用户名: 密码: 验证码:
处理低浓度有机废气的流向变换催化燃烧反应技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流向变换催化燃烧技术是人为非定态操作的一种,结合蓄热换热器和催化燃烧两种技术的特点,通过周期性地切换固定床催化反应器内的气流方向,使床层内出现中间高、两边低的温度分布,因而适合于进行反应物浓度较低的不可逆强放热反应或放热较弱的可逆反应,能够提高反应效率和对产物的选择性。本文主要围绕将流向变换催化燃烧技术应用于工业过程中低浓度有机废气净化而展开,讨论该类型反应器的基本运行特性、失稳条件以相应的控制措施。
     首先,自行设计搭建了小型流向变换催化燃烧反应系统,并在此系统上进行了冷态条件下系统流动阻力特性试验研究。随着流向的周期性切换,床层的压降也随之呈现周期性的变化。在气流流向发生切换后的瞬间,床层内的流动状况需历经一定的波动方能达到稳定,但由于该过渡状态对于反应器整体操作过程影响基本可以忽略。稳定后的床层压降变化规律可以用Ergun方程来描述,即压降随表观气速的增大呈二次曲线的形式上升,随床层高度的增加而呈线性增长。根据试验数据,回归得到用于描述本反应系统压降变化的数学关联式,该关联式可较好地预测床层内的压降变化。
     随后,进行了低浓度甲烷和苯的催化燃烧试验研究,讨论了操作条件对反应器运行特性的影响。基本上,随着周期性的流向切换,反应器内各个测点温度也随之作周期性波动变化;只要能够维持反应器自热运行,反应器内整体净化率可达到98%以上,且不存在NOx等的二次污染。提高入口反应物浓度和缩短流向切换周期度,都会使得催化段的温度水平和反应器内最高温度上升,增加中间高温平台的宽度,令燃烧效率提升。表观气速的影响是反应器内反应放热和传热条件综合作用的结果。当甲烷和苯两种性质相差较大的有机物在反应器内协同燃烧净化时,反应器内的温度水平和轴向温度分布会甲烷浓度的随着升高而升高,苯的燃烧净化效率基本保持在95%以上。降低入口反应物浓度、延长流向切换时间可以降低反应器内出现“M”型温度分和发生“飞温”的可能。而采用辅助电加热或者添加辅助燃料的方法都可以有效避免入口浓度过低时反应器出现“熄火”现象。但如果所添加的辅助燃料与待处理有机物的催化燃烧性质差异过大,会显著增加辅助燃料的消耗量。
     接着,建立了用于描述该种类型反应器行为的一维瞬态非均相数学模型。模拟计算的结果能较好地反映小型流向变换催化燃烧器的实际运行特性。
     基于上述模型,讨论了反应器壁面、床层内传递参数和反应动力学参数对反应器运行特性的影响。在横向比较各种操作参数对反应器运行特性的影响时,提出采用热波移动距离作为衡量的标准。通过在对各种操作参数影响的比较,认为在本文所选用的反应器参数范围内,当表观气速在0.2~0.4m·s-1左右,热波移动距离在约占催化床层长度的20~40%,惰性段装填比例在20~40%之间时,反应器具有较高的热稳定性和较宽的可操作域,并且可适应于更低的入口浓度条件。
     然后,通过试验和数值模拟两方面的研究,讨论了当入口条件发生周期性波动时流向变换催化燃烧反应器的运行特性。结果表明,入口浓度的周期性波动会降低反应器内的温度水平,削弱反应器的稳定性,甚至可能导致最终发生熄火。在此情形下,适当调整流向切换周期是维持反应器稳定运行的较好手段。基于上述结果,从动态系统的角度提出了流向变换催化燃烧反应器的特征响应时间的概念,并采用谐波分析的方法对此加以系统阐释,并解释了当入口浓度波动的频率和反应器流向切换频率相同时,反应器最高温度发生大幅度波动的原因。在此基础上,模拟验证了在系统发生谐波响应时,通过改变系统的特征响应时间来维持反应器稳定的可行性。
     最后,试验和数值模拟结果,以处理60000m3·h-1有机废气的工程实例为典型,分析了将流向变换催化燃烧技术用于实际工程系统的可行性与经济效益。
Reverse flow reactor (RFR) is an integration of regenerative heat exchanger and fixed bed, in which flow direction is periodically changed. Applying such forced unsteady state operation (FUSO), a hot zone is trapped in the central catalytic section, which suits for exothermal catalytic reaction with low inlet concentration or reversible exothermal reaction with mild reaction heat release. Thus an increase in reactant conversion or product selectivity can be expected. This paper presents experimental and numerical results of the behavior of a bench-scale RFR, which is considered as a proper technology for decontaminating lean volatile organic compounds (VOCs) in waste gas. Effects of operation conditions on reactor behavior and corresponding control strategies when reactor stability is impaired are discussed.
     A bench-scale RFR is built up, on which pressure drop through the reactor is studied. The results show that with periodic flow reversal, pressure drop of the reactor changes periodically. It takes several seconds to get a stable flow condition in the reactor soon after the flow reversal. However, effect of such temporary states on reactor behavior is rather since it is very short comparing to flow reversal time. Total pressure drop through the reactor can be calculated by Ergun equation very well, based on regression of experimental data, which means the pressure drop shows a quadratic increase of superficial velocity and a liner increase of bed depth.
     Effects of operation parameters on reactor behavior are discussed, taking methane or benzene as model reactant. Temperature in the reactor varies periodically with flow reversal, while conversions of VOCs are all above98%if an auto-thermal operation is maintainded. Little NOx is detected. Basically, increasing inlet combustibles concentration or shortening flow reversal time will result in a higher thermal level and wider temperature plateau in reactor, which increase the VOCs conversion as well. Effect of superficial velocity is co-effect of heat release and convection. When binary mixture of methane and benzene is combusted in RFR, thermal level in reactor increases with the increasing of methane portion. Conversion of benzene is above95%. To eliminate the possibility of reactor thermal run away, decreasing inlet concentration or lengthening flow reversal time are all feasible ways. While using electrical heater or adding auxiliary fuel can increase reactor thermal lever, avoiding reactor extinction. But if methane is added as auxiliary fuel, large amount of methane is needed.
     A one-dimensional heterogeneous is built up. Good accordance between simulation and experimental results are acquired.
