用户名: 密码: 验证码:
生物活性玻璃组织工程支架的制备及细胞相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过研制新型的骨组织修复材料,帮助患者修复缺损或缺失的骨组织,更好的恢复人体硬组织功能是医学界和生物医学材料学界多年来一直在探索并试图解决的重要问题。本研究首先采用溶胶-凝胶技术结合模板法,制备出具有卷曲片层结构的生物活性玻璃,然后通过原位凝固成型工艺结合光固化快速成型技术制备出具有较高力学强度和一定孔隙率的具有有序堆砌孔结构的生物活性玻璃陶瓷支架材料,研究了这一支架材料的制备工艺、物理化学性质、体外磷灰石矿化活性和降解性能,并以成骨细胞MG-63为细胞模型研究了生物活性玻璃陶瓷支架的细胞相容性。主要研究工作如下:
     首先,通过传统熔融法制备了45S5生物活性玻璃,采用溶胶-凝胶技术结合非离子型嵌段共聚物P123作为模板制备出具有卷曲片层结构的58S生物活性玻璃粉体,然后在模拟体液SBF中浸泡表征其体外矿化性能,发现随浸泡时间的延长,磷灰石晶体在颗粒表面成核生长,并最终覆满整个表面。实验结果表明,本实验制备的45S5和58S生物活性玻璃粉体都具有良好的生物活性和体外矿化性能。
     其次,通过调节制备工艺参数来改善生物活性玻璃浆料的流动性,制备出了流动性好,性能稳定的生物活性玻璃浆料,采用原位凝固成型工艺结合光固化快速成型技术制备出具有较高力学强度和一定孔隙率的具有有序堆砌孔结构的生物活性玻璃陶瓷支架材料。结果表明,我们制备的这一支架材料是一种部分结晶的生物活性玻璃陶瓷材料,结晶部分为针状Na_4Ca_4(Si_6O_(18))晶体;μCT结果表明支架材料的孔隙率约为61%,基本满足松质骨孔隙率要求;万能力学电子试验机测试结果表明该支架材料的抗压强度约在12.37±1.25MPa,基本满足松质骨力学强度要求。
     再次,我们将制备的生物活性玻璃陶瓷支架材料浸泡于SBF溶液中,通过观察其表面磷灰石的生成速率来评价其生物活性和矿化能力。实验结果如下:支架材料在浸泡过程中离子溶出的同时伴随着碳酸磷灰石HCA矿化层的生成,磷灰石晶体起初在支架表面成核生长,14天后覆满了整个表面,说明我们制备的支架材料具有良好的体外矿化能力;通过检测浸泡支架后SBF溶液的变化,发现pH值在第1天呈现一个快速增长趋势,然后增长速率有所减缓,3天后达到一个相对平稳的状态,最终稳定在7.65左右。我们同时对浸泡后支架的重量变化做了记录,发现浸泡1天后支架的重量损失约在8-9%,随后保持稳定,7天后又开始下降,21天后重量损失达到20.7%左右。我们认为重量损失的原因可能是由于支架材料在SBF溶液浸泡过程中的离子溶出导致的,在1-7天浸泡时间段出现的动态平衡,可能是由于支架材料表面的磷灰石矿化生成速率与离子溶出速率一致引起的。我们还通过ICP技术测试了浸泡支架后SBF溶液中离子浓度的变化,发现在24h内溶液中Si离子浓度呈快速增加,24h后仍持续增加但增速变缓,这说明浸泡初期Si离子释放主要由扩散作用控制,24h后还受到磷灰石矿化层的抑制而有所减缓。浸泡24h后,溶液中的Ca~(2+)离子浓度趋向于一个稳定值,可能是因为此时磷灰石的生成速率和支架材料中的离子溶出速率达到了一个动态平衡。溶液中P离子浓度随时间增加呈逐渐降低的趋势,是因为P是生成磷灰石的必须元素,材料中溶解出的P不足也抑制了磷灰石的生长。最后,我们对支架浸泡过程中Si离子的释放动力学进行了研究,发现支架材料中Si元素在0-24小时时间段内的释放基本遵循一级动力学释放模型,此过程属于扩散-溶解控制。支架开始溶解时,材料本身的Si含量较大,而溶液中几乎为0,所以在水分子的扩散-释放机制作用下,Si的释放速率在浸泡初始阶段较大,而后趋向于平缓。
     最后,我们还探讨了规则孔隙结构与不规则孔隙结构的支架材料对成骨细胞粘附、增殖的影响。实验采用成骨细胞MG-63为细胞模型,经过一天的共培养,扫描电镜观察发现大量细胞已经伸出伪足并紧紧粘附在支架材料上,并通过MTT法检测细胞的增殖情况,结果发现规则孔隙结构支架材料上的细胞活性明显高于不规则孔隙结构支架材料上的细胞活性,并且两者具有统计学显著性差异。
To develop a new type of bone tissue repair material to help the patients repair the defector missing bone tissue and restoration of human hard tissue, the medical academia and thebiomedical materials academia have been trying to solve this problem over the years. In thisstudy, first, the bioactive glasses with curled lamellar structure were prepared by sol-gelmethods, and then the bioactive glass-ceramic scaffolds were produced by in-situsolidification molding process with rapid prototyping techniques. As a result, the bioactiveglass-ceramic scaffolds with regular pore structure have a high mechanical strength andcertain porosity; we also studied the preparation process, the physical and chemical properties,the apatite biomineralization activity and the cytocompatibility between the scaffold andMG-63osteoblasts. The main results as follows:
     First, the45S5bioactive glass were prepared by conventional melting method, the58Sbioactive glass powders with curled lamellar structure were prepared by sol-gel technologyusing non-ionic block copolymer P123as the template. After immersion in SBF, we foundthat HCA crystals gradually nucleation and growth on the surface,finally covered the wholesurface with the immersion time increased. This indicated that the45S5and58S bioactiveglass have a good bioactivity and in vitro biomineralization.
