simulation (EELES) of Dispersed BubblyFlow[J]. Chemical Engineering Science,2008,63:3923-3931.
    [94] Tabib M. V., Philip S. Quantifying Sub-grid Scale (SGS) Turbulent DispersionForce and Its Effect using One-equation SGS Large Eddy Simulation (LES) Modelin a Gas-liquid and a Liquid-liquid System[J]. Chemical Engineering Science,2011,66:3071-3086.
    [95] Haosheng Z., Gilles F. Daniel Gauthier. DEM-LES of Coal Combustion in aBubbling Fluidized Bed. Part I: Gas-particle Turbulent Flow Structure[J].Chemical Engineering Science,2004,59:4193-4203.
    [96] Kerstein A. R. Linear-eddy Modeling of Turbulent Transport, Part6:Microstructure of Diffusive Scalar Fields[J]. Journal of Fluid Mechanics,1991,216:361-394.
    [97]孙明波,梁剑寒,王振国.湍流燃烧亚格子线性涡模型研究[J].燃烧科学与技术,2007,13(2):169-176.
    [98] Hoffman J., Claes J., Silvia B. Subgrid Modeling for Convection-diffusion-reaction in One Space Dimension using a Haar Multiresolution analysis[J].Computer methods in applied mechanics and engineering,2005,194:19-44.
    [99] Wu Y. Y., Chan C. K., Zhou L. X. Large Eddy Simulation of an Ethylene-airTurbulent Premixed V-flame[J]. Journal of Computational and AppliedMathematics,2011,235:3768-3774.
    [100]Givi P. Model Free Simulation of Turbulent Reactive Flows[J]. Progress in Energyand Combustion Science,1989,15:1-107.
    [101]Madnia C. K., Givi P. Large Eddy Simulations of Complex Engineering andGeophysical Flows[M]. Cambridge: Cambridge University Press,1993:315-346.
    [102]曹红军,张会强,陈昌麒,等.混合分数PDF及其简化模型的大涡模拟研究[J].工程热物理学报,2012,33(8):1441-1444.
    [103]王海峰,陈义良,刘明侯.湍流扩散燃烧的数值研究—PDF方法和火焰面模型的性能比较[J].工程热物理学报,2005,26(suppl.):241-244.
    [104]Paul S. C., Paul M. C., Jones W. P. Large Eddy Simulation of a TurbulentNon-premixed Propane-air Reacting Flame in a Cylindrical Combustor[J].Computers&Fluids.2010,39:1832-1847.
    [105]Ronan V., Benoit F., Nasser D., et al. Coupling Tabulated Chemistry with LargeEddy Simulation of Turbulent Reactive Flows[J]. C. R. Mecanique,2009,337:329-339.
    [106]Kendal B. W., et al. Conditional Moment Closure for Large Eddy Simulation ofNonpremixed Turbulent Reacting Flows[J]. Physics of Fluids,1999,11(7):1896-1906.
    [107]Zhou L., Li K., Wang F. Advances in Large-eddy Simulation of Two-PhaseCombustion (I): LES of Spray Combustion. Chinese Journal of ChemicalEngineering.2012,20(2):205-211.
    [108]Magnussen B. F. On the Structure of Turbulence and a Generalized EddyDissipation Concept for Chemical Reaction in Turbulent Flow[C].19th AIAAAerospace Meeting, the American Institute of Aeronautics and Astronautics, St.Louis, Missouri,1981.
    [109]Fureby C., Lofstrom C. Large-eddy Simulations of Bluff Body StabilizedFlames[J]. Proc Comb Inst.1994,25:1257-1264.
    [110]Moller S. I., Lundgren E., Fureby C. Large-eddy Simulation of UnsteadyCombustion[J]. Proc Comb Inst.1996,26:241-248.
    [111]Mitsuru Y., Hajime E., Tsuyoshi Y., et al. Modeling of Eddy Characteristic Time inLES for Calculating Turbulent Diffusion Flame[J]. International Journal of Heatand Mass Transfer,2002,45:2343-2349.
    [112]Xiouris C. Z., Koutmos P. Fluid Dynamics Modeling of a Stratified Disk Burner inSwirl Co-flow[J]. Applied Thermal Engineering,2012,35:60-70.
    [113]Chapman S., Cowling T. G. The Mathematical Theory of Non-uniform Gases[M].third ed. Cambridge: Cambridge University Press,1970.
    [114]Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic TheoryDescriptions[M]. Boston: Academic Press, San Diego,1994.
    [115]Ding J., Gidaspow D. A Bubbling Fluidization Model Using Kinetic Theory ofGranular Flow[J]. AICHE Journal,1990,36(4):523-538.
    [116]Hrenya C. M., Sinclair J. L. Effects of Particle-phase Turbulence in Gas SolidFlows[J]. AIChE Journal,1997,43:853-869.