     Effect of reactor wall, transport parameters and reaction kinetics are discussed, based on numerical simulation. Moving range of heat wave is chosen as criterion when comparing effects of various operation parameters on reactor behavior. With parameters applied in this study, following optimum range of operation parameters are proposed, with superficial velocity of0.2~0.4m·s-1, moving range of heat wave taking20~40%of catalytic bed length and a inert packing taking20~40%of total reactor. Within this range, reactor operates more stable and lower minimum inlet concentration is required in maintaining auto-thermal operation.
     Effect of periodic inlet concentration is studied. The results show that reactor stability is impaired in such situation, decreasing of reactor thermal level may even cause reactor extinction. Adjusting flow reversal time turns out to be a proper way in maintaining reactor stability. Based on experimental and numerical results, flow reversal time is regarded as characteristic response time of the reaction system. The reason why synchronizing between periodic inlet variation cycle and flow reversal cycle leads to dramatic maximum temperature variation is explained adopting harmonic analysis. According to this theory, the feasibility of changing system characteristic response time in maintaining stable operation is verified by numerical simulation.
     With the results acquired in experiments and numerical simulation, a industrial scale reverse flow reactor for purifying waste gas flow of60000m·3h-1is designed, including system feasibility and economical analysis.
引文
[1]The Definition Relates to Indoor Air Quality. World Health Organization.1989.
    [2]Directive 2004/42/CE of the European Parliament and of the Council. European Union Publications Office.2004.
    [3]ISO 4618/1. International Organization for Standardization.1998.
    [4]Din 55649-2000. Deutsches Institut Fur Normung.2000.
    [5]Code of Federal Regulations. United States Government Printing Office.2007.
    [6]H. J. Rafson. Odor and Voc Control Handbook[M]. New York:McGraw-Hill, 1998.
    [7]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [8]D. A. Olson, D. M. Hammond, R. L. Seila, J. M. Burke, G. A. Norris. Spatial Gradients and Source Apportionment of Volatile Organic Compounds near Roadways[J]. Atmospheric Environment,2009,43(35):5647-5653.
    [9]D. Perez-Rial, P. Lopez-Mahia, R. Tauler. Investigation of the Source Composition and Temporal Distribution of Volatile Organic Compounds (VOCs) in a Suburban Area of the Northwest of Spain Using Chemometric Methods[J]. Atmospheric Environment,2010,44(39):5122-5132.
    [10]B. Yuan, M. Shao, S. H. Lu, B. Wang. Source Profiles of Volatile Organic Compounds Associated with Solvent Use in Beijing, China[J]. Atmospheric Environment,2010,44(15):1919-1926.
    [11]Edgar (2005) Edgar 32ft2000 Dataset. http://www.mnp.nl/edgar/model/v32ft2000edgar/.
    [12]J. A. Zhou, Y. You, Z. P. Bai, Y. D. Hu, J. F. Zhang, N. Zhang. Health Risk Assessment of Personal Inhalation Exposure to Volatile Organic Compounds in Tianjin, China[J]. Science of the Total Environment,2011,409(3):452-459.
    [13]C. Chun, K. Sung, E. Kim, J. Park. Self-Reported Multiple Chemical Sensitivity Symptoms and Personal Volatile Organic Compounds Exposure Concentrations in Construction Workers [J]. Building and Environment,2010,45(4):901-906.
    [14]A. Casset, F. de Blay. Health Effects of Domestic Volatile Organic Compounds[J]. Revue Des Maladies Respiratoires,2008,25(4):475-485.
    [15]H. Rothweiler, C. Schlatter. Human Exposure to Volatile Organic-Compounds in Indoor Air-a Health Risk[J]. Toxicological and Environmental Chemistry,1993, 40(1-4):93-102.
    [16]H. Guo, S. C. Lee, L. Y. Chan, W. M. Li. Risk Assessment of Exposure to Volatile Organic Compounds in Different Indoor Environments[J]. Environmental Research, 2004,94(1):57-66.
    [17]http://en.wikipedia.org/wiki/volatile_organic_compounds#definitions.
    [18]W. L. Chameides, R. W. Lindsay, J. Richardson, C. S. Kiang. The Role of Biogenic Hydrocarbons in Urban Photochemical Smog-Atlanta as a Case-Study [J]. Science,1988,241(4872):1473-1475.
    [19]D. Grosjean. Insitu Organic Aerosol Formation During a Smog Episode Estimated Production and Chemical Functionality[J]. Atmospheric Environment Part a-General Topics,1992,26(6):953-963.
    [20]B. Vogel, F. Fiedler, H. Vogel. Influence of Topography and Biogenic Volatile Organic-Compounds Emission in the State of Baden-Wurttemberg on Ozone Concentrations During Episodes of High Air Temperatures[J]. Journal of Geophysical Research-Atmospheres,1995, 100(D11):22907-22928.
    [21]T. Y. Chang, D. P. Chock, B. I. Nance, S. L. Winkler. A Photochemical Extent Parameter to Aid Ozone Air Quality Management[J]. Atmospheric Environment,1997, 31(17):2787-2794.
    [22]W. M. Jiang, D. L. Singleton, M. Hedley, R. McLaren. Sensitivity of Ozone Concentrations to VOCc and NOx Emissions in the Canadian Lower Fraser Valley[J]. Atmospheric Environment,1997,31(4):627-638.
    [23]European Parliament and Council Directive 94/63/Ec on the Control of Volatile Organic Compound (Voc) Emissions Resulting from the Storage of Petrol and Its Distribution from Terminals to Service Stations.1994.
    [24]Council Directive 1999/13/EC on the Limitation of Emissions of Volatile Organic Compounds Due to the Use of Organic Solvents in Certain Activities and Installations. 1999.
    [25]工业企业设计卫生标准,TJ36.1979.
    [26]恶臭污染物排放标准,GB14554.1993.
    [27]大气污染物综合排放标准,GB16297.1996.
    [28]中华人民共和国大气污染防治法.2000.
    [29]M. Montes, A. J. Daugulis, M. C. Veiga, C. Kennes. Characterization of Absorbent Polymers for the Removal of Volatile Hydrophobic Pollutants from Air[J]. Journal of Chemical Technology and Biotechnology,2011,86(1):47-53.