     Second, to improve its fluidity and stability, a certain dispersing agent were added into the45S5bioactive glass slurry, then the bioactive glass-ceramic scaffolds were prepared byin-situ solidification molding process with a high mechanical strength and certain porosity,partially crystallized with Na_4Ca_4(Si_6O_(18)) crystals. The μCT results showed that the porosityis about61%which meet to the basic requirements of cancellous bone porosity; thecompressive strength of the scaffold is12.37±1.25MPa also meet to the mechanical strengthof cancellous bone requirements.
     Third, to test its bioactivity and biomineralization, the bioactive glass scaffolds weresoaked into SBF and observed apatite generated. The results showed that the HCA crystalnucleation and growth on the surface of the scaffold gradually with the immersion time increased, and covered with the whole surface after immersion for14days, it indicated thatthe scaffold had a good biomineralization. The pH value of the SBF were recordedsimultaneously after immersion, it presented a fast-growing trend at first day, then growthslowed, three days later, it reached a relatively stable state at around7.65. The weight loss ofthe scaffold after immersion was tested; it underwent an immediate loss of8-9%during thefirst day, and held this value until7days, then decreased to20.7%on21days. A dynamicequilibrium appeared and thus the scaffold weight was stabilized during1-7days immersion,the reason maybe the scaffold dissolution consistent to the formation of HCA. The ionconcentration of the SBF after the scaffold immersion was also tested; Si ion concentrationshowed a rapid increase and continued to increase slowly after24h of immersion, Si ionrelease mainly controlled by diffusion at early age and slowing down for the formation of theHCA mineralization layer. Ca~(2+)ion concentration tends to a stable value after immersion for24h; this maybe due to the formation of apatite and ion dissolution reached a dynamicequilibrium. The concentration of P was gradually decreased with the time increased, thatbecause P was an essential element to generate apatite but it was dissolved from the scaffoldinsufficiently. Finally, we studied the kinetics of Si ion release, found that the release of Si in0-24h period followed to the release of first-order kinetics model and belonged todiffusion-dissolved control process. This Si release process is started due to the scaffold, theSi concentration in solution is almost0at this time, according to the diffusion releasemechanism, the release rate of Si is rapidly at the initial stage, and then tend to be gentlerelease stage.
     Finally,the effect on cell adhesion and proliferation were discussed between the regularand irregular pore structure using MG-63cells as a model. After one day co-culture, MG-63cells have been found in a large number of pseudopodia and adhered to the scaffold surface bySEM. MTT methods were used to test the proliferation of the cells on the bioactive glassceramic scaffold, and found that the regular porous structure was significantly higher cellactivity than the irregular porous structure, and the difference between two groups isstatistically significant.
引文
[1] Horch R.E.; Kopp J.; Kneser U., et al. Tissue engineering of cultured skin substitutes [J].J Cell Mole Med,2005,9(3):592-608
    [2] Heneh L.L. Biomaterials: a forecast for the future[J]. Biomaterials,1998,19:1419-1423
    [3] Hench L.L.; Day D.E.; Holand W., et al. Glass and Medicine[J]. International Journal ofApplied Glass Science,2010,1(1):104-117
    [4] Rahaman M.N.; Day D.E.; Bal B.S., et al. Bioactive glass in tissue engineering[J]. ActaBiomaterialia,2011,7(6):2355-2373
    [5] Isaac J.; Loty S.; Hamdan A., et al. Bone-like tissue formation on a biomimetic titaniumsurface in an explant model of osteoconduction[J]. J Biomed Mater Res A,2009,89A(3):585-593
    [6] Drouet C.; Barre R.; Brune G., et al. Impact of calcium phosphate particle morphology onosteoconduction: an in vivo study[J]. Key Engineering Materials,2008,361-363:1237-1240
    [7] Chang B.S.; Lee C.K.; Hong K.S., et al. Osteoconduction at porous hydroxyapatite withvarious pore configurations[J]. Biomaterials,2000,21(12):1291-1298
    [8] Jaramillo C.D.; Rivera J.A.; Echavarria A., et al. Comparation of osteoconduction andosteointegration properties of a commercial reabsorbable hydroxypatitie with respect to asynthetyzed one[J]. Rev Colomb Cienc Pec,2009,22(2):117-130
    [9] Habibovic P.; Gbureck U.; Doillon C. J., et al. Osteoconduction and osteoinduction oflow-temperature3D printed bioceramic implants[J]. Biomaterials,2008,29(7):944-953
    [10]Albrektsson T.; Johansson C. Osteoinduction, osteoconduction and osseointegration[J].Eur Spine J,2001,10:S96-S101
    [11]Kakudo N.; Miyak S.; Kushida S., et al. Intramuscular osteoinduction and cartilageformation by implantation of rhGDF-5with type I collagen[J]. Wound Repair Regen,2008,16(1):A2-A2
    [12]Alvis M.; Lalor P.; Brown M.K.C., et al. Osteoinduction by a collagen mineral compositecombined with isologous bone marrow in a subcutaneous rat model[J]. Orthopedics,2003,26(1):77-80
    [13]Sanders R.;Templeman D. C. Canine investigation of rhBMP-2, autogenous bone graft,and rhBMP-2with autogenous bone graft for the healing of a large segmental tibialdefect[J]. J Orthop Trauma,2010,24(2):131-131.
