用户名: 密码: 验证码:
南海北部莺歌海—琼东南盆地新生代构造变形格局及其演化过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莺歌海-琼东南盆地位于南海西北部,是NW向大型红河走滑断裂带与NE向南海北部陆缘构造带的交会部位,莺歌海和琼东南盆地二者夹持的东北部区域是海南岛隆升剥露区,出露大面积花岗岩和玄武岩,琼东南盆地向东延伸通过西沙海槽进入南海的西北次海盆。本论文以大陆边缘盆地动力学理论为指导,以南海走滑伸展型和伸展型陆缘交汇区盆地构造相互作用和形成演化研究为切入点,通过地质、地球物理和低温热年代学的综合分析,结合计算机数值模拟,深入研究莺歌海-琼东南盆地新生代构造变形格局及其构造、沉积演化过程。本研究将有助于深化对莺歌海-琼东南盆地成盆动力学的认识,同时对大陆边缘盆地油气勘探具有重要的指导意义。论文的主要成果如下:
     1、通过大量的二维地震剖面和新近采集的三维地震资料的地质解释,在莺歌海-琼东南盆地古近纪充填序列中重新追踪、识别了T70层序界面,该界面具有“下削上超”的地震反射结构特征和区域性分布特点,并分隔了同裂陷阶段早期(55-32Ma)孤立的、呈NE向展布的断陷盆地群和同裂陷阶段后期(32-23Ma)规模较大的、呈近东西向展布断坳盆地;区域地层对比和古生物资料定年表明该界面发育的时代为32Ma,与南海海底扩张起始和红河断裂带开始走滑运动的时间基本一致。由此确定了该界面的发育是在红河断裂大规模走滑活动以前,古南海向南俯冲导致南海北部陆缘伸展,岩石圈减薄,最终导致南海洋壳出露事件的响应界面。
     2、详细的地震剖面构造-地层解释揭示红河断裂带东西两侧盆地具有显著的构造差异。红河断裂西侧是走滑伸展型莺歌海盆地,地震成像揭示出构成盆地中部的临高凸起的层序地层特征,确定临高凸起在15.5Ma发育了反转构造,地震反射界面具有典型的“上削下超”反射特征。盆地构造制图表明,反转构造向南逐渐消失,并转换为发育少量正断层的张扭背景下的深坳陷,而向北追踪显示,河内坳陷发育强烈压扭型反转构造,反转地层年龄在15.5-5.5Ma。因此,同一个时期同一条断裂带表现为NW区段压扭和SE区段张扭的特征,盆地挤压反转(盆地北部)和伸展沉降(盆地南部)之间转变的枢纽点具有逐渐向北迁移规律。而位于红河断裂带东部的琼东南盆地与莺歌海盆地的结构存在明显的差异,琼东南盆地主要发育与伸展相关的构造,全盆可划分为北部隆起区、中央坳陷区和南部隆起区3个一级构造单元,而中央坳陷规模较大,近一步将中央坳陷区划分为北部坳陷带、中央低凸起和南部坳陷带3个二级构造单元,同时,在陵水凹陷东部新识别出NW向地垒式隆起带,以该隆起带为界,琼东南盆地可以划分为西部伸展区和东部伸展区,因此,琼东南盆地显示出“南北分带,东西分块”的平面分布格局。
     3、在红河断裂带区域资料基础上,结合莺歌海盆地和莺歌海-琼东南盆地结合部地质和地球物理资料,查明了红河断裂在海域,尤其是莺歌海盆地和莺歌海-琼东南盆地的延伸展布特征。在莺歌海盆地红河断裂主要由三条断层组成,莺东、东方和1号断层。莺东和东方断层位于盆地的北部,向南断层规模逐渐减小,在莺歌海坳陷中部消失,随之出现了向南延伸进入莺歌海-琼东南盆地结合部的1号断层,断层截切了琼东南盆地2号等北东向断层,但在莺歌海-琼东南盆地结合部断层规模逐渐减小,以转换带的形式转变成与其倾向相反的中建东断层。对莺歌海盆地和莺歌海-琼东南盆地结合部红河断裂活动性研究后表明,红河断裂走滑活动主要集中在32-5.5Ma之间,而5.5Ma断层活动特征并不明显。莺歌海-琼东南盆地另一重要断层是2号断层,在平面上呈东西向从西往东横跨整个琼东南盆地,但2号断层在莺歌海-琼东南结合部被红河断裂带组成部分1号断层所切割。对2号断裂系统详细的地质构造解释和断裂活动定量计算,认为该断裂系统具有复杂的结构特征,从西到东可以划分为西段、中段和东段3个区段;断层最西段被在莺歌海盆地东南方向延伸的1号断层所切割,但是2号断层西段和中段断层样式类型相同,主要表现为单断式,局部台阶式断裂结构,控制乐东凹陷、陵水凹陷,松南凹陷,东段为右阶斜列式断裂系,控制了宝岛凹陷和长昌凹陷的发育。同时,对盆地断层及其控制的凹陷结构进行系统研究后,总结了盆地主要凹陷类型,可以划分为半地堑、地堑和复式地堑。半地堑可细化分为平直型、铲型、缓坡断阶、陡坡断阶、同阶断裂,地堑可细划分为简单地堑、基底双侧断阶、双侧断阶,复式断阶可以细化分为旋转断块和半地堑-地堑交互断阶。
     4、通过对盆地全区地震反射剖面的详细解剖,莺歌海盆地底辟构造十分发育,共发育18个具有一定规模的底辟构造,并查明与底辟构造相关的构造主要有气烟囱构造、与底辟相关的断层和古底辟喷口等构造。根据底辟构造的形态特征,可将底辟构造划分为“三类五型”,即深埋型、浅埋型、夭折型、喷口型和塌陷型。通过对红河断裂莺歌海海域断层研究和盆地沉积速率计算,认为莺歌海盆地底辟构造形成主要原因可能是5.5Ma以来盆地基底沉降速率加快,岩石圈的拉伸导致高的地温梯度,驱使盆地深部烃源岩和碳酸盐埋藏加深并热解,释放丰富的气体和流体,同时红河提供的丰富的细粒沉积物,高速堆积在莺歌海坳陷,促使盆地深部超压系统进一步的形成并最终超压系统内泥流沉积物刺穿上覆地层,形成底辟构造。
     5、本次研究对海南岛低温热年代学数据空白区进行了补充样品并测试,报道了对海南岛岩石样品进行(U-Th-Sm)/He定年测试结果,(U-Th-Sm)/He年龄主要集中在16-35Ma,但年龄数据在25-30Ma较多。同时,对现有所有海南岛低温热年代学数据采用高斯线性反演剥蚀速率的方法,确定了在35Ma以来海南岛不同构造部位隆升剥露速率变化,结果表明海南岛35Ma以来剥蚀速率都较小,在0.05-0.2km/Ma之间,并且通过现今昌化江流域范围,估算了海南岛向莺歌海盆地提供沉积物的速率在0.3-0.4km3/Ma之间,表明海南岛向莺歌海盆地沉积物供给速率较小。
     6、在详细的地层划分基础上,通过对各个时期莺歌海盆地沉积物量进去压实回剥计算,获得了精度更高的莺歌海盆地各个时期初始沉积时沉积物总体积,并结合海南岛低温热年代学数据反演获得的各个时期海南岛向莺歌海盆地提供的沉积物剥蚀量,估算了莺歌海盆地来自红河的沉积物量,进一步从定量的角度证实了莺歌海盆地主要为来自红河的沉积物充填。并与青藏高原隆升和季风气候变化进行对比,认为长江袭夺红河时间在渐新世-早中新世之间,但最有可能是渐新世;同时,我们注意到盆地5.5Ma以来红河断裂带在莺歌海盆地停止了走滑活动,但盆地沉积物量突然增加,这可能与上新世以来全球气候变化频率增加有关。
     7、在南海西北次海盆洋脊延伸方向洋陆转换带新采集的二维长电缆深反射地震剖面资料构造-地层分析的基础上,采用挠曲悬臂梁模型和挠曲回剥模型算法,分别计算了上地壳、地壳和整个岩石圈拉伸系数,实验结果表明,研究区洋陆转换带盆地岩石圈发生了与深度相关的拉伸变形过程,并且随深度增加,拉伸量逐渐变大,该结果较好地解释了南海北部盆地自5.5Ma以来发生的盆地加速沉降现象。据此结合南海北部洋陆转换带盆地发育过程的特点,将洋陆转换带盆地演化划分为陆内裂陷阶段、裂后热沉降阶段和裂后加速沉降阶段。
     8、结合现有文献资料的总结和本次莺歌海-琼东南盆地研究认识,认为红河—越东—Lupar线断裂是东南亚地区的一个重要的构造界线,该界线划分出两个具有显著不同构造特征,经历了不同演化过程的区域构造变形区。在该界线的西侧为经典的印度—亚洲大陆碰撞所产生的挤出—逃逸构造区,而在该界线的东侧主要受古南海俯冲及其所引起的区域构造变形场的控制,为古南海俯冲拖曳构造区。莺歌海盆地位于挤出—逃逸构造区东北侧边界上,其发育机制为印支地块沿红河断裂带大规模挤出,并小幅度顺时针旋转作用控制下发育的一种特殊的、规模最大的盆地类型—走滑—旋转型盆地。琼东南盆地和南海位于古南海俯冲拖曳构造区,它们的发育和演化古南海俯冲所引起的区域拉伸作用的控制,以形成EW向或NE向伸展盆地为主要特征。
     9、以区域构造事件为背景,分析并讨论了莺歌海-琼东南盆地的构造演化过程,确定了莺歌海-琼东南盆地新生代的演化阶段,可划分为同裂陷阶段(55-23Ma)和裂后热沉降阶段(23-0Ma),同裂陷阶段可划分为断陷幕(55-32Ma)和断坳幕(32-23Ma),裂后热沉降可划分为裂后热沉降幕(23-5.5Ma)和裂后加速沉降幕(5.5-0Ma)。盆地断陷幕为分散的NE向展布的弥散孤立湖盆断陷群,主要受古南海向南俯冲导致南海北部陆缘岩石圈减薄的影响;而自32Ma年以来,红河断裂在印支地块挤出逃逸过程中开始活动,莺歌海-琼东南盆地演化的主控构造因素具有明显差异的构造特征,莺歌海盆地转变为主要受红河走滑断裂构造活动控制,而琼东南盆地的演化仍是古南海持续向南俯冲、南海的扩张和洋脊跃迁起主导控制作用;在盆地裂后热沉降幕时期,莺歌海盆地发育典型的反转构造,并且挤压和伸展之间枢纽点具有从南向北逐渐迁移的特征,而琼东南盆地作为拉伸盆地,形成了受盆地岩石圈热冷却控制的构造地层特征;而5.5Ma以来,莺歌海和琼东南盆地都发生了基底沉降速率突然加快,形成的沉积物可容纳空间汇集了来自红河方向突然增加的沉积物,沉积物可容纳空间的增加可能与岩石圈深度相关的拉伸作用有关。
The Yinggehai Basin (YGHB) and Qiongdongnan Basin (QDNB) are in the Northwest corner of the South China Sea positioned at a juncture between a strike-slipping zone and a extensional zone. The basins lie at the southern termination of the largest Tibetan strike-slip zones, the Red River Fault, and are the principal repository of materials eroded from the Red River drainage. The basins are flanked to the East by an oceanic ridge and border the Nansha area to the South, which is being subducted underneath the Borneo Block. Hainan Island, located between the YGHB and QGNB, is composed primarily of granites and basalts. In our study, a combination of geological, geophysical and low-temperature thermochronological methods are used to unravel the basins'history in greater detail. We studied the structure and evolution of the basins and explored the relationships between tectonics, erosion and climate of the peripheral area, which will enrich our knowledge about geodynamics and petroleum geology in Southeast Asia. The highlights of this Ph.D. thesis are shown as follows:
     1. A key tectonic sequence boundary, T70, was identified in the YGHB and QDNB based on the tectonic-stratigraphy interpretation of a number of available high-resolution seismic datasets. A series of small-scale, NE-SW trending, fault-bounded grabens developed extensively below this boundary. On the contrary, above the T70boundary, the depocenters are trending NE-SW, W-E and SWW-NWW from east to west of the basin. Larger-scale, partly fault-controlled depressions are superimposed clearly over underlying, faulted-bounding grabens on seismic profiles. Analysis of genetic type and geometry of graben-boundary faults, which underlie the T70boundary, indicates that these structures were formed by NW-SE extension. However, above the boundary, the partly fault-controlled depressions extended nearly N-S. We also report that the T70sequence boundary exists in both basins. Dating the sequence boundary by correlation of the regional sequences and biostratigraphical data reveals that it was formed at32Ma, which is consistent with the timing of the initiation of ridge spreading in the South China Sea and onset of sinistral movement along the Red River Fault. Therefore rifting on the northern continental margin of the South China Sea is considered to be a result of proto-South China Sea subduction underneath the Borneo Block. After the initiation of Red River Fault, evolution of the YGHB and QDNB show striking differences, as revealed by our study.
