用户名: 密码: 验证码:
砒砂岩地区EN-1固化剂固化边坡抗冲稳定性的机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有独特的地质地貌和气候特征,砒砂岩地区被喻为“世界水土流失之最”。基于探讨该地区边坡侵蚀规律和EN-1加固边坡效果以提高其边坡冲刷稳定性为目的,采用自然边坡冲刷试验、室内土工试验和人工模拟边坡冲刷试验相结合的研究方法,以该地区边坡冲刷稳定性影响因素的研究为前提,分析了EN-1固化剂对砒砂岩风化土工程力学特性和模拟边坡抗冲性的影响,优选出适用该地区固化边坡的EN-1掺量、养护龄期、压实度和土壤含水量。获得以下进展:
     1.水流冲刷和坡度是影响砒砂岩自然边坡稳定性的主要因素。径流强度、产沙强度和径流含沙量随冲刷流量的增大而增大,灰黄色砒砂岩的径流强度、产沙强度和径流含沙量随坡度的增大先增大后减小,临界坡度为25°,灰白和红棕色砒砂岩的产流产沙指标随坡度的增大而增大。径流流速随冲刷流量和坡度的增大而增大。在试验设计的冲刷流量和坡度范围内,坡面径流的运动型态均属于层流,当冲刷流量和坡度较小时,坡面径流流态属于缓流,反之,属于急流。灰黄和红棕色砒砂岩的径流阻力系数f随冲刷流量的增大而减小,而灰白色砒砂岩的f随冲刷流量的增大而增大;灰黄色砒砂岩的f随坡度的增大呈现出先增大后减小的趋势,在灰白色和红棕色砒砂岩的f则随坡度的增大而增大。径流剪切力、径流功率和径流动能理论可不同程度解释砒砂岩自然边坡坡面侵蚀的径流产沙过程。径流阻力系数、水力半径、径流功率和径流动能对砒砂岩自然边坡冲刷的侵蚀产沙量的贡献较大。
     2.植被覆盖可明显增加砒砂岩自然边坡水流冲刷的稳定性。不同植被覆盖类型的砒砂岩自然边坡坡面径流强度大小排序为:裸地>油松>草地>柠条>沙棘;产沙强度和径流含沙量大小排序为:裸地>草地>柠条>油松>沙棘。相对于草地、柠条和油松覆盖的坡面,沙棘覆盖的砒砂岩自然边坡减流和减沙效益均最大。
     3. EN-1掺量、养护龄期、压实度和土壤含水量是影响EN-1固化土击实、抗剪强度和抗渗能力特征的主要因素。EN-1对砒砂岩风化土最优含水量的影响较小,但能有效提高其最大干密度。砒砂岩素土和固化土的抗剪强度和抗渗能力随压实度的增大而增大,抗剪强度随含水量的增大而减小。随EN-1掺量的增大和养护时间的延长,砒砂岩固化土抗剪强度和抗渗能力均大幅提高。
     4.水流冲刷、坡度和压实度是影响砒砂岩人工模拟边坡冲刷稳定性的主要因素。坡面径流强度随冲刷流量和压实度的增大而增大,坡度对其没有显著影响。产沙强度和径流含沙量随冲刷流量的增大而增大,随压实度的增大而减小,随坡度的增大先增大后减小,黄绿和灰黄色砒砂岩坡面的临界坡度分别为60°和50°。径流流速随冲刷流量、坡度和压实度的增大而增大。当冲刷流量较大和压实度较小处理的冲刷后期,坡面径流的运动型态属于紊流外,其它处理均属于层流;除压实度较小处理的冲刷后期坡面径流的流态为缓流外,其余处理均属于急流。f随冲刷流量的增大而增大,随压实度的增大而减小;黄绿色砒砂岩的f随着坡度的增大有先增大后减小的趋势,而灰黄色砒砂岩的f随坡度的变化趋势正好相反。径流剪切力、径流功率和径流动能理论均能不同程度解释砒砂岩模拟边坡在不同冲刷流量、坡度和压实度下冲刷时侵蚀的产沙过程。
     5. EN-1掺量、养护龄期和压实度是影响砒砂岩人工固化边坡冲刷稳定性的主要因素。径流强度随压实度的增大而增大,EN-1掺量和养护龄期对其影响不显著。产沙强度和径流含沙量随养护龄期和压实度的增大而减小,黄绿色砒砂岩的产沙指标随EN-1掺量的增大先减小后增大,在0.2%达到最小值,灰黄色砒砂岩的产沙各指标随EN-1掺量的增大而减小。添加EN-1后,径流流速较素土有较大提高,随压实度的增大而增大,养护龄期对径流流速没有显著影响。在试验设计的EN-1掺量、养护龄期和压实度处理范围内,砒砂岩固化边坡冲刷时坡面径流均属于层流和急流。f随养护龄期和压实度的增大而减小,黄绿色砒砂岩的f随着EN-1掺量的增大先减小后增大,灰黄色砒砂岩的f随EN-1掺量的增大而减小, f输沙率之间呈正相关关系。径流剪切力和径流功率理论可不同程度的解释砒砂岩固化边坡冲刷侵蚀的产沙过程。
     6.综合考虑EN-1对砒砂岩风化土抗剪强度、抗渗性能和抗冲刷性的影响,为提高砒砂岩地区边坡抵抗径流冲刷的能力,减轻水土流失的危害,在该地区EN-1固土护坡技术的工程实践中,建议最佳掺量为0.2%,养护龄期至少在15 d以上,压实度控制在95%以上,含水量控制在略低于最优含水量。
Because of its unique geological features and climate characteristics, the Pisha sandstone region is called as“the maximum of soil and water loss”. Base on the objective of exploring slope erosion rules and reinforcement effect of EN-1 solidified agent to improve scour stability of slope in the region, combining the research methods of natural slope scouring test, laboratory soil engineering test and artificial simulation slope scouring test, taking the study on influencing factors of slope scour stability as the premise, analyzed the influence of EN-1 on engineering mechanical characteristics and simulated slope resistance to scour of Pisha sandstone weathered soil, elected the appropriate EN-1 content, curing age, compaction degree and soil water content of solidified slope in the region. Got the following progress:
     1. Current scour and slope gredient are the main factors that influence on scour stability of Pisha sandstone natural slope. Runoff intensity, sediment yield intensity and runoff sediment concentration increased with the increase of scour flow. Runoff intensity, sediment yield intensity and runoff sediment concentration of gray yellow Pisha sandstone first increased, then decreased with the increase of slope gredient, and the critical slope was 25°. Runoff producing and sediment yield indexes of gray white and red brown Pisha sandstone increased with the increase of slope gredient. Flow velocity increased with the increase of scour flow and slope gredient. The movement patterns of slope runoff were laminar flow under the scour flows and slope gredients in this experiment. The flow regimes were subcritical flow when scour flows and slope gredients were smaller, conversely, were supercritical flow. Runoff drag coefficient(f) of grey yellow and red brown Pisha sandstone decreased with the increase of scour flow, f of grey white Pisha sandstone increased with the increase of Scour flow. f of grey yellow Pisha sandstone presented the tendency that first increase, then decrease with the increase of slop gradient, f of grey white and red brown Pisha sandstone increased with the increase of slop gradient. Runoff shear stress, runoff power and runoff kinetic energy theory could explain the runoff sediment process of Pisha sandstone natural slope to varying degrees. Runoff drag coefficient, hydraulic radius, runoff power and runoff kinetic energy had bigger contribution to sediment yield of Pisha sandstone natural slope.