    [14]Faria P. E. P.;Carvalho A. L.;de Torres E. M., et al. Effects of Early Functional Loadingon Maintenance of Free Autogenous Bone Graft and Implant Osseointegration: AnExperimental Study in Dogs[J]. J Oral Maxil Surg,2010,68(4):825-832.
    [15]Rose F. R. A. J.;Oreffo R. O. C. Bone tissue engineering: Hope vs hype[J]. BiochemBioph Res Co,2002,292(1):1-7.
    [16]李祖兵;余世斌;东耀峻等.下颌骨缺损重建植入材料的回顾性研究[J].实用口腔医学杂志,2003,(01):37-39.
    [17]孙彦平;乔国勇;王玉冰等.自体髂骨复合骨形态发生蛋白与自体髂骨移植治疗骨折不连接的比较[J].中国组织工程研究与临床康复,2009,(33):6465-6468.
    [18]Van Houwelingen A. P.;McKee M. D. Treatment of osteopenic humeral shaft nonunionwith compression plating, humeral cortical allograft struts, and bone grafting[J]. J OrthopTrauma,2005,19(1):36-42.
    [19]Agarwal A. Autogenous bone graft or foreign material?[J]. Int Orthop,2010,34(4):615-615.
    [20]Zanelli F. C.;Mosconi G.;Feliciangeli G., et al. Patient waiting for kidney transplantationwith antibodies vs previous bone allograft. A case report[J]. Tissue Antigens,2006,67(6):512-512.
    [21]梁虎;孟宪卿;戴允东.股骨同种异体骨移植后再骨折1例治疗分析[J].中国误诊学杂志,2010,(09):2237-2238.
    [22]应小樟;石仕元;胡德新等.自体与新鲜同种异体骨软骨移植的实验研究[J].浙江中西医结合杂志,2010,(03):138-140.
    [23]Jensen T. B.;Rahbek O.;Overgaard S., et al. Platelet rich plasma and fresh frozen boneallograft as enhancement of implant fixation-An experimental study in dogs[J]. JOrthopaed Res,2004,22(3):653-658.
    [24]Yildirim M.;Spiekermann H.;Handt S., et al. Maxillary sinus augmentation with thexenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of theimplant site: A histologic and histomorphometric clinical study in humans[J]. Int J OralMax Impl,2001,16(1):23-33.
    [25]Duda M.;Pajak J. The issue of bioresorption of the Bio-oss xenogeneic bone substitute inbone defects[J]. J Bone Miner Res,2003,18(7):1368-1368.
    [26]Develioglu H.;Saraydin S. U.;Kartal U. The bone-healing effect of a xenograft in a ratcalvarial defect model[J]. Dent Mater J,2009,28(4):396-400.
    [27]Rabiee S.;Mortazavi S.;Moztarzadeh F., et al. Association of a synthetic bone graft andbone marrow cells as a composite biomaterial[J]. Biotechnol Bioproc E,2009,14(1):1-5.
    [28]Beaman F. D.;Bancroft L. W.;Peterson J. J., et al. Bone graft materials and syntheticsubstitutes[J]. Radiol Clin N Am,2006,44(3):451-461.
    [29]Hsu Y. H.;Turner I. G.;Miles A. W. Fabrication of porous calcium phosphate bioceramicsas synthetic cortical bone graft[J]. Bioceramics17,2005,17:305-308.
    [30]Hing K. A.;Annaz B.;Saeed S., et al. Microporosity enhances bioactivity of syntheticbone graft substitutes[J]. J Mater Sci-Mater M,2005,16(5):467-475.
    [31]Schroeder J. E.; Mosheiff R. Tissue engineering approaches for bone repair: Conceptsand evidence[J].Injury,2011,42(6):609-613.
    [32]Van der Stok J.; Van Lieshout E.M.M.;El-Massoudi Y., et al. Bone substitutes in theNetherlands-A systematic literature review[J]. Acta Biomater,2011,7(2):739-750.
    [33]Gehron Robey P. The biochemistry of bone[J]. Endocrinol Metab Clin North Am,1989,18(4):858-902.
    [34]Fu Q.; Saiz E.; Rahaman M.N., et al. Bioactive glass scaffolds for bone tissue engineering:state of the art and future perspectives[J]. Mater Sci Eng C2011,31(7):1245-1256
    [35]Weiner S.; Wagner H.D. The material bone: Structure-Mechanical Function Relations[J].Annu Rev of Mater Sci,1998,28(1):271-298.
    [36]Delloye C. Bone grafts using tissue engineering[J]. Bull Mem Acad R Med Belg,2001,156(729):418-425
    [37]Hutmacher D.W. Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(24):2529-2543
    [38]Chen Q.Z.; Thompson, I.D.; Boccaccini, A.R.45S5Bioglass-derived glass-ceramicscaffolds for bone tissue engineering[J]. Biomaterials2006,27(11),2414-2425
    [39]Jones J.R.; Ehrenfried, L.M.; Hench L.L. Optimising bioactive glass scaffolds for bonetissue engineering[J]. Biomaterials2006,27(7),964-973
    [40]Chang B.S.; Lee C.K.; Hong K.S. Osteoconduction at porous hydroxyapatite with variouspore configuration[J]. Biomaterials,2000,21:1291-1304
    [41]Yeo M.G.; KimG.H. Preparation and characterization of3D composite scaffolds based onrapid-prototyped PCL/β-TCP struts and electrospun PCL coated with collagen and HA forbone regeneration[J]. Chem Mater,2012,24(5):903-913.
    [42]Derby B. Printing and prototyping of tissues and scaffolds[J]. Science,2012,338(16):921-926.