     2. From tectono-stratigraphical analyses of seismic profiles in the YGHB, we observed that each tectonic unit of the basin had a different deformation history. The Yinggehai Depression, located in the southern part of the basin, is characterized by an extensional lithosphere, thermal cooling and copious mud diapirs. However, on the Lingao Uplift, a very important structure dividing the basin into the Hanoi and Yinggehai Depressions, an inversed sequence boundary was identified on our seismic profiles. We dated the sequence boundary from drill core data at15.5Ma. However, in the Hanoi Depression, the inversed structures formed between15.5and5.5Ma. In our study, we noted that the structures of the QDNB are very different from those of the YGHB. High-quality seismic reflection data enabled us to divide the QDNB into three, first-order structural units, namely Northern Uplift, Central Depression and Southern Uplift. In addition, between Linshui Sag and Songnan Sag we recognized a NW-SE trending grabens and horsts belt, which separates the basin into the Eastern Extension Zone and Western Extension Zone. Moreover, at the junction of YGHB and QDNB, the Zhongjian Uplift, No.1and Zhongjiandong Faults are the main tectonic units in our investigation. At the juncture, the offset of No.1Fault decreases from north to south and gradually disappears, and Zhongjianzhong Fault appears and exhibits an opposite dip direction.
     3. The Red River Fault system in the Northwest corner of the South China Sea is investigated in detail by combining regional geological data and available seismic profiles. The fault system was interpreted to be composed of three segments:the Yingdong, Dongfang and No.1Fault. In the region of the Lingao Uplift, the Yingdong and Dongfang Faults are typical listric faults. Further south, the two faults disappear and a new fault, No.1Fault, with steeper dip is imaged on the seismic profiles. At the conjunction of YGHB and QDNB, the No.1Fault cut off the No.2Fault of the QDNB and extends southwards. In the middle of the junction zone, the newly described Zhongjiandong Fault with an opposite dip direction than that of the No.l Fault was distinguished on seismic profiles. In addition, we studied the strike-slip Red River Fault system in the YGHB, which has been active during the period of32-5.5Ma. After5.5Ma, no prominent activity is observed in the basin. No.2Fault is the largest-scale fault in the QDNB, streching from west to east. A quantitative, geometric analysis of the No.2Fault system was undertaken in our study and we divided the No.2Fault into three segments. The West and Middle Segment of the No.2Fault are characterized as single fault controlling the evolution of the Ledong, Linshui and Songnan Sags. The East Segment of the No.2Fault was features a dextral oblique fault system, which controls the development of Baodao and Changchang Sags. In addition, the sags in the QDNB can be grouped into half-graben, graben and compound graben types, which can be further divided into ten subtypes.
     4. In order to better understand how and why the diapirs formed, we compiled regional, high-resolution2D and3D seismic reflection data, as well as drilling data related to diapirs in the YGHB. Eighteen diapirs were identified in our study. The structures of gas chimneys, diapiric faults and palaeo-craters are genetically linked with diapirism. In this thesis, we propose, based on geophysical and geological observations, a three-stage model for diapirism:initiation, emplacement and collapse. During each stage, different diapiric types are described, including buried diapirs, piercing diapirs and collapsed diapirs. In addition, associated with large sediment supply from the Red River and large subsidence rate of YGHB, we suggest that a high paleogeothermal gradient to be the result of crustal thinning. Additionally, large volumes of sediment from the Tibetan plateau delivered by the Red River to the basin, majorly affect diapirism.
     5. The denudation history of Hainan Island aids in estimating the sediment flux from the island into the surrounding basins. However, the lack of low-temperature thermochronological data from Hainan Island obstructs us from studying the exhumation history in this region. Thus we collected rocks from places with scarce low-temperature thermochronological data. Ages from (U-Th-Sm)/He dating on Apatite range between35-16Ma. More specifically, most ages fall between30-25Ma. We used Gaussian the linear inversion method to study the topographic evolution and erosional history of Hainan Island since35Ma. The results from our numerical modeling show low erosion rates of0.05-0.2km/Ma on Hainan Island. Thus the sediments supplied from Hainan to the YGHB were calculated to be0.3-0.4km3/Ma, which is considered to be a small contribution compared to the total amount of sediments in the YGHB.
     6. Sedimentation rates within the YGHB are likely to be the most reliable record of changing erosion rates onshore, which in turn is linked to Tibetan Plateau uplift and monsoonal strength in SE Asia. We reconstructed sediment accumulation rates using a seismic framework and a better age control. This permits improved spatiotemporal constraints and enhanced stratigraphic resolution, with13separable stratigraphic units younger than23Ma. Considering the amount of sediments in the YGHB supplied by the Hainan Island, we estimated the sediments supplied by the Red River at different time intervals. Correlation with the event of Tibetan Plateau uplift and monsoon climate, we favor major headwater capture away from the Red River during the period between Oligocene and Middle Miocene, most likely the Oligocene. High rates of sediment accumulation since5.5Ma, even as tectonics appear to have slowed, suggest frequent climatic changes.
     7. We present one multichannel deep-penetration seismic reflection line collected during the late2000s. A numerical backstripping calculation using2D models of flexural cantilever and sediment decompaction were employed. The results demonstrate different stretching factors for the upper crust, the whole crust and the whole lithosphere, which indicate depth-dependent stretching occurred on the ocean-continent transition zone of the northern margin of the South China Sea. Compared with the faulting on the upper crust, the larger stretching factor of the whole lithosphere has an important effect on the fast subsidence recognized in recent years. In our study, three stages of basin evolution of the ocean-continent transition zone of the South China Sea were established. They are rifted continent stage, post-rifted thermal subsidence stage and post-rifted fast subsidence stage. This bears great significance for the geodynamics of the continental margins and deepwater petroleum exploration in the South China Sea.
     8. Based on regional tectonic and geophysical data, we support the tectonic model that SE Asia can be divided into a collision-extrusion tectonic province and a proto-South China Sea slab-pull tectonic province. These two tectonic provinces are separated by a transform boundary beginning with the Red River Fault extending southward along the Vietnamese margin and merging with the trench along the Lupar Line. We have further clarified the distinct structures, evolution and dynamic settings of the two tectonic provinces. The collision-extrusion tectonic province is considered to result from crustal shortening associated with the ongoing India-Eurasian collision, whereas the proto-South China Sea slab pull tectonic province was mainly driven by proto-South China Sea subduction toward the Borneo Block. Our focus areas, YGHB and QDNB, are situated along the junction of these two tectonic provinces.