    [30]S. D. Li, S. H. Tian, Y. F. Feng, J. J. Lei, P. P. Wang, Y. Xiong. A Comparative Investigation on Absorption Performances of Three Expanded Graphite-Based Complex Materials for Toluene[J]. Journal of Hazardous Materials,2010,183(1-3): 506-511.
    [31]岑超平,陈定盛,蓝如辉,唐志雄.吸收法脱除甲苯废气的实验研究[J].环境工程,2007,25(6):40-42.
    [32]刘畅.吸收法治理合成革有机废气问题研究[D].杭州:浙江大学2006.
    [33]李湘凌,林岗,周元祥,王资荣.复方液吸收法处理低浓度苯类废气[J].合肥工业大学学报,2002,25(5):794-796.
    [34]E. Matisova, M. Strakova, S. Skrabakova, I. Novak. A Novel Porous Carbon and Its Perspectives for the Solid-Phase Extraction of Volatile Organic-Compounds[J]. Fresenius Journal of Analytical Chemistry,1995,352(7-8):660-666.
    [35]B. Ozturk, D. Yilmaz. Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams[J]. Process Safety and Environmental Protection,2006,84(B5): 391-398.
    [36]俞筱筱,高华生,朱建林,汪大翚.活性炭对有机废气的吸附—缓冲实验及其模拟[J].环境科学研究,2007,20(5):124-128.
    [37]黄正宏,康飞宇,梁开明,杨骏兵.氧化处理ACF对VOC的吸附及其等温线的拟合[J].清华大学学报(自然科学版),2002,42(10):1289-1282.
    [38]高武龙,董坤伦.活性炭纤维吸附-冷凝技术在有机废气回收净化中的应用 [J].广东化工,2010,37(208):242-243.
    [39]A. Rotkegel. Experimental Study of Low-Temperature Condensation Coupled with Adsorption[J]. Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa,2008,29(3):639-650.
    [40]P. Dwivedi, V. Gaur, A. Sharma, N. Verma. Comparative Study of Removal of Volatile Organic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber[J]. Separation and Purification Technology,2004,39(1-2): 23-37.
    [41]V. K. Gupta, N. Verma. Removal of Volatile Organic Compounds by Cryogenic Condensation Followed by Adsorption[J]. Chemical Engineering Science,2002, 57(14):2679-2696.
    [42]李睿.膜吸收净化含苯废气及其传质性能的研究[D].南京:南京理工大学,2010.
    [43]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004.
    [44]李晖,刘富强,曹义鸣,刘玉铁,徐仁贤.膜法分离有机蒸气/氮气混合气的过程研究[J].膜科学与技术,2000,20(2):39-42.
    [45]G. Busca, S. Berardinelli, C. Resini, L. Arrighi. Technologies for the Removal of Phenol from Fluid Streams:A Short Review of Recent Developments[J]. Journal of Hazardous Materials,2008,160(2-3):265-288.
    [46]S. Majumdar, D. Bhaumik, K. K. Sirkar. Performance of Commercial-Size Plasmapolymerized Pdms-Coated Hollow Fiber Modules in Removing VOCs from N2/Air[J]. Journal of Membrane Science,2003,214(2):323-330.
    [47]D. K. Stone, S. K. Lynch, R. F. Pandullo, L. B. Evans, W. M. Vatavuk. Flares.1. Flaring Technologies for Controlling VOC-Containing Waste Streams[J]. Journal of the Air & Waste Management Association,1992,42(3):333-340.
    [48]张广宏,赵福真,季生福,银凤翔,李成岳.挥发性有机物催化燃烧消除的研究进展[J].化工进展,2007,26(5):624-631.
    [49]S. Su, J. Agnew. Catalytic Combustion of Coal Mine Ventilation Air Methane[J]. Fuel,2006,85(9):1201-1210.
    [50]J. H. Lee, D. L. Trimm. Catalytic Combustion of Methane[J]. Fuel Processing Technology,1995,42(2-3):339-359.
    [51]R. E. Hayes, S. T. Kolaczkowski. Introduction to Catalytic Combustion [M]. Australia:Gordon and Breach,1997.
    [52]S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandey, A. Juwarkar, A. Vaidya. Bioreactors for Treatment of VOCs and Odours-a Review[J]. Journal of Environmental Management,2010,91(5):1039-1054.
    [53]M. C. Delhomenie, M. Heitz. Biofiltration of Air:A Review[J]. Critical Reviews in Biotechnology,2005,25(1-2):53-72.
    [54]R. Iranpour, H. H. J. Coxa, M. A. Deshusses, E. D. Schroeder. Literature Review of Air Pollution Control Biofilters and Biotrickling Filters for Odor and Volatile Organic Compound Removal[J]. Environmental Progress,2005,24(3):254-267.
    [55]陆继来,尹协东,夏明芳,孙飒石,王或.生物法净化低浓度工业废气的技术进展[J].污染防治技术,2006,19(4):37-41.
    [56]M. Hussain, N. Russo, G. Saracco. Photocatalytic Abatement of Vocs by Novel Optimized Tio2 Nanoparticles[J]. Chemical Engineering Journal,2011,166(1): 138-149.
    [57]J. H. Mo, Y. P. Zhang, Q. J. Xu, J. J. Lamson, R. Y. Zhao. Photocatalytic Purification of Volatile Organic Compounds in Indoor Air:A Literature Review[J]. Atmospheric Environment,2009,43(14):2229-2246.
    [58]区瑞锟,陈砺,严宗诚,王红林.低温等离子体-催化协同降解挥发性有机废气[J].环境科学与技术,2011,34(1):79-84.
    [59]季银炼,顾中铸.低温等离子体协同改性ACF净化甲醛的实验研究[J].环境工程学报,2009,3(8):1478-1482.
    [60]Z. Bo, J. H. Yan, X. D. Li, Y. Chi, K. F. Cen. Scale-up Analysis and Development of Gliding Arc Discharge Facility for Volatile Organic Compounds Decomposition[J]. Journal of Hazardous Materials,2008,155(3):494-501.
    [61]H. H. Kim. Nonthermal Plasma Processing for Air-Pollution Control:A Historical Review, Current Issues, and Future Prospects[J]. Plasma Processes and Polymers, 2004,1(2):91-110.
    [62]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, S. N. Li. Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems:A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications [J]. Environmental Science & Technology,2009,43(7): 2216-2227.
    [63]Cottrell, F. G. Purifying Gases and Apparatus Therefor. U.S. Patent Office,2,121, 733, June 21,1938.