    [43]Liu X.; Rahaman M.N.;Fu Q. et al. Oriented bioactive glass (13-93) scaffolds withcontrollable pore size by unidirectional freezing of camphene-based suspensions:Microstructure and mechanical response[J]. Acta Biomater,2011,7(1):406-416.
    [44]Fu, Q.; Saiz E.; Tomsia A.P. et al. Bioinspired strong and highly porous glass scaffolds[J].Adv FunctMater,2011,21(6):1058-1063.
    [45]Baino F.; VernéE.; Vitale-Brovarone C.3-D high-strength glass-ceramic scaffoldscontaining fluoroapatite for load-bearing bone portions replacement[J]. Mater Sci Eng C2009,29(6):2055-2062.
    [46]Moore W.R.; Graves S.E.;Bain G.I. Synthetic bone graft substitutes[J]. Aust Nz J Surg,2001,71(6):354-361
    [47]Kearney J.N. Clinical evaluation of skin substitutes[J]. Burns,2001,27:545-551
    [48]Langer R. Tissue engineering[J]. Mol.Ther.,2000,1(1):12-15
    [49]Ikeda N.; Kawanabe,T.; Nakamura. Quantitative comparison of osteoconduction ofporous, dense A-W glass-ceramic and hydroxyapatite granules (efects of granule and poresizes)[J]. Biomaterials,1999,(20):1087-1095
    [50]Chang B.S.; Lee C.K.; Hong K.S.; et al. Osteoconduction at porous hydroxyapatite withvarious pore configurations[J]. Biomaterials,2000,(21)1291-1298
    [51]Yang X.B.; Webb D., Blaker J. et al. Evaluation of human bone marrow stromal cellgrowth on biodegradable polymer/Bioglass composites[J]. Biochem Biophys Res Co,2006,342(4):1098-1107.
    [52]Ryszkowska J.L.; Auguscik M.;Sheikh A. et al. Biodegradable polyurethane compositescaffolds containing Bioglass for bone tissue engineering[J]. Comp Sci Technol,2010,70(13):1894-1908.
    [53]Haimi S.; Gorianc G.; Moimas L. et al. Characterization of zinc-releasingthree-dimensional bioactive glass scaffolds and their effect on human adipose stem cellproliferation and osteogenic differentiation[J].Acta Biomater,2009,5(8):3122-3131.
    [54]Sepulveda P.; Binner J.G.P.; Rogero S.O.; et al. Production of porous hydroxyapatite bythe gel casting of foamsand cytotoxic evaluation[J]. J Biomed Mater Res,2000,50:27-34
    [55]Neff J.A.; Tresco P.A.; Caldwell K.D. Surface modification for controlled studies ofcellligand interactions[J]. Biomaterials,1999,20:2377-2393
    [56]Duckworth W. Discussion of Ryshkewitch paper by Winston Duckworth[J]. J Am CeramSoc,1953,36:68-68
    [57]Roberts P.; Knackstedt M.A. Mechanical and transport properties of model foamedsolids[J]. J Mater Sci Lett,1995,14:1357-1359
    [58]Thomas O.; Jurgen R. Evolution of mechanical properties of porous alumina during freesintering and hot pressing[J]. J Am Ceram Soc,1999,11:3080-3086
    [59]Knudsen F.P. Dependence of mechanical strength of brittle poly crystalline specimens onporosity and grain size[J]. J Am Ceram Soc,1959,42:376-387
    [60]Wang J.C. Young’ modulus of porous materials Part Ⅰ theoretical derivation ofmodulus-porosity correlation[J]. J Mater Sci1984,19:801-808
    [61]Springs R.M. Expression for efect of porosity on elastic modulus of poly crystallinerefractory materials, particularly aluminum oxide[J]. J Am Ceram Soc,1961,44:628-629
    [62]Kokubo T, Ito S, Sakka S. Formation of a high-strength bioactive glass-ceramic in thesystem MgO-CaO-SiO2-P2O5[J]. J Mater Sci,1986;21:536-540
    [63]Cao W.; Hench L. L. Bioactive materials[J]. Ceram Int,1996,22(6):493-507.
    [64]Best S.M.; Porter A.E.; Thian E.S.et al. Bioceramics: Past, present and for the future[J]. JEur Ceram Soc,2008,28(7):1319-1327.
    [65]Blencke B.A.; Brmer H.; Pfeil E., et al. Implantate aus Glaskeramik in derknochenchirurgie (Tierexperimentelle Untersuchungen)[J]. Langenbecks Arch Klin ChirSuppl Chir Forum,1973:116-119
    [66]Kokubo T.; Shigematsu M.; Nagashima Y., et al. Apatite and wollastonite-containingglass-ceramics for prosthetic application[J]. Bull Inst Chem Res,1982,60:260-268
    [67]Holand W.; Vogel W.; Naumamm K., et al. Interface reactions between machinablebioactive glass-ceramics and bone[J]. J Biomed Mater Res,1985,19:303-312
    [68]Vogel W.; Holand W. Development, structure, properties and application of glass-ceramics for medicine[J]. J Non-Crys Sol,1990,123:349-53
    [69]Hench L.L. Sol-gel materials for bioceramic applications[J]. Curr Opin Solid St M,1997,2(5):604-610.
    [70]Peitl O.; Dutra Zanotto E.; Hench L.L. et al.Highly bioactive P2O5-Na2O-CaO-SiO2glass-ceramics[J]. J Non-Cryst Solids,2001,292(1-3):115-126.
    [71]Yan P.; Wang J.; Liu S. et al.“Green" synthesis of highly ordered mesoporous bioactiveglass using acetic anhydride as the catalyst. J Non-Cryst Solids,2010,356(28-30):1514-1518.