     2. Vegetation coverage could obviously increase scour stability of Pisha sandstone natural slope. The size order of runoff intensity of Pisha sandstone natural slope were as follows: bare land>Chinese pine>grass land>korshinsk peashrub>seabuckthon. The size order of sediment yield intensity and runoff sediment concentration were as follows: bare land>grass land>korshinsk peashrub>Chinese pine>seabuckthon. Relative to grass land, korshinsk peashrub and Chinese pine, runoff and sediment reduction effect of Pisha sandstone natural slope of seabuckthorn coverage were biggest.
     3. EN-1 content, curing age, compaction degree and soil water content are the main factors that affect the characteristics of compaction, shear strength and impermeability of solidified soil. EN-1 had less influence on soil optimum moisture content of Pisha sandstone weathered soil, but could effectively improve the maximum dry density. The shear strength and impermeability of Pisha sandstone plain and solidified soil increased with the increase of compaction degree, the shear strength decreased with the increase of water content. The shear strength and impermeability improved significantly with the increase of EN-1 content and curing age.
     4. Current scour, slope gredient and compaction degree are the main factors that influence on scour stability of Pisha sandstone simulated slope. Runoff intensity increased with the increase of scour flow and compaction degree, slope gredient had no significant effect on runoff intensity. Sediment yield intensity and runoff sediment concentration increased with the increase of Scour flow, decreased with the increase of compaction degree, first increased, then decreased with the increase of slope gredient, the critical slope of yellow green and grey yellow Pisha sandstone were 60°and 50°. Flow velocity increased with the increase of scour flow, slope gradient and compaction degree. The movement patterns of slope runoff were turbulent flow when scouring proceeded to the later period at bigger scour flows and smaller compaction degrees. The movement patterns of slope runoff were all laminar flow at other treatments. The flow regimes were subcritical flow when scouring proceeded to the later period at smaller compaction degrees. The flow regimes were all supercritical flow at other treatments. f increased with the increase of Scour flow, decreased with the increase of compaction degree. f of Yellow green Pisha sandstone had tendency that first increase, then decrease with the increase of the slope gredient, and f of gray yellow Pisha sandstone had just the opposite trends with the slope gredient. Runoff shear stress, runoff power and runoff kinetic energy theory could explain the runoff sediment process of Pisha sandstone simulated slope at different scour fiow, slope gredient and compaction degree to varying degrees.
     5. EN-1 content, curing age and compaction degree are the main factors that influence on scour stability of Pisha sandstone solidified slope. Runoff intensity increased with the increase of compaction degree, EN-1 content and curing age had no significant effect on Runoff intensity. Sediment yield intensity and runoff sediment concentration decreased with the increase of curing age and compaction degree, sediment yield indexes of yellow green Pisha sandstone first decreased, then increased with the increase of EN-1 content, and got minimum at 0.2% EN-1 content; sediment yield indexes of grey yellow Pisha sandstone decreased with the increase of EN-1 content. Flow velocity increased after adding EN-1, increased with the increase of compaction degree. Curing age had no significant effect on flow velocity. The flow regimes of Pisha sandstone solidified slop were all laminar flow and supercritical flow under the EN-1 content, curing age and compaction degree in this experiment. f decreased with the increase of curing age and compaction degree. f of yellow green Pisha sandstone first decrease, then increase with the increase of EN-1 content, f of grey yellow Pisha sandstone first increase, then decrease with the increase of EN-1 content. f had a positive correlation with sediment discharge rate. Runoff shear stress and runoff power theory could explain the erosion sediment yield process of Pisha sandstone solidified slope to varying degrees.
     6. Comprehensive consideration on EN-1 affection on shear strength, impermeability and scourresistance of Pisha sandstone weathered soil, in order to improve the ability of soil resistance runoff scour of slope in Pisha sandstone region, reduce the harm of soil and water losses in the region. Suggest optimum EN-1 content is 0.2%, curing age is at least 15 d above, controlling compaction degree above 95%, water content slightly less than optimum moisture content at project practice of EN-1 solidifying and protecting slope technology in the region.
