用户名: 密码: 验证码:
基于DSP的装载机线控转向系统控制子系统研究设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线控转向是指通过微电子技术连接并控制转向系统的元件来代替传统的机械或液压连接,用传感器记录驾驶者的转向数据和车辆转角、车速、转向阻力等数据并传送给车载控制器,车载控制器按照给定的控制算法计算输出控制信号,控制车辆的转向角度实现转向控制。
     随着计算机技术在工程机械中的应用日益广泛,线控转向技术也已由汽车产业向工程车辆转移。同时,随着大规模集成电路技术的发展,采用微处理器作为硬件控制核心的线控转向装置将成为今后车辆转向技术的发展趋势,具有巨大的市场潜力。
     转向系统是轮式装载机中最为重要的系统之一,它直接影响整机的安全性、作业效率、能源消耗和司机的劳动强度。为了解决传统的转向系统存在转向灵敏度不可调节、没有路感等问题,本文采用线控转向技术设计了高效可靠的装载机线控转向控制子系统,可以提高装载机作业效率,并给驾驶员提供合适的路感。
     本文所做的主要工作如下:
     首先,对转向控制算法进行了研究,为了使车辆能够准确快捷地执行驾驶员的指令,本文采用模糊自整定PID控制策略,来增强车辆的可控性,改善车辆的操纵稳定性能。并在MATLAB/Simulink环境支持下,对无校正、常规PID与模糊自整定PID控制算法分别进行仿真,结果显示采用模糊自整定PID控制算法响应时间较快,可以很好的满足转向系统的需求。
     其次,为了满足装载机线控转向系统的工作要求,设计了以TMS320LF2407DSP芯片为核心,包含复位、输入、输出驱动、显示等电路以及转向控制模块在单板机上的实现方案,解决了线控转向系统对多任务、高实时性的需求问题。
     最后,本文又进行了控制系统软件的设计。本文所设计的控制系统采用的是汇编语言和C语言进行开发,这两种语言各具特色。汇编语言速度快、实时性高,可以直接控制DSP2407内部的寄存器,并且可精确控制DSP的时间特性;而C语言功能丰富,使用灵活,可移植性好,编程效率高。两种语言结合使用,优势互补,可以缩短程序的开发周期。软件开发采用模块化结构设计,通用性好,便于改进和扩充,从而研制出规模更大,性能更完备的系统。
     本文所设计的控制系统具有体积小,可靠性高,专用性强,性价比高等优点。。实验及仿真结果表明,该系统响应时间较快,准确性高,能够满足实际转向系统的需求。
The steer-by-wire technology replaces the traditional mechanical or hydraulic juncture by connecting and controlling all the component of steering system through micro-electronics technology, using sensors to collect the data of steering, vehicle corner, vehicle speed, turning resistance and transfers them to the controller on the vehicle. Then the controller processes these signals according to the given control algorithm and outputs actuating signals to control the steering degrees of vehicle so as to realize the steering.
     With the advancement of technology, the technology of steer-by-wire system has been transferred from automobile industry to construction vehicle.
     The steering system in wheel loader determines the driving security, working efficiency, fuel consumption and the labor intensity of driver. In order to tackle the problems that the traditional steering system of wheel loader has no adjustable steering sensitivity and no road sense etc. This paper applies the steer-by-wire technology to wheel loader, it is improved on higher working efficiency and the more stability at high speed.
     The following works have been presented in this project.
     Firstly, researched the control arithmetic of steering system, in order to make vehicle execute the instruction of driver accurately and fast, this article used fuzzy self-tuning PID control strategy which can strengthen vehicle controllability and improve the stability of vehicle. Besides, in MATLAB/SIMULINK environment, the performance of the system with no calibration, conventional PID controller and fuzzy self-tuning PID controller were made and the simulation results showed that fuzzy self-tuning PID controller has quick response time, it can satisfied the requirement of actual steering system.
     Secondly, in order to satisfy the needs of the electronic control system of the steer-by-wire system, the single-chip was developed with DSP, containing the electric circuits of reset, input, output, drive and display. And the steering control module could implement the multi-task and real-time features.
     Lastly, the software used assembly language and C language. The trait of assembly language is running fast and real-time high, especially direct to access the registers of DSP2407 and to be seized of the time of program running; relatively, the merit of C language is powerful, flexible, portable and high in programming efficiency. The two languages are combined together to shorten development cycle and increase efficiency. Software exploitation adopted building block design. Its commonality was good and easy to improve and expand. So we could develop large-scale system with more perfect performance.