    [72]陈晓峰,李玉莉,赵娜如.溶胶-凝胶生物活性玻璃的纳米结构分析研究[J].硅酸盐通报,2007,26(2):247-251
    [73]Hench L.L. Genetic design of bioactive glass[J]. Journal of the European CeramicSociety2009,29(7):1257-1265
    [74]Hench L.L.; Day D.E.; Holand W., et al. Glass and Medicine[J]. International Journal ofApplied Glass Science,2010,1(1):104-117
    [75]Pérez-Pariente J.; Balas F.; RománSalinas A.J.;et al.Influence of composition and surfacecharacteristic on the in vitro bioactivity of SiO2-CaO-P2O5-MgO sol-gel glasses[J].JBiomed Mater Res.1999;47:170-75.
    [76]Bellucci D.; Cannillo V.; Ciardelli G. et al. A new potassium-based bioactive glass:Sintering behaviour and possible applications for bioceramic scaffolds[J]. Ceram Int,2011,37(1):145-157.
    [77]Tu Y.F.; Liang W.; Zhou H.J. et al. Porousβ-NaCaPO4containing borate glass-ceramicscaffolds[J]. Mater Sci Eng C,2011,31(5):845-850.
    [78]和峰;刘昌胜.骨修复用生物活性玻璃的研究进展[J].玻璃与搪瓷,2004,32(4):54-58
    [79]Hench L.L. Bioceramics[J], J Am Ceram Soc,1998,81(7):1705-1728
    [80]Hench L.L. A genetic theory of bioactive materials[J], Key Eng Mat,2000,192-195:575-580
    [81]Hench L.L.; West J.K. Molecular orbital models of silica[J]. Annu Rev Mater Sci,1995,25:37-68
    [82]陈晓峰.溶胶-凝胶生物活性材料的研制及其生物矿化性能研究[D].华南理工大学博士论文,2003:83-87,87-90
    [83]Gough J.E.; Clupper D.C.; Hench L.L. Osteoblast responses to sintered and tapecastbioactive glass[J]. Key Eng Mat,2004,254(2):813-816
    [84]Xynos I.D.; Edgar A.J.; Buttery L.D.K., et al,. Gene-expression profiling of humanosteoblasts following treatment with the ionic products of Bioglass45S5dissolution[J]. JBiomed Mater Res,2001;55:151-157
    [85]Xynos I.D.; Edgar A.J.; Buttery L.D.K. Ionic products of bioactive glass dissolutionincrease proliferation of human osteoblasts and induce insulin-like growth factorⅡmRNA expression and protein synthesis[J]. Biochem Biophys Res Comm,2000;276:461-465
    [86]Gough J.E.; Jones J.R.; Hench L.L. Nodule formation and mineralisation of humanprimary osteoblasts cultured on a porous bioactive glass scaffold[J]. Biomaterials,2004;25:2039-46
    [87]Hench L.L,Wilson J.Bioactive glasses:present and future[J].Bioceramics,1998;11:31-36
    [88]Greenspan D.C.; Zhong J.P.; Chen X.F., et al. The evaluation of degradabilityof melt andsol-gel derived bioglass in-vitro[J].Bioceramics,1997;10:391-394
    [89]Huang Z.J.; Yang Y.P.; Guo X., et al. Biodegradation of crystalline glass containingcalcium phosphate[J].Bioceramics,1996;9:147-150
    [90]Hill R.An alternative view of the degradation of bioglass[J].J Mater Sci Lett,1996;15:1122-1125
    [91]Okumura A.; Goto M.; Goto T.; et al. Substrate affects the initial attachment andsubsequent behavior of human osteoblastic cells(Saos-2)[J].Biomaterials,2001,22(16):2263-2271
    [92]Naganawa T.; Ishihara Y.; Iwata T.; et al. In vitro biocompatibility of a newtitanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG-63cells[J].J Periodontol,2004,75(12):1701-1707
    [93]Boyan B.D.; Bonewald L.F.; Paschalis E.P.; et al. Osteoblast-mediated mineral depositionin culture is dependent on surface Microtopography[J]. Calcif Tissue Int2002,71(6):519-529
    [94]Kanagaraja S.; Wennerberg A.; Eriksson C.; et al. Cellular reactions and bone appositionto titanium surfaces with different surface roughness and oxide thickness cleaned byoxidation[J]. Biomaterials,2001,22(13):1809-1818
    [95]Ramires P.A.; Giuffrida A.; Milella E.; et al. Three-dimensional reconstruction ofconfocal laser microscopy images to study the behaviour of osteoblastic cells grown onbiomaterials[J]. Biomaterials,2002,23(2):397-406
    [96]Holmes R.E. Bone regeneration within a coralline hydroxyapatite implant[J]. PlastReconstr Surg,1979;63:626-633
    [97]Gauthier O.; Bouler J.M.; Aguado E.; et al. Macroporous biphasic calcium phosphateceramics: infuence of macropore diameter and macroporosity percentages on boneingrowth[J]. Biomaterials,1998;19:133-139
    [98]Bobyn J.; Piliar R.; Cameron H., et al. The optimal pore size for the fxation of poroussurfaced metal implants by the ingrowth of bone[J]. Clin Orthop Rel Res,1980;150:263-270
    [99]Kearney J.N. Clinical evaluation of skin substitutes[J]. Burns.2001;27:545-551
    [100] Langer R. Tissue engineering[J]. Mol.Ther.2000;1(1):12-15
    [101] Ikeda N.; Kawanabe K.; Nakamura T. Quantitative comparison of osteoconduction ofporous, dense A-W glass-ceramic and hydroxyapatite granules (efects of granule and poresizes)[J]. Biomaterials1999,(20):1087-1095