引文
安保昭. 1988.坡面绿化施工法.周庆桐译.北京:人民交通出版社:10~31
    安和平. 2000.北盘江中游地区土壤抗蚀性及预测模型研究.水土保持学报,14(4):38~41
    毕慈芬,李桂芬. 2003.砒砂岩地区沟道沙棘植物“柔性坝”原型拦沙研究.国际沙棘研究开发,1(1):6~12
    毕慈芬,李桂芬. 1998.沙棘在治理砒砂地区水土流失中的特殊功能.水利水电快报,19(18):1~3
    毕慈芬,邰源临,王富贵,李贵,乔旺林,胡存胜. 2003.防止砒砂岩地区土壤侵蚀的水土保持综合技术探讨.泥沙研究, 6(3):63~65
    毕慈芬,王富贵,李桂芬. 2003.砒砂岩地区沟道植物“柔性坝”拦沙试验.泥沙研究,4(2):14~25
    蔡强国,王贵平,陈永宗. 1998.黄土高原小流域侵蚀产沙过程模拟.北京:科学出版社:23
    蔡强国. 1989.坡长在坡面侵蚀产沙过程中的作用.泥沙研究,1989,4:84~91
    蔡志洲,刘憬,张淑娥. 2002.公路边坡灌木生态绿化研究.交通环保,23(3):25~26
    仓田益二郎. 1989.绿化工程技术.顾宝衡译.成都:四川科学技术出版社:25~28
    曹丽花,赵世伟,梁向锋,刘合满,杨永辉,赵勇钢. 2008. PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究.农业工程学报,24(1):45~49
    曹文洪. 1993.土壤侵蚀的坡度界限研究.水土保持通报,13(4):1~5
    查轩,唐克丽,张科利,白红英,蒋集华. 1992.植被对土壤特性及土壤侵蚀的影响研究.水土保持学报,6(2):52~58
    陈昌富,刘怀星,李亚平. 2006.草根加筋土的护坡机理及强度准则试验研究.中南公路工程,31(2):14~17
    陈法扬. 1985.不同坡度对土壤冲刷量影响试验.中国水土保持,2:18~19
    陈红星,李法虎,郝仕玲,张心平. 2007.土壤含水率土壤碱度对土壤抗剪强度的影响.农业工程学报,23(23):21~25
    成堂春. 2003.高速公路边坡绿化.湖南交通科技,29(3):51~53
    程洪,颜传盛,李建庆,刘爱平,杨小洁. 2006.草本植物根系网的固土机制模式力学试验研究.水土保持研究,13(1):62~65
    代全厚,张力,刘艳军,许晓鸿. 1998.嫩江大堤植物根系固土护堤功能研究.水土保持通报,8(6):8-11
    戴丽莱,杨世基,潘志华. 1989.新型复合固化材料的开发研究.中国公路学报,2: 59~61
    戴丽莱,杨世基,潘志华. 1991. NCS固化材料稳定湿粘土的应用.中国公路学报,1:16~27
    单志杰. 2010. EN-1离子固化剂加固黄土边坡机理研究. [博士学位论文].杨凌:中国科学院教育部水土保持生态环境研究中心
    单志杰,张兴昌,赵伟霞,陈志刚. 2010. EN-1固化剂对土壤抗蚀性的影响.水土保持学报,24(5):6~9
    邓辅唐,吕小玲,邓辅商. 2005.高速公路边坡生态恢复研究进展.中国水土保持,11:48~50
    丁从易,黄瀛岱,张翔. 1994.高新技术──公路结构层的重大革新.财经问题研究,5:64
    丁加明,王永和. 2005.雨水冲刷及地表径流对膨胀土路基边坡稳定的影响分析.路基工程,6:16~18
    丁文峰,李占斌,丁登山.2002.坡面细沟侵蚀过程的水动力学特征试验研究.水土保持学报,16(3):72~75
    丁文峰,李占斌. 2001.土壤抗蚀性的研究动态.水土保持科技情报,1:36~39
    丁文峰. 2001.黄土区坡面径流侵蚀的动力过程试验研究. [硕士学位论文].杨凌:中国科学院水利部水土保持研究所
    杜应吉,朱建宏. 2004.土壤固化剂对不同土质固化性能影响的试验研究.干旱地区农业研究,22(4):229~231
    樊恒辉,高建恩,吴普特,孙胜利. 2005. MBER土壤固化剂集流场的施工工艺.中国水土保持科学,3(3):56~59
    樊恒辉,高建恩,吴普特,鞠伟,孙胜利. 2006.土壤固化剂集流面不同施工工艺比较.农业工程学报,22(10):73~77
    方学敏,万兆惠,徐永年. 1997.土壤抗蚀性研究现状综述.泥沙研究,6(2):88~92
    冯浩,吴普特,黄占斌. 2001a.聚丙烯酰胺(PAM)对黄土坡地降雨产流产沙过程的影响.农业工程学报,17(5):48~51
    冯浩,吴普特,彭洪涛. 2001b. HEC和AAM添加剂对提高黄土集流效率的试验研究.农业工程学报,17(3):28~31
    甘卓亭,叶佳,周旗,周正朝,上官周平. 2010.模拟降雨下草地植被调控坡面土壤侵蚀过程.生态学报,30(9):2387~2396
    高建恩,吴普特,岳宝蓉. 2004-11-17.一种固化黄土集流面增流减糙施工方法.中国发明专利,200310118985.X
    高润德,彭良泉,王钊. 2001.雨水入渗作用下非饱和土边坡的稳定性分析.人民长江,32(11):25~27
    高维森,王佑民. 1992.土壤抗蚀抗冲性研究综述.水土保持通报,12(5):59~63
    顾尚义,万国江,毛健全. 2003.广西凭祥英安岩的化学风化作用研究.地球化学,32(4):328~334
    广西省交通科学研究所. 1997.膨胀土路基稳定性研究. http://www.gxjtkyy.com/ showResults.asp?id=90[2010-09-15]