    [64]G. K. Boreskov, Y. S. Matros. Unsteady-State Performance of Heterogeneous Catalytic Reactions[J]. Catalysis Reviews-Science and Engineering,1983,25(4): 551-590.
    [65]Y. S. Matros. Studies in Surface Science and Catalysis, Vol.22, Unsteady Processes in Catalytic Reactors[M]. Amsterdam; New York:Elsevier Science Publishers,1985.
    [66]Y S. Matros. Studies in Surface Science and Catalysis, Vol.43, Catalytic Processes under Unsteady-State Conditions[M]. Amsterdam:Elsevier,1989.
    [67]A. A. Barresi, G. Baldi, D. Fissore. Forced Unsteady-State Reactors as Efficient Devices for Integrated Processes:Case Histories and New Perspectives [J]. Industrial & Engineering Chemistry Research,2007,46(25):8693-8700.
    [68]王辉,肖博文,袁渭康.非定态S02转化器稳定性研究[J].化学工程,1997,25(4):26-29.
    [69]李听,洪若瑜,李洪钟,徐翔宇.S02氧化流向振荡固定床的模拟[J].计算机与应用化学,1998,15(1):41-46.
    [70]王辉,肖博文,袁渭康.中间移热式非定态S02转化器(Ⅰ)转化器性能与操作条件的关系[J].化工学报,1998,49(4):447-454.
    [71]王辉,肖博文,袁渭康.中间移热式非定态S02转化器(Ⅱ)两点移热式转化器的控制策略[J].化工学报,1998,49(4):455-461.
    [72]W.-D. Xiao, H. Wang, W.-K. Yuan. An SO2 Converter with Flow Reversal and Interstage Heat Removal:From Laboratory to Industry[J]. Chemical Engineering Science,1999,54(10):1307-1311.
    [73]G. A. Bunimovich, N. V. Vernikovskaya, V. O. Strots, B. S. Balzhinimaev, Y. S. Matros. SO2 Oxidation in a Reverse-Flow Reactor-Influence of a Vanadium Catalyst Dynamic Properties[J]. Chemical Engineering Science,1995,50(4):565-580.
    [74]Y. S. Matros. Forced Unsteady-State Processes in Heterogeneous Catalytic Reactors[J]. Canadian Journal of Chemical Engineering,1996,74(5):566-579.
    [75]A. Noskov, L. Bobrova, G. Bunimovich, O. Goldman, A. Zagoruiko, Y. Matros. Application of the Nonstationary State of a Catalyst Surface for Gas Purification from Toxic Impurities[J]. Catalysis Today,1996,27(1-2):315-319.
    [76]R. Hong, X. Li, H. Li, W. Yuan. Modeling and Simulation of SO2 Oxidation in a Fixed-Bed Reactor with Periodic Flow Reversal[J]. Catalysis Today,1997,38(1): 47-58.
    [77]A. S. Noskov, L. N. Bobrova, Y. S. Matros. Reverse-Process for NOx-Off Gases Decontamination[J]. Catalysis Today,1993,17(1-2):293-300.
    [78]Y. O. Jeong, D. Luss. Pollutant Destruction in a Reverse-Flow Chromatographic Reactor[J]. Chemical Engineering Science,2003,58(7):1095-1102.
    [79]P. Marin, D. Fissore, A. A. Barresi, S. Ordonez. Simulation of an Industrial-Scale Process for the Scr of NOx Based on the Loop Reactor Concept[J]. Chemical engineering and processing,2009,48(1):311-320.
    [80]K. Nalpantidis, F. Platte, D. W. Agar, S. Turek. Elucidation of Hybrid N2O Decomposition Using Axially Structured Catalyst in Reverse Flow Reactor[J]. Chemical Engineering Science,2006,61(10):3176-3185.
    [81]B. Vandebeld, R. A. Borman, O. R. Derkx, B. A. A. Vanwoezik, K. R. Westerterp. Removal of Volatile Organic-Compounds from Polluted Air in a Reverse Flow Reactor-an Experimental-Study[J]. Industrial & Engineering Chemistry Research, 1994,33(12):2946-2956.
    [82]Y. S. Matros, G. A. Bunimovich. Control of Volatile Organic Compounds by the Catalytic Reverse Process[J]. Industrial and Engineering Chemistry Research,1995, 34(5):1630-1640.
    [83]L. Van De Beld, K. R. Westerterp. Operation of a Catalytic Reverse Flow Reactor for the Purification of Air Contaminated with Volatile Organic Compounds[J]. Canadian Journal of Chemical Engineering,1997,75(5):975-983.
    [84]G. Eigenberger, U. Nieken. Catalytic Combustion with Periodic Flow Reversal[J]. Chemical Engineering Science,1988,43(8):2109-2115.
    [85]G. Eigenberger, U. Nieken. Catalytic Cleaning of Polluted Air:Reactor Engineering Problems and New Solutions[J]. International Chemical Engineering, 1994,34(1):4-16.
    [86]E. Gulari, X. Zhou, C. Sze. Catalytic-Oxidation of Carbon-Monoxide under Periodic and Transient Operation[J]. Catalysis Today,1995,25(2):145-157.
    [87]韦军,孙欣欣,张金昌,李成岳.丙烯腈尾气流向变换催化燃烧的实验研究[J].化学反应工程与工艺,2005,21(3):199-204.
    [88]J. L. Nijdam, C. W. M. van der Geld. Experiments with a Large-Scale Reverse Flow Reactor[J]. Chemical Engineering Science,1997,52(16):2729-2741.
    [89]A. Mitri, D. Neumann, T. F. Liu, G. Veser. Reverse-Flow Reactor Operation and Catalyst Deactivation During High-Temperature Catalytic Partial Oxidation[J]. Chemical Engineering Science,2004,59(22-23):5527-5534.
    [90]R. F. Blanks, T. S. Wittrig, D. A. Peterson. Bidirectional Adiabatic Synthesis Gas Generator[J]. Chemical Engineering Science,1990,45(8):2407-2413.
    [91]A. M. Degroote, G. F. Froment. Reactor Modeling and Simulations in Synthesis Gas-Production[J]. Reviews in Chemical Engineering,1995,11(2):145-183.
    [92]A. M. DeGroote, G. F. Froment, T. Kobylinski. Synthesis Gas Production from Natural Gas in a Fixed Bed Reactor with Reversed Flow[J]. Canadian Journal of Chemical Engineering,1996,74(5):735-742.