     9. A new compilation of high-resolution2D seismic profiles tied to wells with biostratigraphic age control was used to better constrain the evolution of the YGHB and QDNB. We divided the Cenozoic evolution of the basins into four episodes, namely fault-controlled grabens episode (55-32Ma), fault-sag grabens episode (32-23Ma), post-rifted thermal subsidence episode (23-5.5Ma) and post-rifted fast subsidence episode (5.5-OMa). We recognized the offshore Red River Fault became active after32Ma. Before the onset of strike-slip, widespread crustal extension occurred across the northern continental margin of the South China Sea. Fault-bounded grabens developed at the bottom of the YGHB and QDNB. We noted the two basins have a very different evolution after32Ma. In the YGHB, fault-bounded grabens are typically overlain by successions deposited in a pull-apart regime dominated by the Red River Fault. After15.5Ma the basin experienced distinct structural inversion. In the Lingao Uplift, a clear unconformity was dated at15.5Ma, while after that time no erosion was documented in the geological and geophysical data. In the Hanoi Depression, a strong erosional unconformity was terminated at5.5Ma. In contrast, in the Yinggehai Depression, there is no evidence for inversion or erosion. A transition from extension to compression migrating from south to north between15.5and5.5Ma, known as zipper tectonism, indicates a reversal of slip sense along the Red River Fault. However, QDNB was interpreted as a typical extensional basin. The evolution of the QDNB before32Ma was similar to that of the YGHB. During the period of32-23Ma, the QDNB was controlled by lithospheric thermal cooling and faulting. Between23-5.5Ma, the basin was completely controlled by the lithospheric thermal cooling. The last tectonic episode was a fast subsidence event starting after5.5Ma.
引文
[1]Hutchison C S.Marginal basin evolution:the southern South China Sea. Marine and Petroleum Geology.2004,21(9):1129-1148.
    [2]Tapponnier P, Peltzer G, Le Dain A Y, et al.Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine. Geology.1982,10(12):611.
    [3]Clift P D, Sun Z.The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea:Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research.2006,111(B6):B6405.
    [4]Tapponnier P, Peltzer G, Armijo R.On the mechanics of the collision between India and Asia. Geological Society London Special Publications.1986,19(1):115-157.
    [5]Hsii K J, Li J, Chen H, et al.Tectonics of South China:key to understanding West Pacific geology. Tectonophysics.1990,183(1-4):9-39.
    [6]Xia K, Huang C, Jiang S, et al.Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea. Tectonophysics.1994,235(1-2):99-116.
    [7]Clift P, Lee G H, Duc N A, et al.Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea. Tectonics.2008,27(3).
    [8]Leloup P H, Lacassin R, Tapponnier P, et al.The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics.1995,251(1-4):3-10.
    [9]Hall R.Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences. 2002,20(4):353-431.
    [10]汪品先,耿建华,李春锋,等.南海深部计划---科学研究战略.同济大学海洋地质国家重点实验室调查研究报告,2010.
    [11]金庆焕.南海地质与油气资源.北京:地质出版社,1989.
    [12]金翔龙.南海地球物理研究报告.东海海洋.1989,7(4):1-92.
    [13]龚再升,李思田,谢泰俊,等.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,1997.
    [14]李思田,林畅松,张启明,等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构 造事件.科学通报.1998,43(08):797-810.
    [15]郭令智,钟志洪,王良书,等.莺歌海盆地周边区域构造演化.高校地质学报.2001,30(4):415-419.
    [16]龚再升,李思田.南海北部大陆边缘盆地油气成藏动力学研究.北京:科学出版社,2003.
    [17]姚伯初,万玲.南海新生代构造演化及岩石圈三维结构特征.地质通报.2005,24(1):1-8.
    [18]周蒂,王万银,庞雄,等.地球物理资料所揭示的南海东北部中生代俯冲增生带.中国科学:D辑.2006,36(003):209-218.
    [19]周蒂,陈汉宗,孙珍,等.南海中生代三期海盆及其与特提斯和古太平洋的关系.热带海洋学报.2005,24(3):16-25.
    [20]方念乔,姚伯初,万玲,等.华南和南海北部陆缘岩石圈速度结构特征与沉积盆地成因.地球科学-中国地质大学学报.2007,32(2):147-154.
    [21]郝天珧,黄松,徐亚.南海东北部及邻区深部结构的综合地球物理研究.地球物理学报.2008,51(6):1785-1796.
    [22]任建业,李思田.西太平洋边缘海盆地的扩张过程和动力学背景.地学前缘.2000,7(03):203-213.
    [23]阎贫,刘海龄.南海北部陆缘地壳结构探测结果分析.热带海洋学报.2002(02).
    [24]孙珍,钟志洪,周蒂,等.南海的发育机制研究:相似模拟证据.中国科学:D辑.2006,36(009):797-810.
    [25]庞雄,陈长明.南海珠江深水扇系统及油气.北京:科学出版社,2007.
    [26]李春峰,汪品先,Franke Dieter,等.南海张裂过程及其对晚中生代以来东南亚构造的启示—-IODP建议书735-Full介绍.地球科学进展.2009:1339-1351.
    [27]李家彪.中国边缘海形成演化与资源效应.北京:海洋出版社,2008.
    [28]丁巍伟,李家彪,黎明碧.南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制:来自NH973-2多道地震测线的证据.地球科学-中国地质大学学报.2011,5:895-904.
    [29]吴振利,李家彪,阮爱国,等.南海西北次海盆地壳结构:海底广角地震实验结果.中国科学:地球科学.2011:1463-1476.
    [30]王英民,徐强,李冬,等.南海西北部晚中新世的红河海底扇.科学通报.2011,10(56):781-787.
    [31]Cullen A R P H.Rifting of the South China Sea:new perspectives. Petroleum Geoscience. 2010,16(3):273-282.
    [32]Morley C K.A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics.2002,347(4):189-215.
    [33]Ren J, Tamaki K, Li S, et al.Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics.2002,344(3-4):175-205.
    [34]Metcalfe I.Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research. 2011,19(1):3-21.
    [35]Clift P D.Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth And Planetary Science Letters.2006,241(3-4):571-580.
    [36]万玲,姚伯初,曾维军,等.南海岩石圈结构与油气资源分布.中国地质.2006,33(4):874-888.
    [37]周蒂,孙珍,陈汉宗.世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示.地球科学进展.2007(06):561-571.
    [38]朱伟林.南海北部深水区油气地质特征.石油学报.2010(04):521-527.
    [39]朱伟林.南海北部深水区油气勘探关键地质问题.地质学报.2009,83(08):1059-1063.
    [40]陈长民.珠江口盆地(东部)第三系油气藏形成条件.科学出版社,
    [41]Zhu W, Huang B, Mi L, et al.Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea. AAPG Bulletin.2009,93 (6):741-761.
    [42]吴时国,姚根顺,董冬冬,等.南海北部陆坡大型气田区天然气水合物的成藏地质构造特征.石油学报.2008,29(003):324-328.
    [43]张功成,朱伟林,米立军,等.“源热共控论”:来自南海海域油气田“外油内气”环带有序分布的新认识.沉积学报.2010,28(5):987-1005.
    [44]张功成,米立军,吴时国,等.深水区——南海北部大陆边缘盆地油气勘探新领域.石油学报.2007,28(6):554-559.
    [45]郝芳,董伟良,邹华耀,等.莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏.石油学报.2003,24(6):7-12.
    [46]何家雄,陈伟煌.莺歌海盆地泥底辟特征及天然气勘探方向.石油勘探与开发.1994,21(006):6-9.
    [47]马玉波,吴时国,袁圣强,等.南海北部陆缘盆地与坎坡斯盆地深水油气地质条件的对比.海洋地质与第四纪地质.2008,28(04):101-110.
    [48]Replumaz A, Tapponnier P.Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research.2003,108(B6):2285.
    [49]Briais A, Patriat P, Tapponnier P.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia. J. Geophys. Res.1993,98(B4):6299-6328.
    [50]Hall R, van Hattum M, Spakman W.Impact of India-Asia collision on SE Asia:the record in Borneo. Tectonophysics.2008,451(1-4):366-389.
    [51]Fyhn M, Nielsen L H, Boldreel L O, et al.Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam. Marine and Petroleum Geology.2009,26(1):1-24.
    [52]An Z, Kutzbach J E, Prell W L, et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature.2001,411(6833):62-66.
    [53]Hall R.Reconstructing Cenozoic SE Asia//HALL R, BLUNDELL D.Tectonic Evolution of Southeast Asia.Geological Society of London Special Publication,1996:153-184.
    [54]Huthison C S, Bergman S C, Swauger D A, et al.A Miocene collisional belt in north Borneo: uplift mechanism and isostatic adjustment quantified by thermochronology. Journal of the Geological Society.2000,157(4):783.
    [55]林海涛,任建业,雷超,等.琼东南盆地2号断层构造转换带及其对砂体分布的控制.大地构造与成矿学.2010,34(03):308-316.
    [56]尹新义,任建业,裴健翔,等.琼东南盆地断裂活动性定量计算及其发育演化模式.高校地质学报.2010,16(3):388-396.
    [57]于俊峰,段如泰.琼东南盆地2号断裂东带发育特征及形成机理.大地构造与成矿学.2008,32(03):293-299.