    韩苏建,李元婷,吴小宏. 2000.用SR固化土作渠道防渗材料的探讨.防渗技术,6(3):19~23
    郝彤琦,谢小研,洪添胜. 2000.滩涂土壤植物根系复合体抗剪强度的试验研究.华南农业学学报,21(4):78~80
    何腾兵. 1995.贵州山区土壤物理性质对土壤侵蚀影响的研究.土壤侵蚀水土保持学报,1(1):85~95
    胡建忠. 2000.沙棘的生态经济价值及综合开发利用技术.郑州:黄河水利出版社:16
    胡建忠. 2007.砒砂岩区水土流失治理的“沙棘模式”.中国水利,6:25~27
    胡建忠,杜文嫣,殷丽强,郭海,刘丽颖,何京亮,郭建英,夏博. 2009.砒砂岩区沙棘人工林
    的萌蘖能力.中国水土保持科学,7(4):26~30
    胡世雄,靳长兴. 1999.坡面土壤侵蚀临界坡度问题的理论实验研究.地理学报, 54(4):347~356
    胡维冀,刘鸿洲. 2002.高吸水树脂对侵蚀性土壤物理性状的影响.福建农林大学学报(自然科学版),2:259~261
    胡维银,刘国斌,许明祥. 2000.黄土丘陵沟壑区小流域坡耕地土壤抗冲性试验研究.水土保持通报,20(3):26~28
    江玉林,杜娟. 2000.高等级公路生态环境保护问题对策.公路,8:68~72
    江忠善,李秀英. 1988.黄土高原土壤流失方程中降雨侵蚀力和地形因子的研究.中国科学院西北水土保持研究所集刊,7:40~45
    蒋定生. 1978.黄土抗蚀性的研究.土壤通报,4:20~23
    蒋定生,范兴科,李新华,赵合理. 1995.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究.水土保持学报,9(2):1~8
    金争平,史培军. 1987.内蒙古半干旱地区土壤侵蚀过程的研究.干旱区资源环境,1(2):67~75
    金争平,苗宗义,王正文,阎占卿,杨劫,李立业,付福林,贾志斌,柴建华,韩学士,蔺丰. 2003.砒砂岩区水土保持农牧业发展研究.郑州:黄河水利出版社:1~4
    金争平,史培军,侯福昌,赵焕勋. 1992.黄河皇甫川流域土壤侵蚀系统模型和治理模式.北京:海洋出版社:65~66
    靳长兴. 1996.坡度在坡面侵蚀中的作用.地理研究,15(3):37~43
    孔亚平,张科利,唐克丽. 2001.坡长对侵蚀产沙过程影响的模拟研究.水土保持学报,15(2):17~20
    雷俊山,杨勤科,郑粉莉. 2004.黄土坡面细沟侵蚀试验研究及土壤抗冲性评价.水土保持通报,24(2):l~4
    雷廷武,刘汉,潘英华,赵军,赵世伟,杨永辉. 2005.坡地土壤降雨入渗性能的径流—入流—产流测量方法模型.中国科学D辑,35(12):1180~1186
    雷廷武,唐泽军,张晴雯. 2003.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究Ⅱ—侵蚀.土壤学报,40(2):178~185
    李代琼,梁一民,侯喜禄,黄瑾,姜峻,阮成江,郝登跃,齐举一. 2004.沙棘改善环境的生态功能及效益试验研究.国际沙棘研究开发,2(2):6~10
    李怀恩,同新奇,张康,杨方社,毕慈芬,杨晓东. 2006.沙棘“柔性坝”对土壤水分调控作用的试验研究.农业工程学报,22(11):69~73
    李家春,崔世富,田伟平. 2007.公路边坡降雨侵蚀特征及土的崩解试验.长安大学学报(自然科学版),27(1):23~26
    李勉. 2004.坡沟系统草被覆盖及空间分布减蚀机理试验研究. [硕士学位论文].西安:西安理工大学
    李鹏,李占斌,郝明德,郑良勇. 2003.黄土高原天然草地根系主要参数的分布特征.水土保持研究,10(1):144~145,149
    李鹏,李占斌,郑良勇. 2005.黄土陡坡径流侵蚀产沙特性室内实验研究.农业工程学报,21(7):42~45
    李鹏,李占斌,郑良勇. 2008.黄土陡坡土壤侵蚀临界动力机制试验研究.泥沙研究,2(1):17~20
    李任敏,常建国,吕白交. 1998.太行山主要植被类型根系分布及对土壤结构的影响.山西林业科技,3:17~19
    李绍才,孙海龙. 2004.中国岩石边坡植被护坡技术现状及发展趋势.资源科学,26:61~63
    李绍才,孙海龙,杨志荣,何磊,崔保山. 2005.坡面岩体—基质—根系互作的力学特性.岩石力学工程学报,24(12):2074~2081
    李亚兰. 2005.黄土边坡坡面稳定性及防治措施研究. [硕士学位论文].西安:长安大学
    李勇. 1995.黄土高原植物根系土壤抗冲性.北京:科学出版社:24~54
    李勇,吴饮孝,朱显漠,田积莹. 1990.黄土高原物根系提高土壤抗冲击性能的研究—I.油松人工林根系对土壤抗冲性的增强效应.水土保持学报,4(1):1~10
    李勇,徐晓琴,朱显漠. 1992a.黄土高原植物根系强化土壤渗透力的有效性.科学通报,4:80~83
    李勇,徐晓琴,朱显漠. 1992b.黄土高原植物根系提高土壤抗冲性机制初步研究.中国科学(B辑),3:254~259
    李勇,徐晓琴,朱显谟,田积莹. 1992c.草类根系对土壤抗冲性的强化效应.土壤学报,29(3):302~309
    李占斌,秦百顺,亢伟,李鹏,李雯,魏霞. 2008.陡坡面发育的细沟水动力学特性室内试验研究.农业工程学报,24(6):64~68
    李兆平,张弥. 2000.降雨入渗对基坑工程安全性影响的研究.中国安全科学学报,10(3):6~12