    [93]D. Neumann, G. Veser. Catalytic Partial Oxidation of Methane in a High-Temperature Reverse-Flow Reactor[J]. AIChE Journal,2005,51(1):210-223.
    [94]陈晓春,郭耀星,李成岳.合成甲醇反应器流向变换强制周期操作特性[J].化工学报,2001,52(12):1054-1057.
    [95]S. G. Neophytides, G. F. Froment. A Bench Scale Study of Reversed Flow Methanol Synthesis[J]. Industrial and Engineering Chemistry Research,1992,31(7): 1583-1589.
    [96]K. M. Vandenbussche, S. N. Neophytides, I. A. Zolotarskii, G. F. Froment. Modeling and Simulation of the Reversed Flow Operation of a Fixed-Bed Reactor for Methanol Synthesis[J]. Chemical Engineering Science,1993,48(19):3335-3345.
    [97]S. G. Neophytides, G. F. Froment. A Bench Scale Study of Reversed Flow Methanol Synthesis[J]. Industrial & Engineering Chemistry Research,1993,32(2): 396-396.
    [98]T. Egyhazy, J. Kovacs, J. Scholtz. Experimental Study of Flow Reversal Ammonia Synthesis[J]. Chemical Engineering & Technology,1998,21(12):967-974.
    [99]Y. W. Budhi, A. Jaree, J. Hoebink, J. C. Schouten. Simulation of Reverse Flow Operation for Manipulation of Catalyst Surface Coverage in the Selective Oxidation of Ammonia[J]. Chemical Engineering Science,2004,59(19):4125-4135.
    [100]J. D. Snyder, B. Subramaniam. A Novel Reverse Flow Strategy for Ethylbenzene Dehydrogenation in a Packed-Bed Reactor[J]. Chemical Engineering Science,1994,49(24B):5585-5601.
    [101]G. Kolios, G. Eigenberger. Styrene Synthesis in a Reverse-Flow Reactor[J]. Chemical Engineering Science,1999,54(13-14):2637-2646.
    [102]E. Mancusi, P. Altimari, S. Crescitelli, L. Russo. Temperature and Conversion Patterns in a Network of Catalytic Reactors for Methanol Synthesis with Different Switch Strategies[J]. Chemical Engineering Science,2010,65(16):4579-4590.
    [103]E. Mancusi, L. Russo, P. Altimari, P. L. Maffettone, S. Crescitelli. Effect of the Switch Strategy on the Stability of Reactor Networks[J]. Industrial and Engineering Chemistry Research,2007,46(20):6510-6521.
    [104]D. Fissore, A. A. Barresi, G. Baldi. Synthesis Gas Production in a Forced Unsteady-State Reactor Network[J]. Industrial and Engineering Chemistry Research, 2003,42(12):2489-2495.
    [105]S. A. Velardi, A. A. Barresi. Methanol Synthesis in a Forced Unsteady-State Reactor Network[J]. Chemical Engineering Science,2002,57(15):2995-3004.
    [106]M. Brinkmann, A. A. Barresi, M. Vanni, G. Baldi. Unsteady State Treatment of Very Lean Waste Gases in a Network of Catalytic Burners[J]. Catalysis Today, 1999,47(1-4):263-277.
    [107]G. Kolios, J. Frauhammer, G. Eigenberger. Efficient Reactor Concepts for Coupling of Endothermic and Exothermic Reactions[J]. Chemical Engineering Science,2002,57(9):1505-1510.
    [108]B. Glockler, G. Kolios, C. Tellaeche, U. Nieken. A Heat-Integrated Reverse-Flow Reactor Concept for Endothermic High-Temperature Syntheses Part I: Fundamentals-Short-Cut Theory and Experimental Verification of a Traveling Endothermic Reaction Zone[J]. Chemical Engineering & Technology,2009,32(9): 1339-1347.
    [109]C. Tellaeche, B. Glockler, G. Kolios, U. Nieken. A Heat-Integrated Reverse-Flow Reactor Concept for Endothermic High-Temperature Syntheses Part II: Development of a Reformer Prototype for Hydrogen Production[J]. Chemical Engineering & Technology,2009,32(9):1348-1357.
    [110]M. van Sint Annaland, H. A. R. Scholts, J. A. M. Kuipers, W. P. M. van Swaaij. A Novel Reverse Flow Reactor Coupling Endothermic and Exothermic Reactions. Part I:Comparison of Reactor Configurations for Irreversible Endothermic Reactions[J]. Chemical Engineering Science,2002,57(5):833-854.
    [111]M. van Sint Annaland, H. A. R. Scholts, J. A. M. Kuipers, W. P. M. van Swaaij. A Novel Reverse Flow Reactor Coupling Endothermic and Exothermic Reactions:Part II:Sequential Reactor Configuration for Reversible Endothermic Reactions[J]. Chemical Engineering Science,2002,57(5):855-872.
    [112]M. V. Annaland, J. A. M. Kuipers, W. P. M. van Swaaij. Safety Analysis of Switching between Reductive and Oxidative Conditions in a Reaction Coupling Reverse Flow Reactor[J]. Chemical Engineering Science,2001,56(4):1517-1524.
    [113]Y. S. Matros, G. A. Bunimovich. Reverse-Flow Operation in Fixed Bed Catalytic Reactors[J]. Catalysis Reviews-Science and Engineering,1996,38(1): 1-68.
    [114]G. Kolios, J. Frauhammer, G. Eigenberger. Autothermal Fixed-Bed Reactor Concepts[J]. Chemical Engineering Science,2000,55(24):5945-5967.
    [115]黄晓峰,陈标华,潘立登,李成岳.催化反应器人为非定态操作的研究进展[J].化学反应工程与工艺,1998,14(4):337-348.
    [116]牛学坤,陈标华,周集义,李成岳.清除废气中VOCs的流向变换催化燃烧技术进展[J].环境污染治理技术与设备,2000,1(2):87-95.
    [117]B. van de Beld, R. A. Borman, O. R. Derkx, B. A. A. van Woezik, K. R. Westerterp. Removal of Volatile Organic Compounds from Polluted Air in a Reverse Flow Reactor:An Experimental Study[J]. Industrial and Engineering Chemistry Research,1994,33(12):2946-2956.