    [58]Tapponnier P, Lacassin R, Leloup P H, et al.The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and south China. Nature.1990,343:431-437.
    [59]Leloup P H, Arnaud N, Lacassin R, et al.New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research. 2001,106(B4):6683-6732.
    [60]Sun Z, Zhou D, Zhong Z, et al.Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics.2003,372(1-2):41-58.
    [61]Lei C, Ren J, Clift P D, et al.The structure and formation of diapirs in the Yinggehai-Song Hong Basin, South China Sea. Marine and Petroleum Geology.2011,28:980-991.
    [62]Rangin C, Huchon P, Le Pichon X, et al.Cenozoic deformation of central and south Vietnam. Tectonophysics.1995,251(1-4):179-196.
    [63]Sun Z, Zhou D, Wu S, et al.Patterns and dynamics of rifting on passive continental margin from shelf to slope of the northern South China Sea:Evidence from 3D analogue modeling. Journal of Earth Science.2009,20(1):136-146.
    [64]Gilley L D, Harrison T M, Leloup P H, et al.Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research.2003,108(B2):2127.
    [65]Leloup P H, Tapponnier P, Lacassin R.Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. Journal of the Geological Society. 2007,164:1253-1260.
    [66]Zhu M, Graham S, McHargue T.The Red River Fault zone in the Yinggehai Basin, South China Sea. Tectonophysics.2009,476(3-4):397-417.
    [67]刘宝明,夏斌,李绪宣,等.红河断裂带东南的延伸及其构造演化意义.中国科学:D辑.2006,36(010):914-924.
    [68]孙珍,钟志洪,周蒂.莺歌海盆地构造演化与强烈沉降机制的分析和模拟.地球科学-中国地质大学学报.2007,32(3):347-356.
    [69]Searle M P.Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. Journal of the Geological Society.2006,163(6):1025-1036.
    [70]崔涛,解习农,任建业,等.莺歌海盆地异常裂后沉降的动力学机制.地球科学(中国地质大学学报).2008,33(3):349-356.
    [71]宋维宇.莺歌海盆地由沉积负载引起的裂后期快速沉降的耦合模式.海洋地质动态.2010,26(08):8-14.
    [72]孙家振,李兰斌,杨士恭,等.转换—伸展盆地——莺歌海的演化.地球科学-中国地质大学学报.1995,20(3):243-249.
    [73]佟殿君,任建业,雷超,等.琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制.地球科学-中国地质大学学报.2009,34(06):963-964.
    [74]佟殿君,任建业,雷超,等.伸展型盆地裂后期沉降过程及其动力学背景研究.地学前缘.2009,16(04):23-30.
    [75]袁玉松,杨树春,胡圣标,等.琼东南盆地构造沉降史及其主控因素.地球物理学报.2008,51(02):376-383.
    [76]Clift P, Lin J.Preferential mantle lithospheric extension under the South China margin. Marine and Petroleum Geology.2001,18(8):929-945.
    [77]Xie X, Muller R D, Li S, et al.Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology. 2006,23(7):745-765.
    [78]Shi X, Burov E, Leroy S, et al.Intrusion and its implication for subsidence:A case from the Baiyun Sag, on the northern margin of the South China Sea. Tectonophysics. 2005,407(1-2):117-134.
    [79]徐子英,孙珍,张云帆,等.南海北部陆缘盆地反转构造研究:以莺歌海盆地临高隆起和珠江口盆地琼海凹陷为例.地学前缘.2010,17(4):90-98.
    [80]钟志洪,李绪宣,孙珍,等.莺歌海盆地的构造反转作用及其油气勘探意义.热带海洋学报. 2007,26(01):16-21.
    [81]Prell W L, Kutzbach J E.Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature.1992,360(6405):647-652.
    [82]Clift P D, Blusztajn J.Reorganization of the western Himalayan river system after five million years ago. Nature.2005,438(7070):1001-1003.
    [83]Brookfield M E.The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision:rivers draining southwards. Geomorphology.1998,22(3-4):285-312.
    [84]Clark M K, Schoenbohm L M, Royden L H, et al.Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics.2004,23(1):1006-1029.
    [85]Clift P D, Blusztajn J, Due N A.Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters.2006,33:L19403.
    [86]Carter A, Roques D, Bristow C S.Denudation history of onshore central Vietnam:constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics. 2000,322(3-4):265-277.
    [87]Green P F, Duddy I R, Gleadow A, et al.Thermal annealing of fission tracks in apatite::1. A qualitative description. Chemical Geology:Isotope Geoscience section.1986,59:237-253.
    [88]Laslett G M, Green P F, Duddy I R, et al.Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology:Isotope Geoscience Section.1987,65(1):1-13.
    [89]Laslett G M, Kendall W S, Gleadow A, et al.Bias in measurement of fission-track length distributions. Nuclear Tracks and Radiation Measurements (1982).1982,6(2-3):79-85.
    [90]Crowley K D.Thermal significance of fission-track length distributions. Nuclear Tracks and Radiation Measurements (1982).1985,10(3):311-322.
    [91]Crowley K D, Cameron M, Schaefer R L.Experimental studies of annealing of etched fission tracks in flourapatite. Geochimica et Cosmochimica Acta.1991,55:1449-1465.
    [92]Carlson W D.Mechanisms and kinetics of apatite fission-track annealing. American Mineralogist;(United States).1990,75:1120-1139.
    [93]Ketcham R A, Donelick R A, Carlson W D.Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. American Mineralogist.1999,84(9):1235.
    [94]Carlson W D, Donelick R A, Ketcham R A.Variability of apatite fission-track annealing kinetics; I, Experimental results. American Mineralogist.1999,84(9):1213.
    [95]Donelick R A, Ketcham R A, Carlson W D.Variability of apatite fission-track annealing kinetics; II, Crystallographic orientation effects. American Mineralogist.1999,84(9):1224.
    [96]Willett S D.Inverse modeling of annealing of fission tracks in apatite 1:A Controlled Random Search method. American Journal of Science.1997,297(10):939-969.
    [97]丁汝鑫,周祖翼,许长海,等.大别山区域低温剥露作用:基于(U-Th)/He和裂变径迹年代学数据的模拟.中国科学D辑;地球科学.2006,36(8):689-697.
    [98]许长海,周祖翼,常远,等.大巴山弧形构造带形成与两侧隆起的关系:FT和(U-Th)/He低温热年代约束.中国科学:地球科学.2010,40(12):1684-1696.
    [99]Farley K A, Wolf R A, Silver L T.The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta.1996,60(21):4223-4229.
    [100]Shuster D L, Flowers R M, Farley K A.The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters.2006,249(3-4):148-161.
    [101]Ketcham R A.Foward and inverse modeling of low-temperature thermochronometry data//Low-Temperature Thermochronology:Techniques, Interpretations, and Applications.2005:275-314.
    [102]Reiners P W, Spell T L, Nicolescu S, et al.Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with Ar-40/Ar-39 dating. Geochimica Et Cosmochimica Acta. 2004,68(8):1857-1887.
    [103]Ehlers T A, Farley K A.Apatite (U-Th)/He thermochronometry:methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters. 2003,206(1-2):1-14.
    [104]Farley K A.(U-Th)/He dating:Techniques, calibrations, and applications//PORCELLI D, BALLENTINE C J, WIELER R.Noble Gases in Geochemistry and Cosmochemistry.2002:819-844.
    [105]Reiners P W, Farley K A, Hickes H J.He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics.2002,349(1-4):297-308.
    [106]Mkhonto D, de Leeuw N H.A computer modelling study of the effect of water on the surface structure and morphology of fluorapatite:introducing a Ca-10(PO4)(6)F-2 potential model. Journal of Materials Chemistry.2002,12(9):2633-2642.
    [107]House M A, Wernicke B P, Farley K A.Paleo-geomorphology of the Sierra Nevada, California, from (U-Th)/He ages in apatite. American Journal of Science.2001,301(2):77-102.
    [108]Reiners P W, Farley K A.Influence of crystal size on apatite (U-Th)/He thermochronology:an example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters. 2001,188(3-4):413-420.
    [109]Stockli D F, Farley K A, Dumitru T A.Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology.2000,28(11):983-986.
    [110]Farley K A.Helium diffusion from apatite:General behavior as illustrated by Durango fluorapatite. J. Geophys. Res.2000,105(B2):2903-2914.
    [111]Reiners P W, Farley K A.Helium diffusion and (U-Th)/He thermochronometry of titanite. Geochimica Et Cosmochimica Acta.1999,63(22):3845-3859.
    [112]House M A, Wernicke B P, Farley K A.Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature.1998,396(6706):66-69.
    [113]Wolf R A, Farley K A, Kass D M.Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology.1998,148(1-2):105-114.
    [114]Spotila J A, Farley K A, Sieh K.Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics.1998,17(3):360-378.
    [115]Warnock A C, Zeitler P K, Wolf R A, et al.An evaluation of low-temperature apatite U-Th/He thermochronometry. Geochimica Et Cosmochimica Acta.1997,61(24):5371-5377.
    [116]Wolf R A, Farley K A, Silver L T.Helium diffusion and low-temperature thermochronometry of apatite. Geochimica Et Cosmochimica Acta.1996,60(21):4231-4240.
    [117]Pik R, Marty B, Carignan J, et al.Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry:implications for uplift and erosion of the Afar plume dome. Earth and Planetary Science Letters.2003,215(1-2):73-88.
    [118]Reiners P W, Zhou Z Y, Ehlers T A, et al.Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology. American Journal of Science. 2003,303(6):489-518.
    [119]Persano C, Stuart F M, Bishop P, et al.Apatite (U-Th)/He age constraints on the development of the Great Escarpment on the southeastern Australian passive margin. Earth and Planetary Science Letters.2002,200(1-2):79-90.