    [117]Chalermsinsuwan B., Piumsomboon P., Gidaspow D. Kinetic Theory BasedComputation of PSRI Riser: Part I–estimate of Mass Transfer Coefficient[J].Chemical Engineering Science.2009,64:1195-1211.
    [118]Jung J. H., Gidaspow D. Measurement of Two Kinds of Granular Temperatures,Stresses, and Dispersion in Bubbling Beds[J]. Industrial&Engineering ChemistryResearch,2005(44):1329-1341.
    [119]Holland D. J., Muller C. R., Dennis J. S., et al. Spatially Resolved Measurement ofAnisotopic Granular Temperature in Gas-Fluidized Beds[J]. Powder Technology,2008,182:171-181.
    [120]Tartan M., Gidaspow D. Measurement of Granular Temperature and Stresses inRisers[J]. AIChE Journal,2004,50(8):1760-1775.
    [121]Sommerfeld M., Kussin J. Wall Roughness Effects on Pneumatic Conveying ofSpherical Particles in a Narrow Horizontal Channel[J]. Powder Technology,2004,142:180-192.
    [122]Campbell C. S. Granular Material Flows-An Overview[J]. Powder Technology,2006,162:208-229.
    [123]Simonin O., Deutsch E., Boivin M. Large Eddy Simulation and Second-MomentClosure Model of Particle Fluctuating Motion in Two-Phase Turbulent ShearFlows[J]. Berlin: F. Durst Ed. Selected Papers from the Ninth Symmposium onTurbulent Shear Flows,1995:85-115.
    [124]Zaichik L. I., Vladimir M., et al. Transport and Deposition of Colliding Particles inTurbulent Channel Flows[J]. International Journal of Heat and Fluid Flow,2009,30:443-451.
    [125]Fox R. O. A Quadrature-based Third-order Moment Method for Dilute Gas-particle Flows[J]. Journal of Computational Physics,2008,227:6313-6350.
    [126]赵云华.稠密气固两相流动的颗粒相二阶矩模型及数值模拟研究[D].哈尔滨:哈尔滨工业大学,2008.
    [127]Enwald. H., Peirano E., Almstedt A. E. Eulerian Two-Phase Flow Theory Appliedto Fluidization[J]. International Journal of Multiphase Flow.1996,22(Suppl.):21-66.
    [128]Du W., Bao X. J., Xu J., et al. Computational Fluid Dynamics (CFD) Modeling ofSpouted Bed: Assessment of Drag Coefficient Correlations[J]. ChemicalEngineering Science,2006,61:1401-1420.
    [129]Duangkhamchan W., Ronsse F., Depypere F., et al. Comparison and Evaluation ofInterphase Momentum Exchange Models for Simulation of the Solids VolumeFraction in Tapered Fluidised Beds[J]. Chemical Engineering Science,2010,65:3100-3112.
    [130]王维,洪坤,鲁波娜,等.流态化模拟:基于介尺度结构的多尺度CFD[J].化工学报,2012.
    [131]Chanchal L., Himadri C., Pradip K. C. Assessment of Drag Models in SimulatingBubbling Fluidized Bed Hydrodynamics[J]. Chemical Engineering Science,2012,75:400-407.
    [132]Sangani A. S., Mo G., Tsao H. K. Simple Shear Flows of Dense Gas-solidSuspensions at Finite Stokes numbers[J]. J Fluid Mech.1996,313:309-341.
    [133]Koch D., Sangani A. S. Particle Pressure and Mafginal Stability Limits for aHomogeneous Monidisperse Gas-fluidized Bed: Kinetic Theory ad NumericalSimulations[J]. J. Fluid Mech,1999,400:229-263.
    [134]Zhang Y. H., Reese J. M. Particle-gas Turbulence Interactions in a Kinetic TheoryApproach to Granular Flows[J]. International Journal of Multiphase Flow,2001,27:1945-1964.
    [135]Simonin O. Continuum Modelling of Dispersed Turbulent Two-phase Flows[C].Combustion and Turbulence in Two-Phase Flows,1996.
    [136]Riber E., Moureau V., Garcia M., et al. Evaluation of Numerical Strategies forLarge Eddy Simulation of Particulate Two-phase Recirculating Flows[J].Journalof Computational Physics,2009,228:539-564.
    [137]Sofiane B., Madhava S., O’Brien T. J. Evaluation of Boundary Conditions used toModel Dilute Turbulent Gas/solids Flows in a Pipe[J]. Powder Technology,2005,156:62-72.
    [138]Seyyed H. H., Goodarz A., Rahbar R., et al. CFD Studies of Solids Hold-upDistribution and Circulation Patterns in Gas-solid Fluidized Beds[J]. PowderTechnology,2010,200:202-215.
    [139]Smagorinsky J. General Circulation Experiments with the Primitive Equation[J]. J.Chem. Phys.,1963,91:99-164.