    [118]B. van de Beld, K. R. Westerterp. Air Purification by Catalytic Oxidation in a Reactor with Periodic Flow Reversal[J]. Chemical Engineering & Technology,1994, 17(4):217-226.
    [119]S. Salomons, R. E. Hayes, M. Poirier, H. Sapoundjiev. Flow Reversal Reactor for the Catalytic Combustion of Lean Methane Mixtures[J]. Catalysis Today, 2003,83(1-4):59-69.
    [120]M. Ben-Tullilah, E. Alajem, R. Gal, M. Sheintuch. Flow-Rate Effects in Flow-Reversal Reactors:Experiments, Simulations and Approximations[J]. Chemical Engineering Science,2003,58(7):1135-1146.
    [121]牛学坤,陈标华,李成岳,周集义.流向变换催化燃烧反应器的可操作性[J].化工学报,2003,54(9):1235-1239.
    [122]牛学坤,李成岳,陈标华,周集义.流向变换催化燃烧反应器的热波特性[J].化工学报,2003,54(8):1087-1092.
    [123]D. Fissore, A. A. Barresi. On the Influence of the Catalyst Physical Properties on the Stability of Forced Unsteady-State after-Burners[J]. Chemical Engineering Research & Design,2003,81(A6):611-617.
    [124]U. Nieken, G. Kolios, G. Eigenberger. Fixed-Bed Reactors with Periodic Flow Reversal:Experimental Results for Catalytic Combustion[J]. Catalysis Today, 1994,20(3):335-350.
    [125]M. Cittadini, M. Vanni, A. A. Barresi, G. Baldi. Reverse-Flow Catalytic Burners:Response to Periodical Variations in the Feed[J]. Chemical Engineering Science,2001,56(4):1443-1449.
    [126]U. Nieken, G. Kolios, G. Eigenberger. Control of the Ignited Steady State in Autothermal Fixed-Bed Reactors for Catalytic Combustion[J]. Chemical Engineering Science,1994,49(24, Part 2):5507-5518.
    [127]M. A. G. Hevia, S. Oronez, F. V. Diez. Effect of the Catalyst Properties on the Performance of a Reverse Flow Reactor for Methane Combustion in Lean Mixtures[J]. Chemical Engineering Journal,2007,129(1-3):1-10.
    [128]K. Gosiewski. Efficiency of Heat Recovery Versus Maximum Catalyst Temperature in a Reverse-Flow Combustion of Methane[J]. Chemical Engineering Journal,2005,107(1-3):19-25.
    [129]P. Marin, M. A. G. Hevia, S. Ordonez, F. V. Diez. Combustion of Methane Lean Mixtures in Reverse Flow Reactors:Comparison between Packed and Structured Catalyst Beds[J]. Catalysis Today,2005,105(3-4):701-708.
    [130]A. Kushwaha, M. Poiriera, H. Sapoundjiev, R. E. Hayes. Effect of Reactor Internal Properties on the Performance of a Flowreversal Catalytic Reactor for Methane Combustion[J]. Chemical Engineering Science,2004,59(19):4081-4093.
    [131]R. Garg, A. Garayhi, D. Luss. Influence of Product Adsorption on the Operation of a Reverse-Flow Reactor[J]. AIChE Journal,2002,48(2):334-344.
    [132]L. Van De Beld, K. R. Westerterp. Air Purification in a Reverse-Flow Reactor: Model Simulations vs Experiments [J]. AIChE Journal,1996,42(4):1139-1148.
    [133]M. A. G. Hevia, S. Oronez, F. V. Diez. Effect of Wall Properties on the Behavior of Bench-Scale Reverse Flow Reactors[J]. AIChE Journal,2006,52(9): 3203-3209.
    [134]A. Gawdzik, L. Rakowski. Dynamic Properties of the Adiabatic Tubular Reactor with Switch Flow[J]. Chemical Engineering Science,1988,43(11): 3023-3030.
    [135]S. K. Bhatia. Analysis of Catalytic Reactor Operation with Periodic-Flow Reversal[J]. Chemical Engineering Science,1991,46(1):361-367.
    [136]J. Rehacek, M. Kubicek, M. Marek. Periodic, Quasiperiodic and Chaotic Spatiotemporal Patterns in a Tubular Catalytic Reactor with Periodic Flow Reversal[J]. Computers & Chemical Engineering,1998,22(1-2):283-297.
    [137]K. Ramdani, R. Pontier, D. Schweich. Reverse Flow Reactor at Short Switching Periods for VOC Combustion[J]. Chemical Engineering Science,2001, 56(4):1531-1539.
    [138]A. A. Barresi, M. Vanni, M. Brinkmann, G. Baldi. Control of an Autothermal Network of Nonstationary Catalytic Reactors[J]. AIChE Journal,1999,45(7): 1597-1602.
    [139]A. A. Barresi, M. Vanni. Control of Catalytic Combustors with Periodical Flow Reversal[J]. AIChE Journal,2002,48(3):648-652.
    [140]D. Fissore, A. A. Barresi, G. Baldi, M. A. G. Hevia, S. Oronez, F. V. Diez. Design and Testing of Small-Scale Unsteady-State Afterburners and Reactors[J]. AIChE Journal,2005,51(6):1654-1664.
    [141]S. Salomons, R. E. Hayes, M. Poirier, H. Sapoundjiev. Modelling a Reverse Flow Reactor for the Catalytic Combustion of Fugitive Methane Emissions[J]. Computers & Chemical Engineering,2004,28(9):1599-1610.
    [142]F. Aube, H. Sapoundjiev. Mathematical Model and Numerical Simulations of Catalytic Flow Reversal Reactors for Industrial Applications[J]. Computers & Chemical Engineering,2000,24(12):2623-2632.
    [143]R. Litto, R. E. Hayes, B. Liu. Capturing Fugitive Methane Emissions from Natural Gas Compressor Buildings[J]. Journal of Environmental Management,2007, 84(3):347-361.
    [144]J. Chaouki, C. Guy, C. Sapundzhiev, D. Kusohorsky, D. Klvana. Combustion of Methane in a Cyclic Catalytic Reactor[J]. Industrial and Engineering Chemistry Research,1994,33(12):2957-2963.
    [145]B. A. van de Rotten, S. M. V. Lunel, A. Bliek. Efficient Simulation of Periodically Forced Reactors with Radial Gradients[J]. Chemical Engineering Science, 2006,61(21):6981-6994.