    [120]Kirby E, Reiners P W, Krol M A, et al.Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from Ar-40/Ar-39 and (U-Th)/He thermochronology. Tectonics. 2002,21(1).
    [121]Blythe A E, Burbank D W, Farley K A, et al. Structural and topographic evolution of the central Transverse Ranges, California, from apatite fission-track, (U-Th)/He and digital elevation model analyses. Basin Research.2000,12(2):97-114.
    [122]Reiners P W, Brady R, Farley K A, et al.Helium and argon thermochronometry of the Gold Butte block, south Virgin Mountains, Nevada. Earth and Planetary Science Letters. 2000,178(3-4):315-326.
    [123]House M A, Wernicke B P, Farley K A, et al.Cenozoic thermal evolution of the central Sierra Nevada, California, from (U-Th)/He thermochronometry. Earth and Planetary Science Letters. 1997,151(3-4):167-179.
    [124]Avouac J P, Burov E B.Erosion as a driving mechanism of intracontinental mountain growth. Journal of Geophysical Research.1996,101(B8):17747.
    [125]Cloetingh S, Thybo H, Faccenna C.TOPO-EUROPE:Studying continental topography and Deep Earth--Surface processes in 4D. Tectonophysics.2009,474(1-2):4-32.
    [126]Cloetingh S, Ziegler P A, Bogaard P, et al.TOPO-EUROPE:The geoscience of coupled deep Earth-surface processes. Global and Planetary Change.2007,58(1-4):1-118.
    [127]Ehlers T A, Farley K A.Apatite (U-Th)/He thermochronometry:methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters. 2003,206(1-2):1-14.
    [128]Willett S D.Orogeny and orography:The effects of erosion on the structure of mountain belts. Journal of Geophysical Research-Solid Earth.1999,104(B12):28957-28981.
    [129]Willett S D.Late Neogene Erosion of the Alps:A Climate Driver? Annual Review of Earth and Planetary Sciences.2010,38:411-437.
    [130]Pinter N, Brandon M.How erosion builds mountains. Scientific American.2005.
    [131]Montgomery D R, Brandon M T.Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters.2002,201(3-4):481-489.
    [132]Zeitler P K, Koons P O, Bishop M P, et al.Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics. 2001,20(5):712-728.
    [133]Braun J.The many surface expressions of mantle dynamics. Nature Geoscience. 2010,3(12):825-833.
    [134]Hoang L V, Cift P D, Schwab A M, et al.Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications. 2010,342(1):219-244.
    [135]Rangin C, Klein M, Roques D, et al.The Red River fault system in the Tonkin Gulf, Vietnam. Tectonophysics.1995,243(3-4):209-222.
    [136]Longley I M.The tectonostratigraphic evolution of SE Asia. Geological Society, London, Special Publications.1997,126(1):311.
    [137]周蒂,陈汉宗,吴世敏,等.南海的右行陆缘裂解成因.地质学报.2002,76(2):180-190.
    [138]Karig D E.Origin and development of marginal basins in the western Pacific. Journal of geophysical research.1971,76(11):2542-2561.
    [139]Flower M, Tamaki K, Hoang N.Mantle extrusion:A model for dispersed volcanism and DUPAL-like asthenosphere in east Asia and the western Pacific. Mantle dynamics and plate interactions in East Asia.1998:67-68.
    [140]许志琴,杨经绥,李海兵,等.印度-亚洲碰撞大地构造.地质学报.2011,85(1):1-33.
    [141]Morley C K.Evolution of Large Normal Faults:Evidence from Seismic Reflection Data. AAPG Bulletin.2002,86(6):961-978.
    [142]Funahara S, Nishiwaki N, Murata F, et al.Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of western Yunnan, China. Earth and planetary science letters.1993,117(1-2):29-42.
    [143]Yang Z, Besse J.Paleomagnetic study of Permian and Mesozoic sediments from northern Thailand supports the extrusion model for Indochina. Earth Planet. Sci. Lett.1993,117:525-552.
    [144]任建业.海洋底构造导论.中国地质大学出版社,2008.
    [145]Taylor B, Hayes D E.Origin and history of the South China Sea basin//HAYES D E.The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands; Part 2.Geophysical Monograph.1983:23-56.
    [146]Lee T, Lawver L A.Cenozoic plate reconstruction of Southeast Asia. Tectonophysics. 1995,251(1-4):85-138.
    [147]Hsu S K, Yeh Y, Doo W B, et al.New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches. 2004,25(1):29-44.
    [148]Barckhausen U, Roeser H A.Seafloor spreading anomalies in the South China Sea revisited. Geophysical monograph.2004,149:121-125.
    [149]Qiu X, Shi X, Yan P, et al.Recent progress of deep seismic experiments and studies of crustal structure in northern South China Sea. Progress in Natural Science.2003,13(7):481-488.
    [150]Davis M, Kusznir N J.Depth-dependent lithospheric stretching at rifted continental margins. Proceedings of NSF Rifted Margins Theoretical Institute. Columbia University Press, New York. 2004:92-136.
    [151]Hall R.Hydrocarbon basins in SE Asia:understanding why they are there. Petroleum Geoscience. 2009,15(2):131.
    [152]Royer J Y, Sandwell D T.Evolution of the eastern Indian Ocean since the Late Cretaceous: constraints from Geosat altimetry. Journal of Geophysical Research.1989,94:13755-13782.
    [153]Smyth H R, Hamilton P J, Hall R, et al.The deep crust beneath island arcs:inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters.2007,258(1-2):269-282.
    [154]Hamilton W B.Tectonics of the Indonesian region. US Govt.,1979.
    [155]Hesse S, Back S, Franke D.The deep-water fold-and-thrust belt offshore NW Borneo: Gravity-driven versus basement-driven shortening. Geological Society of America Bulletin. 2009,121(5-6):939-953.
    [156]Encarnacion J, Fernandez D, Mattinson J.Subduction initiation by extrusion tectonics? Evidence from the Palawan ophiolite, Philippines. American Geophysical Union, Fall Meeting.. abstract. 2001:T42G-T43G.
    [157]Hutchison C S.Geology of North-West Borneo.2005.
    [158]Prouteau G, Maury R C, Sajona F G, et al.Le magmatisme post-collisionnel du Nord-Ouest de Borneo, produit de la fusion d'un fragment de croute oceanique ancre dans le manteaux superieur. Bulletin de la Societe Geologique de France.2001,172:319-332.
    [159]Holloway N H.North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. American Association of Petroleum Geologists Bulletin. 1982,66(9):1355-1383.
    [160]Ru K, Pigott J D.Episodic rifting and subsidence in the South China Sea. AAPG Bulletin. 1986,70(9):1136-1155.
    [161]Clements B, Hall R.A record of continental collision and regional sediment flux for the Cretaceous and Palaeogene core of SE Asia:implications for early Cenozoic palaeogeography. Journal of the Geological Society.2011,168(5):1187-1200.
    [162]Tate R B.Geological map of Borneo Island. CD-Rom pubhshed by the Geological Society of Malaysia,2001.
    [163]Moss S J, Carter A, Baker S, et al.A Late Oligocene tectono-volcanic event in East Kalimantan and the implications for tectonics and sedimentation in Borneo. Journal of Geological Society. 1998,155(1):177.
    [164]Hutchison C S.The 'Rajang accretionary prism' and 'Lupar Line' problem of Borneo. Geological Society, London, Special Publications.1996,106(1):247.
    [165]Fuller M, Ali J R, Moss S J, et al.Paleomagnetism of Borneo. Journal of Asian Earth Sciences. 1999,17(1-2):3-24.
    [166]Tongkul F.Polyphase deformation in the Telupid area, Sabah, Malaysia. Journal of Asian Earth Sciences.1997,15(2-3):175-183.
    [167]Hinz K, Fritsch J, Kempter E, et al.Thrust tectonics along the north-western continental margin of Sabah/Borneo. Geologische Rundschau.1989,78:705-730.
    [168]Northrup C J, Royden L H, Burchfiel B C.Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology. 1995,23(8):719.
    [169]Searle M P, Yeh M, Lin T, et al.Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere.2010,6 (4):316-338.
    [170]Hutchison C S.The North-West Borneo Trough. Marine Geology.2010,271(1-2):32-43.
    [171]Zhou D, Ru K, Chen H.Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics. 1995,251(1-4):161-177.
    [172]Petronas.The petroleum Geology and Resources of Malaysia. Petroliam Nasional Berhad,1999.
    [173]Xia B, Zhang Y, Cui X J, et al.Understanding of the geological and geodynamic controls on the formation of the South China Sea:A numerical modelling approach. Journal of Geodynamics. 2006,42(1-3):63-84.
    [174]苏明,李俊良,姜涛,等.琼东南盆地中央峡谷的形态及成因.海洋地质与第四纪地质.2009,29(04):85-93.
    [175]蒋仲雄,曾麟,李明兴.中国油气区第三系-南海北部大陆架油气区分册.北京:石油工业出版社,1994.
    [176]邵磊,庞雄,张功成.南海北部渐新世末的构造事件.地球科学-中国地质大学学报.2009,34(5):717-724.
    [177]汪品先,翦知渭,赵泉鸿.南海演变与季风历史的深海证据.科学通报.2003,48(1):2228-2239.
    [178]莫宣学,邓晋福.西藏-三江地区几对蛇绿岩-弧岩浆岩带的构造意义:IGCP2321中国工作组编-亚洲的增生6(文集).北京:地震出版社,1993.