    刘国彬. 1997.黄土高原草地植被恢复土壤抗冲性形成过程—II,III.水土保持研究,12:110~128
    刘国彬,蒋定生,朱显漠. 1996.黄土区草地根系生物力学特性研究.土壤侵蚀水土保持学报,2(3):21~27
    刘国彬,梁一民. 1997.黄土高原草地植被恢复土壤抗冲性形成过程—I.水土保持研究,12:102~110
    刘汉,雷廷武,潘英华,袁建平,毛丽丽,赵军. 2006.产流积水法测量坡地降雨入渗动态过程及其精度估计.农业工程学报,22(9):6~10
    刘纪根,雷廷武,夏卫生,潘英华,张晴雯. 2001.施加PAM的坡地降雨入渗过程及其模型研究.水土保持学报,15(3):51~54
    刘小文,耿小牧. 2006.降雨入渗对土坡稳定性影响分析.水文地质工程地质,1:40~42
    刘小勇,吴普特. 2000.硬地面侵蚀产沙模拟试验研究.水土保持学报,14(1):33~37
    刘志,江忠善. 1994.降雨因素和坡面对片蚀影响的研究.水土保持通报,14(6):14~17
    陆增祥,孟好军,阎春鸣. 2006.沙棘生长规律及土壤性质改良的研究.甘肃科技,22(10):220~221
    罗斌,陈强,黄少强. 1999.南方花岗岩地区坡面侵蚀临界坡度探讨.土壤侵蚀水土保持学报,5(6):67~70
    罗逸,李国华,张慧. 1996.有机阳离子化合物对改善膨胀土性质的影响.岩土工程学报,18(5):36~40
    罗逸,郑家燊,郭稚弧,李国华,聂良佐,张慧. 1995. H24稳定剂对膨胀土的力学性质及其有效稳定期的影响.岩土力学,16(3):82~88
    吕文舫. 1995.水力学.上海:同济大学出版社:27
    马海天,廖心北. 2003.边坡生物防护研究现状初探.四川草原,3:16~17
    孟维忠,杜尧东,夏海江. 2000.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验.水土保持学报,14(3):14~17
    明道贵. 2006.高速公路建设水土流失与水土保持研究. [硕士学位论文].天津:河北工业大学
    阮伏水,吴雄海. 1996.关于土壤可蚀性指标的讨论.水土保持通报,12(6):16~18
    沙爱民. 1998.半刚性路面材料结构性能.北京:人民交通出版社:58
    沙际德,蒋允德. 1995.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报,9(4):29~36
    沙庆林. 1999.公路压实压实标准.北京:人民交通出版社:5
    沈波,艾翠玲,徐岳. 2004.公路路基压实黄土坡面人工降雨侵蚀试验.长安大学学报(自然科学版),24(6):11~14
    石东扬,熊忠臣,金代钧,王瑞雄. 2001.高速公路边坡绿化的研究.中国园林,3:10~12.
    石迎春,叶浩,侯宏冰,毕志伟. 2004.内蒙古南部砒砂岩侵蚀内因分析.地球学报,25(6):659~664
    史敏华,王棣,李任敏. 1994.石灰岩区主要水保灌木根系分布特征根抗拉力研究初报.山西林业科技,1:17~19
    舒翔,曹映泓,廖晓瑾,崔建刚,王克舫. 2001.岩石边坡喷混植生设计施工.中外公路,21(4):45~48
    苏嵌森. 2004.应用固化土加筋土技术治理膨胀土渠道滑坡.节水灌溉,5:60~63
    孙传生,王艳玲. 1994.提高土壤抗蚀性措施研究.中国水土保持,2:17-18
    孙鸿烈,刘光崧. 1996.土壤理化分析剖面描述.北京:中国标准出版社:13
    唐朝生,施斌,高玮,蔡奕,刘瑾.2007.含砂量对聚丙烯纤维加筋黏性土强度影响的研究.岩石力学工程学报,26(S1):2968~2973
    唐泽军,雷廷武,张晴文,赵军. 2002.降雨及聚丙烯酰胺(PAM)作用下土壤的封闭过程和结皮的形成[J].生态学报,22(5):674~681
    汪益敏. 2001.路基边坡工程理论实践综述.中外公路,21(6):31~35
    汪益敏. 2003.路基边坡坡面冲刷特性加固材料性能研究. [博士学位论文].广州:华南理工大学
    汪益敏,陈辉,贾娟. 2001.广东省公路路基边坡防护现状及其发展.中外公路,21(6):7~10
    汪益敏,张丽娟,苏卫国,杨韵华. 2001. ISS加固土的试验研究.公路,7:42~45
    汪有科,吴钦孝,赵鸿雁. 1993.林地枯落物抗冲机理研究.水土保持学报,7(1):75~80
    王库. 2001.植物根系对土壤抗侵蚀能力的影响.土壤环境,10(3):250~252
    王生俊,韩文峰,王银梅. 2003. LD岩土胶结剂加固黄土试验研究.岩石力学工程学报,22(增2):2888~2893
    王铁桥,许文年,叶建军. 2003.挖方岩石边坡绿化技术方法探讨.三峡大学学报(自然科学版),25(2):101~104
    王万忠,焦菊英. 1996.黄土高原降雨侵蚀产沙黄河输沙.北京:科学出版社:167~187
    王晓峰,刘光焰,刘均利,郭俊平. 2006.降雨入渗滑坡关系研究综述.人民黄河,28(8):25~27
    王愿昌,吴永红,寇权,闵德安,常玉忠,张绒君. 2007.砒砂岩分布范围界定类型区划分.中国水土保持科学,5(1):14~18
    魏霞. 2008.黄土高原坡沟系统侵蚀产沙动力过程调控研究.[博士学位论文].西安:西安理工大学
    吴宏伟,陈守义,庞宁威. 1999.雨水入渗对非饱和土坡稳定性影响的参数研究.岩土力学,20(1):1~14.