    [146]T. N. Haynes, C. Georgakis, H. S. Caram. The Design of Reverse Flow Reactors for Catalytic Combustion Systems[J]. Chemical Engineering Science,1995, 50(3):401-416.
    [147]M. Cittadini, M. Vanni, A. A. Barresi, G. Baldi. Simplified Procedure for Design of Catalytic Combustors with Periodic Flow Reversal[J]. Chemical Engineering and Processing,2001,40(3):255-262.
    [148]P. Marin, S. Ordonez, F. V. Diez. Simplified Design Methods of Reverse Flow Catalytic Combustors for the Treatment of Lean Hydrocarbon-Air Mixtures[J]. Chemical Engineering and Processing,2009,48(1):229-238.
    [149]J. M. Keith. Novel Scheme for Delaying Reverse-Flow Reactor Runaway[J]. AIChE Journal,2002,48(9):2104-2106.
    [150]王盈,朱吉钦,李成岳.低浓度甲烷流向变换催化燃烧取热技术[J].北京化工大学学报,2006,33(5):14-17.
    [151]D. Edouard, H. Hammouri, X. G. Zhou. Control of a Reverse Flow Reactor for Voc Combustion[J]. Chemical Engineering Science,2005,60(6):1661-1672.
    [152]J. M. Keith, D. T. Leighton, H. C. Chang. A New Design of Reverse-Flow Reactors with Enhanced Thermal Dispersion[J]. Industrial and Engineering Chemistry Research,1999,38(3):667-682.
    [153]F. L. Chan, J. M. Keith. Designing Reverse-Flow Packed Bed Reactors for Stable Treatment of Volatile Organic Compounds[J]. Journal of Environmental Management,2006,78(3):223-231.
    [154]F. Cunill, L. van de Beld, K. R. Westerterp. Catalytic Combustion of Very Lean Mixtures in a Reverse Flow Reactor Using an Internal Electrical Heater[J]. Industrial and Engineering Chemistry Research,1997,36(4198-4206.
    [155]A. G. Salinger, G. Eigenberger. The Direct Calculation of Periodic States of the Reverse Flow Reactor.1. Methodology and Propane Combustion Results[J]. Chemical Engineering Science,1996,51(21):4903-4913.
    [156]A. G. Salinger, G. Eigenberger. The Direct Calculation of Periodic States of the Reverse Flow Reactor.2. Multiplicity and Instability[J]. Chemical Engineering Science,1996,51(21):4915-4922.
    [157]J. Khinast, D. Luss. Mapping Regions with Different Bifurcation Diagrams of a Reverse-Flow Reactor[J]. AIChE Journal,1997,43(8):2034-2047.
    [158]J. Rehacek, M. Kubicek, M. Marek. Modeling of a Tubular Catalytic Reactor with Flow Reversal[J]. Chemical Engineering Science,1992,47(9-11):2897-2902.
    [159]R. Garg, D. Luss. Dynamic Bifurcations and Features of a Cooled Countercurrent Flow Reactor[J]. Chemical Engineering Science,2001,56(12): 3719-3726.
    [160]J. Khinast, A. Gurumoorthy, D. Luss. Complex Dynamic Features of a Cooled Reverse-Flow Reactor[J]. AIChE Journal,1998,44(5):1128-1140.
    [161]K. Gosiewski, K. Warmuzinski. Effect of the Mode of Heat Withdrawal on the Asymmetry of Temperature Profiles in Reverse-Flow Reactors. Catalytic Combustion of Methane as a Test Case[J]. Chemical Engineering Science,2007, 62(10):2679-2689.
    [162]J. G. Khinast, D. Luss. Efficient Bifurcation Analysis of Periodically-Forced Distributed Parameter Systems[J]. Computers & Chemical Engineering,2000,24(1): 139-152.
    [163]L. Russo, E. Mancusi, P. L. Maffettone, S. Crescitelli. Symmetry Properties and Bifurcation Analysis of a Class of Periodically Forced Chemical Reactors[J]. Chemical Engineering Science,2002,57(24):5065-5082.
    [164]R. Garg, D. Luss, J. G. Khinast. Dynamic and Steady-State Features of a Cooled Countercurrent Flow Reactor[J]. AIChE Journal,2000,46(10):2030-2040.
    [165]D. Fissore, A. A. Barresi. Robust Control of a Reverse-Flow Reactor[J]. Chemical Engineering Science,2008,63(7):1901-1913.
    [166]P. Marin, W. Ho, S. Ordonez, F. V. Diez. Demonstration of a Control System for Combustion of Lean Hydrocarbon Emissions in a Reverse Flow Reactor[J]. Chemical Engineering Science,2010,65(1):54-59.
    [167]M. A. G. Hevia, S. Ordonez, F. V. Diez, D. Fissore, A. A. Barresi. Design and Testing of a Control System for Reverse-Flow Catalytic Afterburners[J]. AIChE Journal,2005,51(11):3020-3027.
    [168]E. Mancusi, L. Russo, A. Brasiello, S. Crescitelli, M. di Bernardo. Hybrid Modeling and Dynamics of a Controlled Reverse Flow Reactor[J]. AIChE Journal, 2007,53(8):2084-2096.
    [169]S. Balaji, S. Lakshminarayanan. Heat Removal from Reverse Flow Reactors Used in Methane Combustion[J]. Canadian Journal of Chemical Engineering,2005, 83(4):695-704.
    [170]杨亮,宋执环,宋春跃.基于流向变换技术处理工业有机废气的控制系统设计[J].化工进展,2006,25(2):223-226.
    [171]J. M. Keith. Controlling Reverse-Flow Reactors Via Multiscale Transient Thermal Dispersion[J]. Advances in Environmental Research,2003,7(2):521-535.
    [172]肖文德,袁渭康,马继丰,还学义,郑琪健,肖任坚.非定态二氧化硫转化过程的中试研究[J].硫酸工业,1995,1):3-13.
    [173]D. Fissore, A. A. Barresi. Comparison between the Reverse-Flow Reactor and a Network of Reactors for the Oxidation of Lean VOC Mixtures[J]. Chemical Engineering & Technology,2002,25(4):421-426.
    [174]M. A. G. Hevia, D. Fissore, S. Oronez, F. V. Diez, A. A. Barresi. Combustion of Medium Concentration CH4-Air Mixtures in Non-Stationary Reactors[J]. Chemical Engineering Journal,2007,131(1-3):343-349.