    [179]方维萱,胡瑞忠,谢桂青,等.云南哀牢山地区构造岩石地层单元及其构造演化.大地构造与成矿学.2002,26(1):28-36.
    [180]刘福田,刘建华,何建坤,等.滇西特提斯造山带下扬子地块的俯冲板片.科学通报.2000(1):79-85.
    [181]Harrison T, Copeland P, Kidd W, et al.Raising Tibet. Science.1992,255(5052):1663.
    [182]Zhao S.Detection of the active segment at the Red River Fault zone by inversion of observed gravity changes. Journal of Geodynamics.1995,20(41-62).
    [183]Allen C R, Gillespie A R, Yuan H, et al.Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Bulletin of the Geological Society of America. 1984,95(6):686-700.
    [184]Replumaz A, Lacassin R, Tapponnier P, et al.Large river offsets and Plio-Quaternary dextral slip rate on the Red River Fault (Yunnan, China). Journal of Geophysical Research. 2001(106):819-836.
    [185]To T D, Becker M, Yem N T, et al.Result of GPS measurement of the Red River Fault zone at Ba Vi-Tam Dao area. Journal of Geology.2000,Series B 15-16:29-37.
    [186]谢玉洪.构造活动型盆地层序地层分析及天然气成藏模式——以莺歌海盆地为例.北京:地质出版社,2009.
    [187]孙向阳,任建业.莺歌海盆地形成与演化的动力学机制.海洋地质与第四纪地质.2003,23(04):45-50.
    [188]孙珍,钟志洪,周蒂,等.红河断裂带的新生代变形机制及莺歌海盆地的实验证据.热带海洋学报.2003,22(02):1-9.
    [189]钟志洪,王良书,夏斌,等.莺歌海盆地成因及其大地构造意义.地质学报.2004,78(03):302-309.
    [190]Peltzer G, Tapponnier P.Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision:An experimental approach. Journal of Geophysical Research. 1988,93(B12):15015-15085,117.
    [191]Fyhn M, Boldreel L O, Nielsen L H.Escape tectonism in the Gulf of Thailand:Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin. Tectonophysics. 2010,483(3-4):365-376.
    [192]Allen P, Allen J.Basin Analysis:Principles and Applications. Blackwell Publishing,2004.
    [193]Van Rensbergen P, Morley C K, Ang D W, et al.Structural evolution of shale diapirs from reactive rise to mud volcanism:3D seismic data from the Baram delta, offshore Brunei Darussalam. Journal of the Geological Society.1999,156(3):633.
    [194]Jackson M P.Retrospective salt tectonics//JACKSON M P A, G. R D, SNELSON S.Salt tectonics:a global perspective.AAPG Memoir,1995:l-28.
    [195]Stewart S A.Seismic interpretation of circular geological structures. Petroleum Geoscience. 1999,5(3):273-285.
    [196]Woodbury H O, Murray Jr I B, Osborne R E.Diapirs and their relation to hydrocarbon accumulation//MIALL A D.Occureence, Facts And Principles of world petroleum occurrence.Galgary:Canadian Society of Petroleum geologists,1980:119-142.
    [197]Dimitrov L I.Mud volcanoes--the most important pathway for degassing deeply buried sediments. Earth-Science Reviews.2002,59(1-4):49-76.
    [198]Fertl W H, Chilingar G V, Rieke H H.Abnormal formation pressures:Implications to exploration, drilling, and production of oil and gas resources. Elsevier Science Ltd,1976.
    [199]Ebrom D.The low-frequency gas shadow on seismic sections. The leading edge.2004,23(8):772.
    [200]何家雄,祝有海,翁荣南,等.莺歌海盆地油气渗漏系统及油气勘探前景.西南石油大学学报(自然科学版).2010,32(01):1-10.
    [201]Gong Z S, Li S T.Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Beijing:Science Press,1997:193-256.
    [202]Hao F, Li S, Gong Z, et al.Thermal regime, interreservoir compositional heterogeneities, and reservoir-filling history of the Dongfang Gas Field, Yinggehai Basin, South China Sea:Evidence for episodic fluid injections in overpressured basins? AAPG bulletin.2000,84(5):607.
    [203]Wang Z F, Huang B J.Dongfang 1-1 gas field in the mud diapir belt of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology.2008,25:445-455.
    [204]王华,陆永潮,廖远涛,等.琼东南盆地中东部三亚组层序构成及有利区带预测.地球科学-中国地质大学学报.2004,29(05):609-614.
    [205]肖军,王华,陆永潮,等.琼东南盆地构造坡折带特征及其对沉积的控制作用.海洋地质与第四纪地质.2003,23(03):55-63.
    [206]何丽娟,熊亮萍,汪集旸,等.莺歌海盆地构造热演化模拟研究.中国科学D辑.2000,30(4):415-419.
    [207]张敏强.莺歌海盆地底辟构造带天然气运聚特征.石油大学学报(自然科学版)SYDX.2000,24(04):39-42.
    [208]王振峰,何家雄,解习农.莺歌海盆地泥-流体底辟带热流体活动对天然气运聚成藏的控制作用.地球科学-中国地质大学学报.2004,29(02):203-210.
    [209]解习农,王振峰,李思田,等.莺歌海—琼东南盆地超压体系特征及油气成藏意义.地质学报.2003(02).
    [210]郝芳,李思田,龚再升,等.莺歌海盆地底辟发育机理与流体幕式充注.中国科学D辑.2001,31(06):471-476.
    [211]姜涛.莺歌海—琼东南盆地区中中新世以来低位扇体形成条件和成藏模式):(中国地质大学博士论文,2005.
    [212]Hao F, Sun Y C, Li S T, et al.Overpressure retardation of organic-matter maturation and petroleum generation:a case study from the Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin-American Association of Petroleum Geologists.1995,79(4):551-562.
    [213]Hao F, Li S T, Sun Y C, et al.Characteristics and origin of the gas and condensate in the Yinggehai Basin, offshore South China Sea:evidence for effects of overpressure on petroleum generation and migration. Organic Geochemistry.1996,24(3):363-375.
    [214]Xie X N, Wang C, Li S T.Hydrofracturing and episodic compaction of muddy rocks in sedimentary basin. Chinese Science Bulletin.1998,43(8):666-669.
    [215]Xie X N, Li S T, Dong W L, et al.Evidence for episodic expulsion of hot fluids along faults near diapiric structures of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology. 2001,18(6):715-728.
    [216]Huang B, Xiao X, Li X.Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic geochemistry.2003,34(7):1009-1025.
    [217]Luo X, Dong W, Yang J, et al.Overpressuring mechanisms in the Yinggehai basin, south China sea. AAPG bulletin.2003,87(4):629.
    [218]Huang B, Xiao X, Zhu W.Geochemistry, origin, and accumulation of CO~2 in natural gases of the Yinggehai Basin, offshore South China Sea. AAPG bulletin.2004,88:1277-1294.
    [219]Huang B J, Xiao X M, Li X S, et al. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea. Marine and Petroleum Geology.2009,26:928-935.
    [220]Xie Y H, Wang Z F, Tong C X.Petroleum geology of Yacheng 13-1, the largest gas field in China's offshore region. Marine and Petroleum Geology.2008,25(4-5):433-444.
    [221]何家雄,姚永坚,刘海龄,等.南海北部莺歌海盆地壳源型非生物CO_2运聚成藏特征与资源潜力.中国地质.2007,34(05):887-893.
    [222]解习农,李思田,胡祥云,等.莺歌海盆地底辟带热流体输导系统及其成因机制.中国科学D辑.1999,29(3):247-256.
    [223]解习农,姜涛王华,陆永潮,等.莺歌海盆地底辟带热流体突破的地层水化学证据.岩石学报.2006,22(08):2243-2248.
    [224]Clift D P, Sun Z.The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea:Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research.2006,111(B6):B6405.
    [225]Xie X N, Li S T, He H, et al.Seismic evidence for fluid migration pathways from an overpressured sustem in the South China Sea. Geofluids.2003,3:245-253.
    [226]Zhu M, Graham S, Mchargue T.The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics.2009,476:397-417.
    [227]Pieter V, POORT J, Kipeer R, et al.Near-surface sediment mobilization and methane venting in relation to hydrate destabilization in Southern Lake Baikal, Siberia. Subsurface sediment mobilization.2003:207.
    [228]Graue K.Mud volcanoes in deepwater Nigeria. Marine and Petroleum Geology. 2000,17(8):959-974.
    [229]Hanyi H, Hongzhang Z, Dandan F.Multicomponent seismic exploration in Yinggehai Basin. The Leading Edge.2002,21:914.
    [230]Ludmann T, Wong H K.Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Marine Geology. 2003,201(4):269-286.
    [231]Yun J W, Orange D L, Field M E. Subsurface gas of northern California and its link to submarine geomorphology. Marine Geology.1999,154:357-368.
    [232]Fowler S R, Mildenhall J, Zalova S, et al.Mud volcanoes and structural development on Shah Deniz. Journal of Petroleum Science and Engineering.2000,28(4):189-206.
    [233]Hustoft S, Mienert J, Bounz S, et al.High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin. Marine geology 2007,245(1-4):89-106.
    [234]Seth L H, Gading M, Wensaas L.Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology.2009,26(7):1304-1319.
    [235]Zhang Q M, Hu Z L.High geotemperature and overpressure background and the mechanism of hydrocarbon migration in the Yinggehai and Qiongdongnan basins. China Offshore Oil and Gas (in Chinese).1992,6(1):1-9.
    [236]Cartwright J A.Polygonal extensional fault systems:A new class of structure formed during the early compaction of shales.1997:35-56.