    [102] Chang B.S.; Lee C.K.; Hong K.S., et al. Osteoconduction at porous hydroxyapatitewith various pore configurations[J]. Biomaterials,2000;(21):1291-1298
    [103] Li N.; Jie Q.; Zhu S.M., et al. Preparation and characterization of macroporoussol–gel bioglass[J]. Ceramics International,2005;31:641-646
    [104] Pirhonen E.; Moimas L.; Haapanen J. Porous bioactive3-D glass fber scaffolds fortissue engineering applications manufactured by sintering technique[J]. Key Eng Mater,2003,240-242:237-240
    [105] Fu Q.; Rahaman M.N.; Bal B.S., et al. Preparation and bioactive characteristics of aporous13-93glass, and fabrication into the articulating surface of a proximal tibia[J]. JBiomed Mater Res,2007,82A:222-229
    [106] Liang W.; Rahaman M.N.; Day D.E., et al. Bioactive borate glass scaffold for bonetissue engineering[J]. J. Non-Crystalline Solids,2008,354:1690-1696
    [107] Jung S.B.; Day D.E.; Brown R.F. Angiogenic bioactive borate glasses[R], MaterialsScience&Technology,2011
    [108]鞠银燕;陈晓峰;王迎军.溶胶-凝胶生物活性玻璃多孔支架的制备与性能的研究[J].中国陶瓷,2005,41(3):23-26
    [109] Rainer A.; Giannitelli S.M.; Abbruzzese F., et al. Fabrication of bioactiveglass–ceramic foams mimicking human bone portions for regenerative medicine[J]. ActaBiomaterialia,2008;4:362-369
    [110] Chen Q. Z.; Thompson I.D.; Boccaccini A.R.45S5Bioglass-derived glass-ceramicscaffold for bone tissue engineering[J]. Biomaterials,2006,27:2414-2425
    [111] Fu Q.; Rahaman M.N.; Fu H., et al. Bioactive glass scaffolds with controllabledegradation rates for bone tissue engineering applications. I. Preparation and in vitrodegradation[J]. J Biomed Mater Res,2010,95A:164-171
    [112] Fu H.; Fu Q.; Zhou N., et al. In vitro evaluation of borate-based bioactive glassscaffolds prepared by a polymer foam replication method[J]. Mater Sci Eng C,2009,29:2275-2281
    [113] Fu Q.; Rahaman M.N.; Bal B.S., et al. Mechanical and in vitro performance of13-93bioactive glass scaffolds prepared by a polymer foam replication technique[J]. ActaBiomater,2008,4:1854-1864
    [114] Liu X.; Pan H.; Fu H., et al. Conversion of borate-based glass scaffold tohydroxyapatite in dilute phosphate solution[J]. Biomed Mater,2010,5:015005
    [115] Wang H.W.; Tabata Y.; Ikada Y. Fabrication of porous gelatin scaffolds for tissueengineering[J]. Biomaterials,1999,20:1339-1344
    [116] Fukasawa T.; Ando M.; Ohji T., et al. Synthesis of porous ceramics with complexpore structure by freeze-dry processing[J]. J Am Ceram Soc,2001,84:230-232
    [117] Deville S.; Saiz E.; Tomsia A. Freeze casting of hydroxyapatite scaffolds for bonetissue engineering[J]. Biomaterials,2006,27:5480-5489
    [118] Schoof H.; Apel J.; Heschel I., et al. Control of pore structure and size in freeze-driedcollagen sponges[J]. J Biomed Mater Res Appl Biomater,2001,58:352-357
    [119] Zhang H.; Hussain I.; Brust M., et al. Aligned two-and three-dimensional structuresby directional freezing of polymers and nanoparticles[J]. Nat Mater,2005,4:787-793
    [120] Fu Q.; Rahaman M.N.; Dogan F., et al. Freeze casting of porous hydroxyapatitescaffolds. I. Processing and general microstructure[J]. J Biomed Mater Res,2008,86B:125-135
    [121] Fu Q.; Rahaman M.N.; Dogan F., et al. Freeze casting of porous hydroxyapatitescaffolds. II. Sintering, microstructure, and mechanical behavior[J]. J Biomed Mater Res,2008,86B:514-522
    [122] Fu Q.; Rahaman M.N.; Bal B.S., et al.Preparation and in vitro evaluation ofbioactiveglass (13-93) scaffolds with oriented microstructures for repair andregeneration ofload-bearing bones[J]. J Biomed Mater Res,2010,93A:1380-1390
    [123] Liu X.; Rahaman M.N.; Fu Q. Oriented bioactive glass (13-93) scaffoldswithcontrollable pore size by unidirectional freezing of camphene-basedsuspensions:microstructure and mechanical response[J]. Acta Biomater,2011,7:410-416
    [124] Sachlos E.; Czernuszka J.T. Making tissue engineering scaffolds work. Review of theapplication of solid freeform fabrication technology to the production of tissueengineering scaffolds[J]. Eur Cells Mater2003;5:29-40
    [125] Chu T.M.G. Solid freeform fabrication of tissue engineering scaffolds. Ma P.X.;Elisseeff J.H. Editors. Scaffolding in tissue engineering[J]. Taylor&Francis; Boca RatonF.L.2005;139-154
    [126] Rezwan K.; Chen Q.Z.; Blaker J.J.; Boccaccini A.R. Biodegradable and bioactiveporous polymer-inorganic composite scaffolds for bone tissue engineering[J].Biomaterials2006;27:3413-3431