    [175]V. Z. Yakhnin, M. Menzinger. Moving Hot Spots and Resonance in Adiabatic Packed-Bed Reactors[J]. AIChE Journal,1998,44(5):1222-1225.
    [176]V. Z. Yakhnin, M. Menzinger. Convective Instability and Its Suppression in Packed-Bed-and Monolith Reactors[J]. Chemical Engineering Science,1999,54(20): 4547-4557.
    [177]李昊,程乐鸣,王恩宇,褚金华,骆仲泱,岑可法.往复式多孔介质燃烧器流动特性的试验研究[J].能源工程,2004,(4):1-5.
    [178]S. Ergun. Fluid Flow through Packed Columns[J]. Chemical Engineering Progress,1952,48(2):89-94.
    [179]M. Senda, M. Ohgama, M. Nishimura. Turbulence Measurements of Mixed Air Convection for Upward Flow in a Heated Vertical Tube[J].3rd Int. Symposium on Turbulence, Heat and Mass Transfer,2000:703-710.
    [180]J. D. Jackson, J. Li, J. C. Romero-Villaneuva, L. Aznar-Meseguer. Effects of Non-Uniform Thermal Boundary Conditions on Heat Transfer by Mixed Convection to Air Flowing Upwards in a Vertical Tube[J].3rd Int. Symposium on Turbulence, Heat and Mass Transfer,2000:711-718.
    [181]刘明侯,T. L. Chan,陈义良.浮力对混合对流流动及换热特性的影响[J].力学学报,2000,36(336-341).
    [182]刘峰,姜培学,S. He, J. D. Jackson竖直管道内湍流混合对流换热研究[J].工程热物理学报,2005,26(2):286-288.
    [183]夏积恩.流向变换催化燃烧反应系统特性与数值模拟[D].杭州:浙江大学,2008.
    [184]D. Ciuparu, M. R. Lyubovsky, E. Altman, L. D. Pfefferle, A. Datye. Catalytic Combustion of Methane over Palladium-Based Catalysts[J]. Catalysis Reviews-Science and Engineering,2002,44(4):593-649.
    [185]D. Luss. Temperature Fronts and Patterns in Catalytic Systems[J]. Industrial & Engineering Chemistry Research,1997,36(8):2931-2944.
    [186]B. Marwaha, D. Luss. Hot Zones Formation in Packed Bed Reactors[J]. Chemical Engineering Science,2003,58(3-6):733-738.
    [187]G. A. Viswanathan, D. Luss. Hot Zones Formation and Dynamics in Long Adiabatic Packed-Bed Reactors[J]. Industrial & Engineering Chemistry Research, 2006,45(21):7057-7066.
    [188]P. V. Danckwerts. Continuous Flow Systems-Distribution of Residence Times[J]. Chemical Engineering Science,1953,2(1):1-13.
    [189]G. F. Froment, K. B. Bischoff. Chemical Reactor Analysis and Design [M]. 2nd ed., New York:Wiley,1990.
    [190]P. N. Brown, G. D. Byrne, A. C. Hindmarsh. VODE-a Variable-Coefficient Ode Solver[J]. Siam Journal on Scientific and Statistical Computing,1989,10(5): 1038-1051.
    [191]朱炳辰主编.化学反应工程[M].第四版.北京:化学工业出版社,2007.
    [192]沈维道等编.工程热力学[M].北京:高等教育出版社,2001.
    [193]刘光启等主编.化学化工物性数据手册,无机卷[M].北京化学工业出版社,2002.
    [194]D. Green, R. Perry. Perry's Chemical Engineers'Handbook, Eighth Edition[M]. New York:McGraw-Hill Professional,2007.
    [195]叶大伦,胡建华编著.实用无机物热力学数据手册[M].北京冶金工业出版社,2002.
    [196]时钧等主编.化学工程手册[M].第二版.北京:化学工业出版社,1996.
    [197]若尾法昭,影井清一郎.填充床传热与传质过程[M].沈静珠,李有润译,北京:化学工业出版社,1986.
    [198]S. Yagi, D. Kunii, N. Wakao. Studies on Axial Effective Thermal Conductivities in Packed Beds[J]. AIChE Journal,1960,6(4):543-546.
    [199]N. Wakao, S. Kaguei, T. Funazkri. Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat-Transfer Coefficients in Packed-Beds-Correlation of Nusselt Numbers[J]. Chemical Engineering Science,1979,34(3):325-336.
    [200]S. Chapman, T. G. Cowling. The Mathematical Theory of Non-Uniform Gases:An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases[M]. Cambridge, England:Cambridge University Press,1970.
    [201]E. L. Cussler. Diffusion:Mass Transfer in Fluid Systems[M].3rd ed., Cambridge:Cambridge University Press,2009.
    [202]R. B. Bird, W. E. Stewart, E. N. Lightfoot. Transport Phenomena[M]. Revised 2nd Edition. New York:John Wiley & Sons, Inc.,2006.
    [203]S. Ordonez, L. Bello, H. Sastre, R. Rosal, F. V. Diez. Kinetics of the Deep Oxidation of Benzene, Toluene, N-Hexane and Their Binary Mixtures over a Platinum on Gamma-Alumina Catalyst[J]. Applied Catalysis B-Environmental,2002,38(2): 139-149.
    [204]E. Wicke, D. Vortmeyer. Zundzonen Heterogener Reaktionen in Gasdurchstromten Kornerschichten[J]. Zeitschrift Fur Elektrochemie,1959,63(1): 145-152.
    [205]许考.预混天然气催化燃烧及其传热传质特性的研究[D].北京:北京工业大学,2006.
    [206]S. Haykin, B. van Veen信号与系统[M].林秩盛,黄元福,林宁译,第二版.北京:电子工业出版社,2004.
    [207]徐守时编著.信号与系统[M].北京:清华大学出版社,2008.
    [208]张小虹编著.信号与系统,第二版[M].西安:西安电子科技大学出版社,2008.
    [209]苏建华,罗卫平,王筱虹,刘晖.活性炭纤维净化印刷过程产生的VOCs废气[J].环境污染治理技术与设备,2006,7(11):117-120.
    [210]薄拯.滑动弧放电等离子体处理挥发性有机化合物基础研究[D].杭州:浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700