    [237]Bouriak S V, Akhmetjanov A M.Origin of gas hydrate accumulations on the continental slope of the Crimea from geophysical studies:Gas Hydrates:Relevance to World Margin Stability and Climate Change. HENRIET J P, MIENERT J. Geology Society London Special Publish,1998:137, 275-291.
    [238]Cartwright J A.Episodic basin-wide fluid expulsion from geopressured shale sequences in the North Sea basin. Geology.1994,22(5):447.
    [239]Hovland M, Judd J.Seabed Pockmarks and Seepages:Impact on Geology, Biology and Marine Environment. Graham and Trotman, London.1988,293:565.
    [240]Orange D L, Greene H G, Reed D, et al.Widespread fluid expulsion on a translational continental margin:Mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. Geological Society of America Bulletin.1999,111(7):992.
    [241]Prior D B, Doyle E H, Kaluza M J.Evidence for sediment eruption on deep sea floor, Gulf of Mexico. Science.1989,243(4890):517.
    [242]Gay A, Lopez M, Cochonat P, et al.Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology.2006,226:1-2.
    [243]Pilcher R, Argent J.Mega-pockmarks and linear pockmark trains on the West African continental margin. Marine Geology.2007,244(1-4):15-32.
    [244]Lammers S, Suess E, Hovland M.A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle. International Journal of Earth Sciences. 1995,84(1):59-66.
    [245]Heggland R.Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Marine and Petroleum Geology.1998,15(1):1-9.
    [246]McClay K R, Dooley T, Lewis G.Analog modeling of progradational delta systems. Geology. 1998,26(9):771.
    [247]Barker C.Aquathermal pressuring--role of temperature in development of abnormal-pressure zones. AAPG Bulletin.1972,56(10):2068-2071.
    [248]Hao F, Li S, Gong Z, et al.Mechanism of diapirism and episodic fluid injections in the Yinggehai Basin. Science in China Series D:Earth Sciences.2002,45(2):151-159.
    [249]Morley C K, Guerin G.Comparison of gravity-driven deformation styles and behavior associated with mobile shales and salt. Tectonics.1996,15(6):1154-1170.
    [250]Swarbrick R E, Osborne M J.Mechanisms that generate abnormal pressures:an overview//LAW B E, ULMISHEK G F, SLAVIN V I.Abnormal pressures in hydrocarbon environments.Tulsa, Oklahoma, U.S.A.:The American Association of Petroleum Geologists,1998:13-34.
    [251]Huang B J, Xiao X M, Dong W L.Multiphase natural gas migration and accumulation and its relationship to diapir structures in the DF1-1 gas field, South China Sea. Marine and Petroleum Geology.2002,19(7):861-872.
    [252]Xie X N, Li S T, Dong W L, et al.Evidence for hot fluid flow along faults near diapiric structure of the Yinggehai basin, South China Sea. Marine and Petroleum Geology.2001,18:715-728.
    [253]张敏强.莺歌海盆地泥底辟构造带浅层气田形成条件与勘探开发前景.天然气工业.1999,19(01),:25-27.
    [254]张树林,田世澄,朱芳冰,等.莺歌海盆地底辟构造的成因及石油地质意义.中国海上油气(地质).1996,10(01):1-6.
    [255]雷超.琼东南盆地深水区盆地结构构造及其形成机制研究:(硕士学位论文).中国地质大学,2009.
    [256]陈新跃,王岳军,韦牧,等.海南公爱NW向韧性剪切带构造特征及其~(40)Ar--(39)Ar年代学约束.大地构造与成矿学.2006,30(03):312-319.
    [257]何幼斌,高振中.海南岛福山凹陷古近系流沙港组沉积相.古地理学报.2006,8(03):365-376.
    [258]刘海龄,阎贫,张伯友,等.南海前新生代基底与东特提斯构造域.海洋地质与第四纪地质.2004,24(01):15-28.
    [259]龙文国,丁式江,马大铨,等.海南岛前寒武纪基底组成及演化.地球科学-中国地质大学学报.2005,30(04):421-429.
    [260]许德如,马驰,李鹏春,等.海南岛变碎屑沉积岩锆石SHRIMP U-Pb年龄及地质意义.地质学报.2007,18(3):381-393.
    [261]云平,雷裕红,吕嫦艳.海南岛中北部三叠纪花岗岩源区的锶、钕同位素制约及其意义.大地构造与成矿学.2005,29(02):234-241.
    [262]Li X, Zhou H, Chung S, et al.Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance. Island Arc. 2002,11(3):193-205.
    [263]Metcalfe I, Sherggold H, Li Z X.IGCP 321 Gondwana disperrison and Asian accretion:fieldwork on Hainan Island. Episodes.1993,1993(16):443-447.
    [264]Liu Y, Morinaga H.Cretaceous palaeomagnetic results from Hainan Island in south China supporting the extrusion model of Southeast Asia. Tectonophysics.1999,301(1-2):133-144.
    [265]Lei J, Zhao D, Steinberger B, et al.New seismic constraints on the upper mantle structure of the Hainan plume. Physics of the Earth and Planetary Interiors.2009,173(1-2):33-50.
    [266]Shi X, Kohn B, Spencer S, et al.Cenozoic denudation history of southern Hainan Island, South China Sea:Constraints from low temperature thermochronology. Tectonophysics. 2011,504(1-4):100-115.
    [267]Yan Y, Carter A, Palk C, et al.Understanding sedimentation in the Song Hong-Yinggehai Basin, South China Sea. Geochem. Geophys. Geosyst.2011,12(6):Q6014.
    [268]Reiners P W, Brandon M T.Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences.2006,34(1):419.
    [269]van der Beek P, Van Melle J, Guillot S, et al.Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience.2009,2(5):364-368.
    [270]Braun J, van der Beek P, Batt G.Quantitative thermochronology-Numerical methods for the interpretation of thermochronological data. Cambridge Press,2006.
    [271]Zeitler P K, Herczig A L, McDougall I, et al.U-Th-He dating of apatite:a potential thermochronometer. Geochimica et Cosmochimica Acta.1987,51:2865-2868.
    [272]House M A, Farley K A, Kohn B P.An empirical test of helium dilusion in apatite:borehole data from the Otway basin, Australia. Earth Planet. Sci. Lett.1999,170:463-474.
    [273]Reiners P W.Zircon (U-Th)/He Thermochronometry. Reviews in Mineralogy & Geochemistry. 2005,58:151-179.
    [274]Fitzgerald P G, Sorkhabi R B, Redfield T F, et al.Uplift and denudation of the central Alaska Range:a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. Journal of Geophysical Research.1995,100(B10):20120-20175,191.
    [275]Wagner G A, Reimer G M.Fission track tectonics:the tectonic interpretation of fission track apatite ages. Earth and planetary science letters.1972,14(2):263-268.
    [276]Mancktelow N S, Grasemann B.Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics.1997,270(3-4):167-195.
    [277]Stuwe K, White L, Brown R.The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters.1994,124(1-4):63-74.
    [278]Brandon M T, Willett S D.Simple methods for Calculating Exhumation Rates from Thermochronometric Data. in preparing.
    [279]Fox M, Herman F, Willett S.Inferring exhumation rates in space and time from spatially distributed thermochronological data. in preparing.
    [280]Sclater J G, Christie P.Continental stretching:an explanation of the post-mid-Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research. 1980,85(B7):3711-3739.
    [281]李思田,解习农,王华,等.沉积盆地分析基础与应用.高等教育出版社,2003.
    [282]Zachos J, Pagani M, Sloan L, et al.Trends, rhythms, and aberrations in global climate 65 Ma to present. Science.2001,292(5517):686-693.
    [283]Hay W W, Sloan J L I, Wold C N.Mass/Age Distribution and Composition of Sediments on the Ocean Floor and the Global Rate of Sediment Subduction. J. Geophys. Res. 1988,93(B12):14933-14940.
    [284]Moon S, Huh Y, Qin J, et al.Chemical weathering in the Hong (Red) River basin:rates of silicate weathering and their controlling factors. Geochimica et cosmochimica acta. 2007,71(6):1411-1430.
    [285]Rowley D B.Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters.1996,145(1-4):1-13.
    [286]DeCelles P G, Robinson D M, Quade J, et al.Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics.2001,20(4):487-509.
    [287]Jaeger J J, Courtillot V, Tapponnier P.Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology.1989,17(4):316-319.
    [288]Leech M L, Singh S, Jain A K, et al.The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters.2005,234(1-2):83-97.
    [289]Searle M P, Windley B F, Coward M P, et al.The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin.1987,98(6):678-701.
    [290]Molnar P, England P, Martinod J.Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics.1993,31(4):357-396.
    [291]Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature.2001,410(6831):891-897.
    [292]Richardson N J, Densmore A L, Seward D, et al.Did incision of the Three Gorges begin in the Eocene? Geology.2010,38 (6):551-554.
    [293]Zheng H, Jia D, Chen J, et al.Did incision of the Three Gorges begin in the Eocene? COMMENT. Geology.2011,39(9):e244.
    [294]Xu G, Kamp P J J.Tectonics and denudation adjacent to the Xianshuihe Fault, eastern Tibetan Plateau:Constraints from fission track thermochronology. Journal of Geophysical Research. 2000,105(B8):19231-19251.
    [295]Clark M K, House M A, Royden L H, et al.Late Cenozoic uplift of southeastern Tibet. Geology. 2005,33(6):525.
    [296]Kirby E, Reiners P W, Krol M A, et al.Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics. 2002,21(1):1-15.
    [297]Schoenbohm L M, Burchfiel B C, Liangzhong C.Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology. 2006,34(10):813-816.
    [298]Whipple K X, Tucker G E.Dynamics of the stream-power river incision model:Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res.1999,104(B8):17661-17674.
