用户名: 密码: 验证码:
双向缓冲负荷传感大流量放大全液压转向系统静动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全液压转向器作为一种输出功率较大的全助力转向器,广泛应用于大型工程机械。传统的依靠增加内部通流面积来提高排量的转向器,体积过大、安装不便,而具有流量放大功能的同轴流量放大转向器依然存转向冲击振动的问题,同时流量放大倍数不够高。双向缓冲负荷传感大流量放大全液压转向器是为了解决上述问题而设计的新型全液压转向器。由该转向器组成的转向系统具有排量大、功率高、转向稳定的优点。为了进一步优化其静动态性能,本论文将对该转向系统的静动态性能进行仿真分析和研究,提出转向器的改进设计措施及结构方案。
     目前,对液压转向系统的静动态特性进行研究比较经济、有效、实用的方法是运用相关的计算机软件进行仿真分析。液压转向系统静动态特性的仿真分析能有效缩短设计周期,避免重复试验及加工从而降低成本。同时在设计阶段就能及时、准确地预测转向系统的静动态性能,从而为转向系统的调试节省时间,还可以通过仿真分析更加深入地了解所设计转向系统的各项性能。
     本论文首先分析了双向缓冲负荷传感大流量放大全液压转向系统的工作原理及系统的元件组成。运用流量连续方程和力平衡方程建立了液压转向系统的静态和动态数学模型,并进行了系统的静态特性分析。在液压转向系统动态数学模型的基础上,根据系统的工作原理,在具有液压专业特点的MSC.Easy5仿真软件中,建立了各个元器件的仿真模型,并根据各组成部分的关系建立了整个转向系统的仿真模型。在输入转向阶跃信号下,仿真分析双向缓冲负荷传感大流量放大全液压转向系统的动态特性。根据仿真分析的结论提出转向器的结构优化方案,并将结构优化后的样机实测实验性能参数与结构优化后的仿真性能参数对比分析。
     结果表明,该转向系统可以使转向器输出流量放大4倍,并且具有双向缓冲和转向稳定的良好性能。这些仿真分析结论对进一步的产品升级和优化设计具有非常重要的指导意义和参考价值。
As a power steering with greater power output, hydraulic steering gear is widely used in large engineering machinery. The traditional steering gear which relies on increasing internal through-flow area to improve the displacement has oversize volume and is inconvenient to setted up,TLF with the function of amplifing flow still exists the problem of the vibrational of surge diverter, and its magnifying factor of flow is not big. Double buffering load sensor large-flow amplification hydraulic steering gear is a new type of hydraulic steering gear designed to solve above problems. The steering system is component of this steering gear, it has advantages of big displacement, high power and stable steering. Therefore, the simulational analysis and research of static and dynamic performance of this steering system has the extremely vital significance to the improvement of steering gear’s design and the working performance of the steering system.
     At present,the more effective,economical and practical method used to study the static and dynamic properties of the hydraulic steering system is appling relevant computer software to simulational analysis. The simulation analysis of the static and dynamic characteristics of hydraulic steering system can effectively shorten design cycle and avoid repeatedly tests and processings to reduce the cost. At the same time, in the design stage,it can timely and accurately predict the static and dynamic performance of steering system to save time of the debugging of steering system,and it also through the simulation analysis to understand more in-depth every performance of steering system designed.
     This paper firstly analyzes the working principle of bidirectional buffer load sensor large-flow amplification hydraulic steering system and the system's components. The static and dynamic mathematical model of hydraulic steering system are established by using flowing continuous equation and power equilibrium equation through which the system of the static characteristics were analyzed. Based on the dynamic mathematical model of hydraulic steering system, according to this system’s working principle, the simulation model is established of every component and the simulation model of whole steering system is founded based on the relationship of every part by using MSC.EASY5 which simulation soft has the professional hydraulic characteristics. When step signal inputted, the simulation analyses dynamic characteristics of bi-directional load sensor large-flow buffer amplifier hydraulic steering system. The results of simulation show that this system can realize the function enlarging 4 times flow and have good performance of double buffering and stable veering. The results of simulations have very important instruction meaning and reference value to further upgrade and optimization design.
引文
[1]斐兰华.全液压转向器及其运用[J].工程机械与维修,1996(1).
    [2]陈永熙.ZL30C轮式装载机液压系统的特性及改进[J].液压与气动,2002(3):38-40.
    [3]王浩孚,张荣昌.流量放大阀放大特性的探讨[J].工程机械,1993(8):25-28.
    [4]黄振德等.同轴流量放大器极其应用[J].工程机械, 1999(12): 29-30.
    [5]吴继飞等.国内外大排量全液压转向技术水平对比[J].工程机械与维修,2001(1).
    [6]刘胜荣,王小明.双向缓冲负荷传感高流量放大全液压转向系统[J].流体传动与控制,2007(4).
    [7]王小明.双向缓冲负荷传感高流量放大全液压转向系统[P].中国专利: ZL200620098121.5.
    [8]雷天觉.液压工程手册[M].北京:机械工业出版社,1990:341-2000.
    [9]杨尔庄.我国液压气动技术的现状与展望[J].液压与气动,1998(6):45-48.
    [10]Ji-Hoon Kim, Jae-Bok, Song Control logic for an electric power steering system using assist motor, Machatronics 12(2002)447-459.
    [11]陆倩倩.流量放大全液压转向系统的仿真分析及试验[D].浙江:浙江大学机械工程系,2010.
    [12]景军清.双泵合分流符合传感型全液压转向系统的应用[J].建筑机械, 2005(1):34-37.