    [140]Kunii K., Levenspiel O. Fluidization Engineering[M]. Butterworth Heinemann,MA, USA.1991
    [141]Gunn D. J. Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds[J].International Journal of Heat and Mass Transfer,1978,21:467-476.
    [142]Yoshizawa A., Horiuti K. A Statistically-derived Subgrid-scale Kinetic EnergyModel for the Large Eddy Simulation of Turbulent Flows[J]. Journal of thePhysical Society of Japan,1985,54:2834-2839.
    [143]Schumann U. Subgrid-scale Model for Finite Difference Simulation of TurbulentFlows in Plane Channels and Annuli[J]. Journal of Computational Physics,1975,18:376-404.
    [144]Eugenio G., Valerio B., Claudio B. The Coupling of Turbulence and Chemistry ina Premixed Bluff-body Flame as Studied by LES[J]. Combustion and Flame,2004,138:320-335.
    [145]Graca M., Duarte A., Coelho P. J., et al. Numerical Simulation of a Reversed FlowSmall-scale Combustor[J]. Fuel Processing Technology,2012.
    [146]Sagaut P. Large eddy simulation for incompressible flows. Springer.2002
    [147] Stefanidis G. D., Merci B., Heynderickx G. J., et al. CFD Simulations ofSteam Cracking Furnaces using Detailed Combustion Mechanisms[J]. Computersand Chemical Engineering,2006,30:635-649.
    [148]Chapman S., Cowling T. G.,(刘大有,王伯懿,译).非均匀气体的数学理论[M].北京:科学出版社,1985:34-431.
    [149]Grad H. On the Kinetic Theory of Rarified Gases[J]. Communications on Pure andApplied Mathematics,1949,2(4):331-407.
    [150]Jenkins J. T., Richman M. W. Grad’s13-Moment System for a Dense Gas ofInelastic Spheres[J]. Archive for Rational Mechanics,1985,87:355-377.
    [151]Peirano E., Leckner B. Fundamentals of Turbulent Gas-solid Flows Applied toCirculating Fluidized Bed Combustion[J]. Progress in Energy and CombustionScience,1998,24:259-296.
    [152]Wen C. Y., Yu Y. H. Mechanics of Fluidization[J]. AICHE Journal,1966,62:100-111.
    [153]Ergun S. Fluid Flow through Packed Columns[J]. Chemical Engineering andProcessing,1953,48:89-94.
    [154]Huilin L., Gidaspow D., Bouillard, J., et al. Hydrodynamic Simulation ofGas-solid Flow in a Riser using Kinetic Theory of Granular Flow[J]. ChemicalEngineering Journal,2003,95:1-13.
    [155]Crowe C., Sommerfeld M., Tsuji Y. Multiphase Flows with Droplets andParticles[M]. CRC Press LLC,1998.
    [156]Johnson P., Jackson R. Frictional-collisional Constitutive Relations for GranularMaterials, with Application to Plane Shearing[J]. Journal of Fluid Mechanics.1987,176:67-93.
    [157]Jenkins J. T. Boundary Conditions for Rapid Granular Flow: Flat, FrictionalWalls[J]. Transactions of the ASME,1992,59:120-127.
    [158]Strumendo M., Canu P. Method of Moments for the Dilute Granular Flow ofInelastic Spheres[J]. Physical Review E.2003,66(4):041304
    [159]Veeraya Jiradilok, Dimitri Gidaspow, Ronald W. Breault, et al. Computation ofTurbulence and Dispersion of Cork in the NETL Riser[J]. Chemical EngineeringScience,2008,63:2135-2148.
    [160]Soong C. H., Tuzla K., Chen J. C. Experimental Determination of Clusters Sizeand Velocity in Circulating Fluidized Beds[C]. In: J. F. Large, C. Laguerie (Eds.),Fluidization VIII, Engineering Foundation, New York.1995, pp.219-227.
    [161]Herbert P., Reh L. ETH-CFB Measurement Database: General Decription andOperations Manual[C].1999,1-29.
    [162]Herbert P., Reh L., Nicolai R. The ETH Experience: Experimental Database andResults from the Past Eight Years. AIChE Journal.1999, Symposium Series.321:61-66.
    [163]李洪钟,郭慕孙.回眸与展望流态化科学与技术[J].化工学报,2012.
    [164]汪申,时铭显.我国催化裂化提升管反应系统设备技术的进展[J].石油化工动态.2000,8(5):46-50
    [165]Wei F., Lu F. B., Jin Y., et al. Mass Flux Distribution in Circulating FluidizedBed[J]. Powder Technology,1997,91:189-195.
    [166]Ibsen C. H., Solberg T., Hjertager B. H., et al. Laser Doppler AnemometryMeasurements in a Circulating Fluidized Bed of Metal Particles[J]. ExperimentalThermal and Fluid Science,2002(26):851-859.