    [299]Clift P, Il Lee J, Clark M K, et al.Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea. Marine Geology.2002,184(3-4):207-226.
    [300]Jia G, Peng P, Zhao Q, et al.Changes in terrestrial ecosystem since 30 Ma in East Asia:Stable isotope evidence from black carbon in the South China Sea. Geology.2003,31(12):1093.
    [301]Gupta A K, Singh R K, Joseph S, et al.Indian Ocean high-productivity event (10-8 Ma):Linked to global cooling or to the initiation of the Indian monsoons? Geology.2004,32(9):753-756.
    [302]Derry L A, France-Lanord C.Neogene Himalayan weathering history and river87Sr86Sr:impact on the marine Sr record. Earth and Planetary Science Letters.1996,142(1-2):59-74.
    [303]Dettman D L, Fang X, Garzione C N, et al.Uplift-driven climate change at 12 Ma:a long [delta] 180 record from the NE margin of the Tibetan plateau. Earth and Planetary Science Letters. 2003,214(1-2):267-277.
    [304]Wan S M, Kurschner W M, Clift P D, et al.Extreme weathering/erosion during the Miocene Climatic Optimum:Evidence from sediment record in the South China Sea. Geophysical Research Letters.2009,36:L19706.
    [305]Hoang L V, Wu F, Clift P D, et al.Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochem. Geophys. Geosyst. 2009,10(11):Q11008.
    [306]Schoenbohm L M, Burchfiel B C, Liangzhong C, et al.Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geological Society of America Bulletin.2006,118(5-6):672-688.
    [307]Wang P, Li Q.The South China Sea-Plaleoceanography and Sedimentology. Springer,2009.
    [308]Honza E, Fujioka K.Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics.2004,384(1-4):23-53.
    [309]Zhou D, Sun Z, Chen H, et al.Mesozoic paleogeography and tectonic evolution of South China Sea and adjacent areas in the context of Tethyan and Paleo Pacific interconnections. Island Arc. 2008,17(2):186-207.
    [310]王成善,李祥辉.沉积盆地分析原理与方法.高等教育出版社,2002.
    [311]Boillot G, Recq M, Winterer E L, et al.Tectonic denudation of the upper mantle along passive margins-A model based on drilling results (ODP LEG-103, Western Galicia Margin, Spain). Tectonophysics.1987,132:335-342.
    [312]Reid I D.Crustal structure of a nonvolcanic rifted margin east of Newfoundland. Journal of geophysical research.1994,99(B8):15115-15161,180.
    [313]Keen C E, De Voogd B.The continent-ocean boundary at the rifted margin off eastern Canada: new results from deep seismic reflection studies. Tectonics.1988,7(1):107-124.
    [314]Dean S M, Minshull T A, Whitmarsh R B, et al.Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles:The IAM-9 transect at 40 20' N. Journal of Geophysical Research.2000,105(B3):5859-5885.
    [315]Minshull T A, Dean S M, Whitmarsh R B, et al.Deep structure in the vicinity of the ocean-continent transition zone under the southern Iberia Abyssal Plain. Geology.1998,26(8):743.
    [316]Louden K E, Chian D.The deep structure of non-volcanic rifted continental margins. Philosophical Transactions A.1999,357(1753):767.
    [317]Dragoi-Stavar D, Hall S.Gravity modeling of the ocean-continent transition along the South Atlantic margins. J. Geophys. Res.2009,114(B9):B9401.
    [318]Timothy A. M.Geophysical characterisation of the ocean-continent transition at magma-poor rifted margins. Comptes Rendus Geoscience.2009,341(5):382-393.
    [319]Taylor B, Goodliffe A, Martinez F, et al.Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature.1995,374(6522):534-537.
    [320]Minshull T A.Geophysical characterisation of the ocean-continent transition at magma-poor rifted margins. Comptes Rendus Geosciences.2009,341(5):382-393.
    [321]Driscoll N W, Karner G D.Lower crustal extension across the Northern Carnarvon basin, Australia:Evidence for an eastward dipping detachment. Journal of Geophysical Research. 1999,103:4975-4991.
    [322]Roberts A M, Lundin E R, Kusznir N J. Subsidence of the V(?)ring Basin and the influence of the Atlantic continental margin. Journal of the Geological Society London.1997.
    [323]Chian D, Louden K E, Minshull T A, et al.Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles:Ocean Drilling Program (Legs 149 and 173) transect. Journal of Geophysical Research.1999,104(B4):7443-7462.
    [324]Kusznir N J, Karner G D.Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow:application to the Woodlark, Newfoundland and Iberia margins.//KARNER G D, MANATSCHAL G, PINHEIRO L M.Imaging, Mapping and Modeling Continental Lithosphere Extension and Breakup.Geological Society, London, Special Publications,2007.
    [325]Trung N N, Lee S M, Que B C.Satellite Gravity Anomalies and Their Correlation with the Major Tectonic Features in the South China Sea. Gondwana Research.2004,7(2):407-424.
    [326]Wang T K, Chen M K. Lee C S, et al.Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics.2006,412(3-4):237-254.
    [327]Pin Y, Di Z, Zhaoshu L.A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics.2001,338(1):1-21.
    [328]Nissen S S, Hayes D E, Buhl P, et al.Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research.1995,100(B11):22407-22422, 433.
    [329]江为为,宋海斌,郝天姚.南海北部陆架西区盆地地质、地球物理场特征及其深部结构.地球物理学进展.2001,16(3):1-11.
    [330]Watts A B, Torne M.Subsidence history, crustal structure, and thermal evolution of the Valencia Trough:A young extensional basin in the western Mediterranean. Journal of geophysical research. 1992,97(B13):20020-20021,41.
    [331]Horsefield S J, Whitmarsh K R B, White R S, et al.Crustal structure of the Goban Spur rifted continental margin, NE Atlantic. Geophysical Journal International.1994,119(1):1-19.
    [332]Kusznir N J, Hunsdale R, Roberts A M.Timing and magnitude of depth-dependent lithosphere stretching on the southern Lofoten and northern V(?)ring continental margins offshore mid-Norway: implications for subsidence and hydrocarbon maturation at volcanic rifted margins//DORE A G, VINING B A.Petroleum Geology:North-West Europe and Global Perspectives-Proceedings of the 6th Petroleum Geology Conference.Geological Society of London,2005:767-783.
    [333]Baxter K, Cooper G T, Hill K C, et al.Late Jurassic subsidence and passive margin evolution in the Vulcan Sub-basin, north-west Australia:constraints from basin modelling. Basin Research. 1999,11(2):97-112.
    [334]Wernicke B.Low-angle normal faults in the Basin and Range Province:nappe tectonics in an extending orogen. Nature.1981,291:645-648.
    [335]Buck W R.Flexural rotation of normal faults. Tectonics.1988,7(5):959-973.
    [336]McKenzie D.Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters.1978,40(1):25-32.
    [337]Kusznir N J, Marsden G, Egan S S.A flexural-cantilever simple-shear/pure-shear model of continental lithosphere extension:applications to the Jeanne d'Arc Basin, Grand Banks and Viking Graben, North Sea. Geological Society, London, Special Publications.1991,56(1):41-60.
    [338]廖杰,周蒂,赵中贤,等.珠江口盆地白云凹陷裂后异常沉降的数值模拟.中国科学:地球科学.2011,4(41):504-517.
    [339]Clift P, Lin J, Barckhausen U.Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Marine and Petroleum Geology.2002,19(8):951-970.
    [340]张云帆,孙珍,周蒂,等.南海北部陆缘新生代地壳减薄特征及其动力学意义.中国科学(D辑:地球科学).2007,37(12):1609-1616.
    [341]张中杰,刘一峰,张素芳,等.琼东南盆地地壳伸展深度依赖性及其动力学意义.地球物理学 报.2010,53(1):57-66.
    [342]Westaway R, Kusznir N.Fault and bed [] rotation' during continental extension:block rotation or vertical shear? Journal of structural geology.1993,15(6):753-770.
    [343]Kusznir N J, Ziegler P A.The mechanics of continental extension and sedimentary basin formation: A simple-shear/pure-shear flexural cantilever model. Tectonophysics.1992,215(1-2):117-131.
    [344]金文山,孙大中.华南大陆深部地壳结构及其演化.地质出版社,1997.
    [345]陈洁,温宁.南海地球物理图集.科学出版社,2010.
    [346]White N, Thompson M, Barwise T.Understanding the thermal evolution of deep-water continental margins. Nature.2003,426(6964):334-343.
    [347]Whitmarsh R B, Manatschal G, Minshull T A.Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature.2001,413(6852):150-154.
    [348]Morley C K, Westaway R.Subsidence in the super-deep Pattani and Malay basins of Southeast Asia:a coupled model incorporating lower-crustal flow in response to post-rift sediment loading. Basin Research.2006,18(1):51-84.
    [349]Hall R, Morley C K.Sundaland basins. Geophysical monograph.2004,149:55-85.
    [350]孙珍,庞雄,钟志洪,等.珠江口盆地白云凹陷新生代构造演化动力学.地学前缘.2005,12(004):489-498.
    [351]Yin A, Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences.2000,28(1):211-280.
    [352]Wang J, Hu X, Jansa L, et al.Provenance of the Upper Cretaceous--Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet:Constraints on the Timing of Initial India-Asia Collision. Journal of Geology.2011,119:293-309.
    [353]Patriat P, Achache J.India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature.1984,311:615-621.
    [354]Klootwijk C T, Gee J S, Peirce J W, et al.An early India-Asia contact:paleomagnetic constraints from Ninetyeast Ridge, ODP leg 121. Geology.1992,20(5):395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700