    [127] Russias J.; Saiz E.; Deville S., et al. Fabrication and in-vitrocharacterization ofthree-dimensional composite scaffolds by robocastingfor biomedical applications[J]. AdvSci Technol2006;49:153-158
    [128] Fu Q.; Saiz E.; Tomsia A.P. Bioinspired highly porous and strong glass scaffolds[J].Adv Funct Mater2011;21:1058-1063
    [129] Huang T.S.; Rahaman M.N.; Doiphode N.D.,et al. Porous andstrong bioactive glass(13-93) scaffolds prepared by freeze extrusiontechnique[J]. Mater Sci Eng C,2011;31(7):1482-1489
    [130] Velez M. Selective laser sintering of bioglass for bone tissue engineering[J]. SBIR/STTR Phase I Final Report. Rolla, MO: Corp.;2010
    [131] Janney M.A. Method for molding ceramic powders: US4894194[P].1990-01-16
    [132] Janney M.A.; Omatete O.O. Method for molding ceramic powders using a water-based gelcasting: US5028362[P].1991-06-02
    [133] Janney M.A.; Omatete O.O. Method for molding ceramicpowders using a water-based gelcasting process: US5145908[P].1992-09-08
    [134] Janney M.A.; Nunn S.D.; Walls C.A.et al. The handbook ofceramic engineering[M].New York: Marcel Dekker,1998
    [135] Anonymous. Gelcasting, an alternative to current ceramicprocesses[J]. Res Devel,1995,37(9):29
    [136] Omatete O.O.; Janney M.A.; Strehlow R.A. Gelcasting-A new ceramic formingprocess[J]. Amer Ceram Soc Bullet,1991,70(10):1641-1649
    [137] Monygomery J.K.; Drzal P.L.; Shull K.R.; et al. Thermoreversible gelcasting: Anovel ceramic processing technique[J]. J Amer Ceram Soc,2002,85(5):1164-1168
    [138]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,2004:131-132
    [139]司文捷; Graule T.J.; Baader F.H.; et al.直接凝固注模成型Si3N4及SiC陶瓷-基本原理及工艺过程[J].硅酸盐学报,1996,24(1)
    [140] Kokubo T.; Takadama H. How useful is SBF inpredicting in vivo bone bioactivity[J]?Biomaterials,2006,27:2907-2915
    [141] Roether J.A.; Boccaccini A.R.; Hench L.L., et al. Development and in vitrocharacterisation of novel bioresorbable andbioactive composite materials based onpolylactide foams andBioglass for tissue engineering applications[J]. Biomaterials,2001,23:3871-3878
    [142] Hench L.L. Bioceramics[J]. JAm Ceram Soc,1998,81:1705-1728
    [143] Thompson I.;Hench L. L. Reaction kinetics of bioactive glass and a resorbablepolysaccharide[J]. Bioceramics,2000,192-1:639-642
    [144] Greenspan D. C.;Zhong J. P.;LaTorre G. P. Effect of surface area to volume ratio onin vitro surface reactions of bioactive glass particulates[J]. Bioceramics,1994,7:55-60
    [145] Greenspan D. C.;Zhong J. P.;Chen X. F., et al. The evaluation of degradability ofmelt and sol-gel derived Bioglassin-vitro[J]. Bioceramics,1997,10:391-394
    [146] Pereira M. M.;Clark A. E.;Hench L. L. Effect of texture on the rate of hydroxyapatiteformation on gel-silica surface [J]. J Am Ceram Soc,1995,78(9):2463-2468
    [147] Filgueiras M. R.;Latorre G.;Hench L. L. Solution effects on the surface-reactions of abioactive glass[J]. J Biomed Mater Res,1993,27(4):445-453
    [148] Izquierdo-Barba I.;Salinas A. J.;Vallet-Regi M. In vitro calcium phosphate layerformation on sol-gel glasses of the CaO-SiO2system[J]. J Biomed Mater Res,1999,47(2):243-250
    [149] Yoshino H.;Kamiya K.;Nasu H. IR study on the structural evolution of sol-gelderived SiO2gels in the early stage of conversion to glasses[J]. J Non-Cryst Solids,1990,126(1-2):68-78
    [150] Blakeslee K. C.; Condrate R. A. Vibrational Spectra of hydrothermally preparedhydroxyapatites[J]. J Am Ceram Soc,1971,54:559-563
    [151] Markovíc M.; Flower B. O.; Tung M. S. J Res Natl Inst StandTechnol,2004,109:553-568
    [152] Mazza D.;Vallino M.;Busca G. Mullite-type structures in the systems Al2O3-Me2O(Me=Na,K) and Al2O3-B2O3[J]. J Am Ceram Soc,1992,75(7):1929-1934
    [153] Gadaleta S. J.;Mendelsohn R.;Paschalis E. L., et al. Fourier transform infraredspectroscopy of synthetic and biological apatites-A review[J]. Mineral Scale Formationand Inhibition,1995:283-294
    [154] Rey C.;Shimizu M.;Collins B., et al. Resolution-enhanced Fourier-transformInfrared-spectrocopy study of the environment of phosphate ion in the early deposits ofasolid-phase of calcium-phosphate in bone and enamel and their evolution with age:2.investigations in the Nu3PO4domain[J]. Calcified Tissue Int,1991,49(6):383-388
    [155] Ramila A.;Vallet-Regi M. Static and dynamic in vitro study of a sol-gel glassbioactivity[J]. Biomaterials,2001,22(16):2301-2306
    [156] Hayakawa S.;Tsuru K.;Ohtsuki C., et al. Mechanism of apatite formation on asodium silicate class in a simulated body fluid[J]. J Am Ceram Soc,1999,82(8):2155-2160