    吴普特. 1997.动力水蚀实验研究.西安:陕西科学技术出版社:59
    吴钦孝,李勇. 1990.黄土高原植物根系提高土壤抗冲性能的研究—II草木杭物根系提高表层土壤抗冲刷力的试验分析.水土保持学报,4(1):11~16
    吴淑安,蔡强国. 1999.土壤表土中植物根系影响及其抗蚀性的模拟降雨试验研究.干旱区资源环境,13(3):35~40
    吴淑芳,吴普特,冯浩,朱献文. 2004.高分子聚合物防治坡地土壤侵蚀模拟试验研究.农业工程学报,20(2):19~22
    吴淑芳,吴普特,宋维秀,卜崇峰. 2010a.坡面调控措施下的水沙输出过程及减流减沙效应研究.水利学报,41(7):870~875
    吴淑芳,吴普特,原立峰. 2010b.坡面径流调控薄层水流水力学特性试验.农业工程学报,26(3):14~19
    吴彦,刘世全,王金锡. 1997.植物根系对土壤侵蚀能力的影响.应用环境生物学报,3(2):119~124
    吴增芳. 1976.土壤结构改良剂.北京:科学出版社:86~94
    伍石生. 1997.压实黄土路基渗水特性和规律的研究.[博士学位论文].西安:西安公路交通大学
    夏海江,杜尧东,孟维忠. 2000.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验.水土保持学报,14(3):14~17
    肖东升. 2004.植被增加边坡抗剪强度的量化理论.地基基础,1(2):63~65
    肖培青,史学建,陈江南. 2004.高速公路边坡防护的降雨和径流冲刷试验研究.水土保持通报,24(2):16~18
    肖培青,郑粉莉,贾媛媛. 2003.基于双土槽试验研究的黄土坡面侵蚀产沙过程.中国水土保持科学,1(4):10~15
    谢云,刘宝元,张文波. 2000.侵蚀性降雨标准研究.水土保持学报,12(4):36~41
    熊克志,李勇,孟维忠. 2001.聚丙烯酰胺防治水土流失的效果.生态学杂志,20(1):70~72
    徐双民,田广源. 2008.沙棘治理砒砂岩技术探索.国际沙棘研究开发,6(3):17~20
    许炯心,孙季. 2006.无定河水土保持措施减沙效益的临界现象及其意义.水科学进展,17(5):611~620
    杨方社. 2009.沙棘柔性坝水土保持生态效应机理研究.[博士学位论文].西安:西安理工大学
    杨航宇,颜志平,朱赞凌,罗志聪. 2002.公路边坡防护治理.北京:冶金出版社:25
    杨连利,李仲谨,邓娟利. 2005.保水剂的研究进展及发展新动向.材料导报,19(6):42~44
    杨世基,王玉泉. 1998.公路膨胀土路基的处理技术.公路交通科技,15(2):1~3
    杨文元,张奇,张建华,林超文. 1997.紫色丘陵区土壤抗冲性研究.土壤侵蚀水土保持学报,3(2):22~28
    杨亚川,莫永京,王芝芳,廖植樨,邓健,张心平. 1996.土壤—草本植被根系复合体抗水蚀强度抗剪强度的试验研究.中国农业大学学报,1(2):31~38
    姚爱玲,延西利,梁春雨,杨仁强. 1998. ISS土壤稳定剂路用性能的试验研究.西安公路交通大学学报,18(1):15~19
    姚文艺,时明立,崔长江. 2004.黄河泥沙问题研究综述.黄河水利职业技术学院学报,16(1):1~4
    叶浩,石建省,程彦培,侯宏冰,石迎春. 2004.‘劈’砂岩重力侵蚀定量计算的GPS、GIS方法初探.地球学报,25(4):479~482
    叶浩,石建省,侯宏冰,石迎春,程彦培,郭娇. 2008.内蒙古南部砒砂岩岩性特征对重力侵蚀的影响.干旱区研究,25(3):402~405
    叶浩,石建省,王贵玲,侯宏冰,石迎春,程彦培. 2006.砒砂岩化学成分特征对重力侵蚀的影响[J].水文地质工程地质,6:5~8
    殷丽强,王涛,梁月. 2008.砒砂岩地区沙棘人工林地土壤水分物理性质研究.国际沙棘研究开发,6(1):9~13
    尹惠敏. 2011.砒砂岩区沙棘人工林地表土的抗蚀性能研究.现代农业科技,4:264~265,273
    于东升,史学正. 2000.低丘红壤早地土戮渗透性可蚀性定量关系的研究.土壤学报,37(3):316~322
    员学锋,吴普特,冯浩. 2002.聚丙烯酰胺(PAM)的改土及增产效应.水土保持研究,9(2):55-58
    张登良. 1990.加固土原理.北京:人民交通出版社:14
    张光辉.2002.坡面薄层流水动力学特性的实验研究.水科学进展,13(2):159~165
    张光辉,卫海燕,刘宝元.2001.坡面流水动力学特性研究.水土保持学报,15(1):58~61
    张建军,张宝颖,毕华兴,李笑吟. 2004.黄土区不同植被条件下的土壤抗冲性.北京林业大学学报,26(6):25~29
    张金池,康立新,卢义山. 1994.苏北海堤林带树木根系固土功能研究.水土保持学报,8(2):43~47
    张科利. 1998.坡面面径流冲刷及泥沙输移特征的试验研究.地理研究,17(2):165~174
    张丽萍. 2009.黄土边坡坡面稳定及防治技术研究.[博士学位论文].杨凌:西北农林科技大学
    张丽萍,张兴昌,孙强. 2009a. 2种离子固化剂改善黄土抗剪强度和抗渗性的研究.节水灌溉5:35~38
    张丽萍,张兴昌,孙强. 2009b. EN-1固化剂加固黄土的工程特性及其影响因素.中国水土保持科学,7(4):60~65
    张丽萍,张兴昌,孙强. 2009c. SSA土壤固化剂对黄土击实、抗剪及渗透特性的影响。农业工程学报,25(72):45~49
    张平仓,刘玉民,张仲子. 1992.皇甫川流域侵蚀产沙特征及成因分析.水土保持通报,12(2):15~24
    张启昌,张晶. 1994.黄土低山丘陵区土壤抗蚀性综合研究.吉林林学院学院,10(2):109~112
    张清春,刘宝元,翟刚. 2002.植被水土流失研究综述.水土保持研究,9(4):96~101
    张擎,沈波,艾翠玲. 2005.黄土路基坡面侵蚀影响因素试验研究.公路交通科技,9:20~22
    张少宏,康顺祥,李永红. 2005.降雨对黄土边坡稳定性的影响.水土保持通报,25(5):42~44
    张淑芬. 2001.坡耕地施用聚丙烯酰胺防治水土流失试验研究.水土保持科技情报,2:18~19
    张伟雄,曹志强,黄小清. 2003.高速公路边坡生态防护技术探讨.公路,8:123~126
    张新和. 2007.黄土坡面片蚀—细沟侵蚀—切沟侵蚀演变侵蚀产沙过程研究.[博士学位论文]. 杨凌:西北农林科技大学
    章恒江,章梦涛. 2000.岩质坡面喷混快速绿化新技术.国外公路,20(5):30~32
    赵文林. 1996.黄河泥沙.郑州:黄河水利出版社:10
    肇普兴,夏海江,何建明. 1997.聚丙烯酰胺防治田间水土流失剂型和浓度的优选试验.水土保持研究,4(4):89~98
    郑粉莉,唐克丽. 1989.坡耕地细沟侵蚀影响因素的研究.土壤学报,26(2):109~116
    郑世清,周佩华. 1988.土壤容重和降雨强度土壤侵蚀和入渗关系的定量分析.中国科学院西北水土保持研究所集刊,1:53~56
    周明凯,沈卫国,童大懋. 1996. HS干硬性土壤固化剂的研究.武汉工业大学学报,18(3):37~40
    周佩华,郑世清,吴普特,王占礼,武春龙. 1997. .黄土高原土壤抗冲性的试验研究.水土保持研究,4(5):47~58
    周越. 1999.坡面生态工程及现状.生态学杂志,18(5):71~75
    朱显漠. 1960.黄土地区植被因素对水土流失的影响.土壤学报,8(2):111~121
    朱显谟,田积莹. 1993.强化黄土高原土壤渗透性及抗冲性的研究.水土保持学报,7(3):1~10
    卓慕宁,李定强,贺新良. 2004.高速公路边坡快速绿化技术的应用水土保持效果.水土保持研究,11(3):79-80.
    Abrahams A D, Parsons A J. 1994. Geomorphology of desert environments. London: Chapman & Hall: 157
    Abrahams A D, Parsons A J, Luk S H. 1986. Resistance to overland flow on desert hillslopes. Journal of Hydrology, 88: 343~363
    Attom M F,Munjed M A. 1998. Soil stabilization with burned olive waste. Applied Clay Science, 13(3): 219~230
    Bagnold R A. 1966. An approach to the sediment transport problem from general physics. USGS Professional Paper, 422-Ⅰ: 1~37
    Bell F G. 1994. Assessment of cement-PFA used to stabilize clay-size materials. Bulletin of the International Association of Engineering Geology, 49: 25~32
    Bjorneberg D L, Santos F L, Castanheira N S, Martins O C, Reis J L, Aase J K, Sojka R E. 2003. Using polyacrylamide with sprinkler irrigation to improve infiltration. Journal of Soil and Water Conservation, 58(5): 283~289.