    [167]Topal H. Experimental Investigation of the Hydrodynamic, Combustion andEmission Properties of a Circulating Fluidized Bed[M]. Ph. D. Thesis, GaziUniversity Institute of Science and Technology, The Turkey, Gazi UniversityPress,1999.
    [168]李佑楚.流态化过程工程导论[M].北京:科学出版社,2008:231-249.
    [169]Jacob B., Peter A. J., Anker D. J. Coal Devolatilization and Char Conversionunder Suspension Fired Conditions in O2/N2and O2/CO2Atmospheres[J]. Fuel,2010,89:3373-3380.
    [170]Anup K. S., Parthapratim G., Ranajit K. S. Modeling and Experimental Studies onSingle Particle Coal Devolatilization and Residual Char Combustion in FluidizedBed[J]. Fuel,2011,90:2132-2141.
    [171]魏砾宏,李润东,李爱民,等.煤粉热解特性实验研究[J].中国电机工程学报,2008,26:53-58.
    [172]Samuele S., Tiziano M., Gabriele M., et al. A Predictive Multi-step Kinetic Modelof Coal Devolatilization[J]. Fuel,2010,89:318-328.
    [173]Yue S., Changning W., Binhang Y., et al. Heat Transfer Inside Particles andDevolatilization for Coal Pyrolysis to Acetylene at Ultrahigh Temperatures.2010,24:2991~2998
    [174]Maffei T., Frassoldati A., Cuoci A., et al. Predictive One Step Kinetic Model ofCoal Pyrolysis for CFD Applications[J]. Proceedings of the Combustion Institute.2012.
    [175]Kobayashi H., Howard J. B., Sarofim A. F. Sixteenth Symp.(Int.) Combust./Combust. Inst.1976,22:625-656.
    [176]Afsin G. Analysis of Combustion Efficiency in CFB Coal Combustors[J]. Fuel,2008,87:1083-1095.
    [177]Bradley D., Lawes M., Park H., et al. Modeling of Laminar Pulverized CoalFlames with Speciated Devolatilization and Comparisons with Experiments[J].Combust. Flame,2006,144:190-204.
    [178]Merrick D. Mathematical Models for Thermal Decomposition of Coal:1. TheEvolution of Volatile Matter[J]. Fuel,1983,62(5):534-539.
    [179]Ravichandra S. J., Vladimir Z., Thomas H. F. Prediction of Light GasComposition in Coal Devolatilization[J]. Energy&Fuels.2009,23:3063-3067.
    [180]Maffei T., Sommariva S., Ranzi E., et al. A Predictive Kinetic Model of SulfurRelease from Coal[J]. Fuel,2012,91:213-223.
    [181]Field M.A., Gill D.W., Morgan B.B., et al. Combustion of Pulverized Coal[J].Coal Util Res Assoc1967,31/6:285-292.
    [182]Basu P. Combustion of Coal in Circulating Fluidized-bed Boilers: a Review[J].Chem Eng Sci.,1999,54:5547-5557.
    [183]Huilin L., Guangbo Z., Rushan B., et al. A Coal Combustion Model forCirculating Fluidized Bed Boilers[J]. Fuel,2000,79:165-172.
    [184]Rajan R. R., Wen C. Y. A Comprehensive Model for Fluidized Bed CoalCombustors[J]. AIChE J.,1980,26:642-655.
    [185]Ducarne E. D., Dolignier J. C., Marty E., et al. Modelling of Gaseous PollutantsEmissions in Circulating Fluidized Bed Combustion of Municipal Refuse[J]. Fuel,1998,77:1399-1410.
    [186]Liu H., Feng B., Lu J. D. Coal Property Effects on N2O and NOxFormation fromCirculating Fluidized Bed Combustion of Coal[J]. Chem Eng Commun.2005,192(10-12):1482-1489.
    [187]Klose W., Wolki M. On the Intrinsic Reaction Rate of Biomass Char Gasificationwith Carbon and Steam[J]. Fuel,2005,84:885-892.
    [188]Larfeldt J., Leckner B., Melaaen M. C. Modelling and Measurements of thePyrolysis of Large Wood Particles[J]. Fuel,2000,79:1637-1643.
    [189]Boroson M. J., Howard J. Product Yields and Kinetics from Vapor Phase Crackingof Wood Pyrolysis[J]. AIChE Journal,1989,35:120.
    [190]Schaffer D. G. Instability in the Evolution Equations Describing IncompressibleGranular Flow[J]. Journal of Differential Equations,1987,66:9-50.
    [191]Johnson P. C., Nott P., Jackson R. Frictional-collisional Equations of Motion forParticulate Flows and their Application to Chutes[J]. Journal of Fluid Mechanics,1990,210:501-535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700