    [13]Tom Wong, Hydraulic Power Steering System Design and Optimization Simulation Steering and Suspension Technology Symposium 2001(sp-1597) SAE 2001 World Congress.
    [14]王金龙.转阀式全液压转向器的结构分析与故障排除[J].建筑机械, 2003(8): 64-66.
    [15]荆小怀.装载机液压转向系统的数字仿真与特性分析[D].吉林:吉林大学,2004.
    [16]刘顺安.优先阀动态特性分析[J].液压与液力,1993(2): 19-25.
    [17]阳名沅等.负荷传感全液压转向系统静动态特性研究[J].江苏工学院学报, 1994(1): 42-47.
    [18]陆元章.液压系统的建模与分析[D].上海:同济大学机械工程学院,2001.
    [19]杨忠炯,何清华.铰接车辆液压动力转向系统动态特性仿真.中南大学学报, 2004(2):80-85.
    [20]王同建.全液压转向器数学模型的建立与仿真[J].机床与液压,2005(8): 119-122.
    [21]宁悦.装载机流量放大转向系统特性研究[D].吉林:吉林大学机械工程学院, 2006.
    [22]陆一心.流量放大液压转向系统流量放大器的建模与仿真[J].江苏理工大学学报,1994(6).
    [23]洪家娣,施振邦.液压动力转向器动态仿真研究[J].机械设计,1999,16(7): 33-35.
    [24]任拴哲等.一种用于大型工程饥械的全液压转向系统[J].设备管理与维修技术,2006(2).
    [25]冯海明.键合图在液压建模和仿真中的应用[J].北京工业职业技术学院学报, 2002(1): 6-8.
    [26]张爱武,张金伟.工程机械的液压转向系统分析[J].工程机械与维修,1999(12).
    [27]雷军波.全液压转向系统的静动态理论建模仿真研究[D].厦门:华侨大学机电学院, 2006.
    [28]王星.液压转向器的建模与仿真研究[J].南京工业职业技术学院学报, 2006, 6(2): 14-17.
    [29]孙靖民.现代机械设计方法[M].哈尔滨:哈尔滨工业大学出版社,2003: 40-86.
    [30]罗勇.工程模块化建模在电厂仿真的运用[J].江西电力职业技术学院学报, 2004, 17(1): 10-11.
    [31]曹华.模块化建模方法及其在化工流程模拟中的应用[J].南京农专学报, 2000, 19(3): 60-64.
    [32]裘俊红,胡上序,龚建平.模块化建模和仿真技术及对常压蒸馏的实时稳态仿真[J].计算机工程与应用, 1995, 6: 38-41.
    [33]常桂秀.液压仿真技术的应用与发展[J].邢台职业技术学院学报,2007,24(1):60-63.
    [34]潘东升,陈松茂等.液压仿真技术的现状及发展趋势[J].新技术新工艺,2005,32(4):7-10.
    [35]Bowns D.E.Hull Applications of an Hydraulic Automatic SimulationPackage to the Design of Fluid Power System[J].Proceedings of Beijing International FluidPower Symposium,1984,10:1-23.
    [36]Backe W, Hoffmann W.DSH-Program System for Digital Simulation of Hydraulic systems[J].The Sixth International Fluid Power Symposium,1981,4:95-114.
    [37]Boeing Mathematics & Computing Technology.Easy5 User Guide, 2002.
    [38]夏吉飞,陈鹰,徐立.“DLYSIM”仿真软件系统及改进[J].液压与气动,1994,18(4): 13-15.
    [39]刘顺安,王焕德.优先阀动态特性分析[J].建筑机械,l993(12):19-25.
    [40]胡刚华.全液压转向系统动静态性能分析[D].上海:同济大学,2005.
    [41]陆一心,朱兴龙,顾龙明.流量放大液压转向系统中流量放大器的建模与仿真[J].江苏理工大学学报,1994,15(4):50一57.
    [42]金青.同轴流量放大液压转向系统仿真及敏感参数分析[D].江苏大学,2006:33-50.
    [43]方旭东.液压挖掘机中负荷传感系统的分析与计算[J].同济大学学报(自然科学版),2001,29(9):1097-1100.
    [44]谢晋中等.汽车起重机的转向特性测试及影响因素分析[J].起重运输机械,2000(2):17-19.
    [45]Wang Lei.Prediction of Hydrodynamic Performance of the Flap Rudder.Journal of Hydrodynamic. 2000(2): 87-92.
    [46]Peter Dransfield,Hydraulic Control System-Design and Analysis of Their Dynamics,Spring-Verlag,1981
    [47]王金龙.转阀式全液压转向器的结构分析与故障排除[J].建筑机械,2003(8):24-26.
    [48]钟再敏.液压次级调节车辆传动系统仿真试验系统研究[D].北京理工大学博士论文, 2000.
    [49]高翔,赵金才,王若平,凌智勇.液压助力转向系统的仿真分析[J].江苏大学学报(自然科学版),2003,24(6):34-36.
    [50]崔胜民.铰接转向工程机械动态数学模型的建立[J].工程机械,1991(5):11-14.
    [51]Pearson J. EASY5 User Guide [M]. Printed in the United States of America: Boeing Company, 2005.
    [52]盛东初,冯淑华主编.液压传动技术教程[M].北京理工大学出版社, 1995.
    [53]杜轩等.叉车转向系统的全性能优化建模及求解.机械科学与技术.2001(2):11-214.
    [54]Pearson J. EASY5 User Guide [M]. Printed in the United States of America: Boeing Company, 2005.
    [55]王磊.液压支架液压系统的仿真研究[D].山东:山东科技大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700