    Carson M A, Kirkby M J. 1972. Hillslope form and process. Cambridge: Cambridge University Press: 17
    Cook H L. 1936. The nature and controlling variables of the water erosion process. Am Soc Agri, 39: 65~73.
    Danat M. 1995. Bioengineering techniques for streambank restoration: A review of central european Practices. Watershed Restoration Project Report, 2: 4~9
    Dendy F E,Boilton G C. 1976. Sediment yield-runoff drainage area relationships in the United States. J Journal of Soil and Water Conservation, 32:264~266
    Ekwue E I. 1992. Effect of organic and fertilizer treatments on soil physical properties and erodibility. Soil and Tillage Research, 22 (3-4): 199~209
    Foster G R. 1991. Advances in wind and water erosion prediction. Journal of Soil and Water Conservation, 46(1): 27~29
    Forster G R, Meyer L D. 1972. Transport of soil particles by shallow flow. Trans of the ASAE, 15(1): 99~102
    García-Orenes, Guerrero F, Mataix S C. 2005. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil and Tillage Research, 82(1): 65~76
    Gray D H. 1994. Influence of vegetation on the stability of slope. In: Proceedings of the International Conference on Vegetation and Slopes. Stabilisation, Protection and Ecology, University Museum, Oxford, Thomas Telford, London: 1~24
    Gray D H, Sotir R B. 1995. Biotechnical Stabilization of Steepened Slopes. Transportation Research Board, National Academy Press, National Research Council, 1474: 8~16
    Gray D H, Sotir R B. 1996. Biotechnical and Soil Bioengineering Slope Stabilization: A PracticalGuide for Erosion Control. New York: Wiley Interscience Publication: 55~99
    Green V S, Stott D E, Norton L O, Graveel J G. 2000. PAM molecular weight and charge effects on infiltration under simulated rainfall. Soil Sci Am J, 64: 1786~1791
    Gu B, Doner H E. 1993. Dispersion and aggregation of soil as influenced by organic and inorganic polymers. Soil Science Society of America Journal, 57(3): 709~716
    Heikki K. 2000. Stabilization of clay with inorganic by-products. Journal of Materials in Civil Engineering, 12 (4): 307~309
    Hengchaovanich D. 2002. VGT: A bioengineering and phytoremediation option for the new millennium. IVC2 Plenary papers, 1: 1~5
    Hillel D. 1998. Environmental Soil Physics. New York: Academic Press: 48
    Hilmi L A. 2000. Microstructural development of stabilized fly ash as pavement base material. Journal of Materials in Civil Engineering, 12(2): 157~163
    Horton R E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America, 56(3): 275~370
    Hudson N. 1986. Soil conservation. London: B T Batsford Ltd: 47
    Kazuhiko E, Yumi K, Katsutoshi T. 1983. Aggregate stability as an index of erodibility of ando soils. Soil Sci. Plant Nutr, 29(4): 473~481
    Kazutoki A B E, Ziemer R R. 1991. Effect of Tree Roots on a Shear Zone: Modeling Reinforced Shear Stress. Canadian Journal of Forest Research, 21(7): 1012~1019
    Kukal S S, Manmeet K, Bawa S S, Naveen G. 2007. Water-drop stability of PVA-treated natural soil aggregates from different land uses. Catena, 70(3): 475~479
    Lam L, Fredlund D G, Barbour S L. 1987. Transient seepage model for saturated-unsaturated soil systems: a geotechnical engineering approach. Canadian Geotechnical Journal, 24(4): 565~580
    Larry E W, Edward L S. 2000. Methods to quantify residue, roughness, and soil aggregates in wind erosion studies. Soil Erosion and Dryland Farming, CRC Press LLC: 663~671
    Laws J O, Parsons D A. 1943. The relationship of raindrop site to intensity. AM Geophys Union, 24: 452~460
    Lentz R. D, Shainberg I, Sojka R E, Carter D L. 1992. Preventing irrigation furrow erosion with small application. Soil Science Society of America Journal, 56(6): 1926~1932
    Loch R J. 1996. Using rill/interrill comparisons to infer likely responses of erosion to slope length: implications for land management. Australian Journal of Soil Research, 34(4): 489~502
    Luk S H,Merz W. 1992. Use of the salt tracing technique to determine the velocity of overland flow. Soil Technology, 5: 289~301
    Medina J, Guida H N. 1995. Stabilization of lateritic soils with phosphoric acid. Geotechnical and Geological Engineering, 13(4): 199~216
    Michael S K, Gendugov V M, Jiang Y Q. 2000. New model of soil detachment by water flow. Soil Erosion and Dryland Farming, CRC Press LLC, 573~579