    [157] Monma H.; Takahashi T., Preparation and thermal changes of carbonate-containingapatite[J]. Gypsum&Lime,1987,210:287-291
    [158] Jevtic M.; Mitric M.; Skapin S., et al. Crystal Structure of Hydroxyapatite NanorodsSynthesized bySonochemical Homogeneous Precipitation[J]. Crystal Growth&Design,2008,8:2217-2222
    [159] Lu Q.J.; Ganesan K.; Simionescu D.T.;et al. Novel porous aortic elastin and collagenscaffolds for tissue engineering[J].Biomaterials,2004,25(22):5227-5237
    [160] Chen V.J.; Ma P.X.Nano-fibrous poly(l-lactic acid) scaffolds with interconnectedspherical macropores[J]. Biomaterials,2004,25(11):2065-2073
    [161] ZhangM.; Zhang Z.Q.; DongM.J., et al. The Influence ofPolyethylene Imine ontheGelcasting ofSiC with TwoDifferent Initiators[J]. J Am Ceram Soc,2007,90(12):3748-3752
    [162] Ganesh I.; Jana D.C.; Shaik S. An Aqueous Gelcasting Process for Sintered SiliconCarbide Ceramics[J]. J Am Ceram Soc,2006,89(10):3056-3064
    [163]李欢欢;张志力;李建保.注浆成型碳化硅浆体的流变性能研究[J].人工晶体学报,2009,8:168-171
    [164] Bergstrom L.; Bostedt E. Surface chemistry of silicon nitride powders:electrokineticbehavior and ESCA studies[J]. Colloids Surf,1990,49:183-197
    [165]刘学健;古宏晨;黄莉萍,等.分散剂对氮化硅浆料流变性的影响[J].无机材料学报,1999,14(3):491-494
    [166]任俊;沈健;卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005,108
    [167] Briscoe B.J.; Khan A.U.; Luckham P.F.Optimising the dispersion on an aluminasuspension usingcommercialpolyvalentelectrolyte dispersants[J].Jounalof Eur CeramSoc,1998(12):2141-2147
    [168] Singh B.P.; Bhattacharjee S.; Besra L. Optimisation of performance of dispersants inaqueous plasma dissociated zircon suspension[J]. Ceramics International,2002,28(4):413-417
    [169]杨红霞;刘卫东.分散剂在陶瓷浆料制备中的应用[J].中国陶瓷工业,2005,12(2):27-30
    [170]张清岑;肖奇;刘建平.超分散剂的合成及其对SiO2微粉分散稳定性的影响[J].中南大学学报,2005,35(2):225-228
    [171] Moeggenborg K.J.; Alfano J.C.; Whitten J.E. Improved quality controlwith rapidsimple accurate determination of additive dosagesinceramicslurries[J]. Ceram EngSciProc,2000,21(2):73-81
    [172] Jones J.R. Review of bioactive glass: From Hench to hybrids[J]. Acta Biomaterialia,2013,9:4457-4486
    [173] Fagerlund S.; Hupa L., Hupa M. Dissolution patterns of biocompatible glasses inTRIS[J]. Acta Biomaterialia,2013,9:5400-5410
    [174] RohanováD.; BoccacciniA. R.; YunosD. M.; et al. TRIS buffer in simulated bodyfluid distorts the assessment of glass–ceramic scaffold bioactivity[J]. Acta Biomaterialia,2011,7(6):2623-2630
    [175] Okumura A.; Goto M.; Goto T.; et al. Substrate affects the initial attachment andsubsequent behavior of human osteoblastic cells(Saos-2)[J]. Biomaterials,2001,22(16):2263-2271
    [176] Boyan B.D.; Bonewald L.F.; Paschalis E.P.; et al. Osteoblast-mediated mineraldeposition in culture is dependent on surface Microtopography[J]. Calcif Tissue Int,2002,71(6):519-529
    [177] Kanagaraja S.; Wennerberg A.; Eriksson C.; et al. Cellular reactions and boneapposition to titanium surfaces with different surface roughness and oxide thicknesscleaned by oxidation[J]. Biomaterials,2001,22(13):1809-1818
    [178] Ramires P.A.; Giuffrida A.; Milella E.; et al. Three-dimensional reconstruction ofconfocal laser microscopy images to study the behaviour of osteoblastic cells grown onbiomaterials[J]. Biomaterials,2002,23(2):397-406
    [179] Malik M.A.; Puleo D.A.; Bizios R.; et al. Osteoblasts on hydroxyapatite, alumina andbone surfaces in vitro: morphology during the first2h of attachment[J]. Biomaterials,1992,13(2):123-128
    [180] Dalby M.J.; Riehle M.O.; Johnstone H. In vitro reaction of endothelial cells topolymer demixed nanotopography[J]. Biomaterials,2002,23:2945-2954
    [181] Dalby M.J.; Childs S.; Riehle M.O. Fibroblast reaction to island topography:changesin cytoskleton and morphology with time[J]. Biomaterials,2003,24:927-935
    [182] Matsuzaka K, Walboomers XF, Jansen JA. The effect of poly-lactic acid with parallelsurface micro groove on osteoblast-like cells in vitro[J]. Biomaterials,1999,20:1293-1301
    [183] Barbucci R.; Magnani A.; Lamponi S. The use of hyaluronan and its sulphatedderivative patterned with micrometric scale on glass substrate in melanocyte cellbehavior[J]. Biomaterials,2003,24:915-926
    [184] Webster T.J.; Ergun C.; Bizios R. Enhanced functions of osteoblasts on nanophaseceramics[J]. Biomaterials,2000,21:1803-1810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700