    Miller G A, Zaman M. 2000. Field and laboratory evaluation of cement kiln dust as a soil stabilizer. Journal of the Transportation Research Board, 1714: 25~32
    Mosley M P. 1982. Subsurface flow velocities through selected forest soils, South Island, Newzealand. Journal of Hydrology, 55(1-4): 65~92
    Nadler A,Perfect E,Kay B D. 1996. Effect of polyacrylamide application on the stability of dry and wet aggregates. Soil Science Society of America Journal, 60(2): 555~561
    Ng C W W, Shi Q. 1998. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22(1): 1~28
    Nilaweera N S,Nutalaya P. 1999. Role of tree roots in slope stabilization. Bulletin of Engineering Geology and the Environment, 57(4): 337~342
    O'Loughlin C , Ziemer R R. 1982. The importance of root strength and deterioration rates upon edaphic stability in steepland forests. In: Proceedings of the international union of forestry research organizations. Ecology of subalpine ecosystems as a key to management. Oregon State University. Corvallis: 70~78
    Osula D O A. 1996. A comparative evaluation of cement and lime modification of laterite. Engineering Geology, 42(1): 71~81
    Peel T C. 1937. The relation of certain physical characteristics to the erodibility of soils. Soil Science Society Proceedings, 2: 79~84
    Piers V. 1997. The Roots of Trees. Spring-Verlag, 10: 233~240
    Mein R G, Larson C L. 1973. Modeling Infiltration During a Steady Rain. Water Resources Research, 9(2): 384~394
    Rensterberg M M. 1994. Anchoring of thin Colluvium by roots of sugar maple and white ash on hillslope in the Cincinnati. US Geological Survey Bulletin. Government Printing Office, Washington DC: 20~26
    Sawa K, Tomohisa S, Inazumi S, Tachibana M. 2000. Hardening treatment of muddy soil with coal fly ashes. Journal of the Society of Materials Science, 49(3): 348~351
    Scott H D. 2000. Soil Physics. Ames: Iowa State University Press: 75
    Seybold C A, Herrick J E. 2001. Aggregate stability kit for soil quality assessments. Catena, 44(1): 37~45
    Shaviv A,Ravina I,Zaslavsky D. 1987. Application of soil conditioner solutions to soil columns to increase water stability of aggregates. Soil Science Society of America Journal, 51(2): 431~436
    Shirazi H. 1999. Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course. Transportation Research Record, 1652: 270~275
    Skidmore E L, Powers D H. 1982. Dry soil-aggregate stability: energy-based index. Soil Science Society of America Journal, 46(6): 1274~1279
    Thecan C C. 2002. Soil binding properties of mucilage produced by a basidiomycete fungus in a model system. Mycological Research, 106(8): 930~937
    Tomohisa S, Sawa K, Naitoh N. 1995. Hedoro hardening treatment by industrial wastes. Journal of the Society of Materials Science, 44(503): 1023~1026
    Trout T J,Sojka R E, Lentz R D. 1995. Polyacrylamide effect on furrow erosion and infiltration [J].Trans ASAE, 38(3): 761~765
    Vacher C A, Loch R J, Raine S R. 2003. Effect of polyacrylamide additions on infiltration and erosion of disturbed lands. Aust J Soil Res, 41: 1509~1520
    Weyman D R. 1973. Measurements of the downslope flow of water in a soil. Journal of Hydrology, 20(3): 267~288
    Wischmeier W H,Mannering J V. 1969. Relation of soil properties to its erodibility. Soil Science Society of American Proceeding, 33(1): 131~137
    Wischmeier W H, Smith D D. 1978. Predicting rainfall erosion losses: a guide to conservation planning. USDA, Washington DC: 47
    Zhou Y. 1997. Effects of the Yunnan Pine (Pinus yunnanensis French) on Soil Erosion Control and Soil reinforcement in the Hutiaoxia Gorge,South West China.[PhD Thesis]. Hull: University of Hull Zhou Y, Watts D, Cheng X P, Li Y H, Luo H S, Xiu Q. 1997. The tractione effect of lateral roots of Pinus yunnanensis on soil reinforcement: A Direct in Situ Test. Plant and Soil, 190(1): 77~86
    Zalihe N, Emin G. 2001. Improvement of calcareous expansive soils in semiarid environments. Journal of Arid Environments, 47(4): 453~463
    Ziemer R R. 1981. Roots and the Stability of Forested Slopes. In: Timothy R H. Proceedings of the international symposium on Erosion and Sediment Transport in pacific Rim Steeplands. Int. Assn. Hydrol. Sci. Christchurch, 132: 343~361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700