     The system had many advantages. For example, its volume was small, reliability was high, special use was strong, and its price proportion was ideal, etc. it was proved by testing that it had quick response time, good veracity and it can satisfied the requirement of actual steering system.
引文
[1]于蕾艳,林逸,施国标.汽车线控转向技术概述[J].农业装备与车辆工程,2007.5:3-6.
    [2]Dominke Peter and Ruck Gerhard. Electric Power Steering-The First Step on the Way to "Steer by Wire" [C]. SAE Technical Paper Series 1999-01-0401.
    [3]邓中亮,段大高,崔岩松.嵌入式系统设计[M].北京:北京邮电大学出版社,2008.9:1,6-8.
    [4]任桂周,侯树展,曲金玉.汽车电子新兴技术——线控技术[J].汽车电器,2007.1:4-8.
    [5]李波,夏秋华.线控技术在汽车转向系统中的应用[J].汽车电器,2005年第4期:8-11.
    [6]张茹,孙松林,于晓刚.嵌入式系统技术基础[M].北京:北京邮电大学出版社,2006.1:1-2,7-8.
    [7]方尔正,王燕.嵌入式技术及应用[M].哈尔滨:哈尔滨工业大学出版社,2008.7:3-4,11-12,14-15.
    [8]马维华.嵌入式系统原理及应用[M].北京:北京邮电大学出版社,2008.1:2-3,5-6.
    [9]ShNi Asai, Hiroshi Kuroyanagi. Development of a steer-by-wire system with force feedback using a disturbance observer[C]. SAE TECHNICAL PAPER 2004-01-1100.
    [10]胡静波,王同建,罗士军等.装载机线控转向控制算法研究[J].长春:长春工程学院学报(自然科学版),2008年第9卷第1期:252-256.
    [11]王同建.装载机线控转向技术研究[D].长春:吉林大学博士学位论文,2006.6:15-18,41-42.
    [12]宁悦.装载机流量放大转向系统特性研究[D].长春:吉林大学硕士学位论文,2006.6:26-29.
    [13]L. Gilardino, S. Manco, N. Nervegna and M. A. Pavanetto. FSteering. SAE TECHNICAL PAPER SERIES[C],2002,01,1358.
    [14]佟理.介绍两种流量放大转向系统[J].起重运输机械,1989年8期:13-16.
    [15]黎启柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997,5:72-75.
    [16]王成都.比例减压阀的参数辨识、性能测试及实验研究[D].西安:通大学硕士学位论文,2000. 1.
    [18]王正林.MATLAB/Simulink与控制系统仿真(第二版)[M].北京:电子工业出版社,2008.7:217-223.
    [19][美]Katsuhiko Ogata著,卢伯英等译.现代控制工程(第四版)[M].北京:电子工业出版社,2003.
    [20]Ying H. Analytical relationship between the fuzzy PID controllers and the linear PID control[R]. Technical Report, Department of Biomedical Engineering, the University of Alabama at Birmingham,1987.
    [21]韩瑞珍.PID控制器参数模糊自整定研究[D].杭州:浙江工业大学硕士学位论文,2001.12.
    [22]Timothy J.Ross. Fuzzy logic with engineering applications, Hoboken, NJ: John Wiley 2nd Edition 2004.
    [23]胡花.单片机原理及应用技术[M].南昌:江西高校出版社,2009.1:10.
    [24]方华,许江淳.单片机原理及应用(嵌入式)[M].重庆:重庆大学出版社,2009.10:5-7.
    [25]王红梅.基于DSP的四轮转向控制系统研究[D].西安:长安大学硕士学位论文,2004.3:11.
    [26]栗思科等.DSP原理及控制系统设计[M].北京:清华大学出版社2010.5:4-7,76-79,88-93,198-222,230-232.
    [27]刘向宇.DSP嵌入式常用模块与综合系统设计实例精讲[M].北京:电子工业出版社,2009.7:2.
    [28]韩山,郭云,付海艳.ARM微处理器应用开发技术详解与实例分析[M].北京:清华大学出版社,2007.7:2,9-10.
    [29]江安民,程昱,徐宝根.DSP嵌入式系统开发典型案例[M].北京:人民邮电出版社,2007.1.
    [30]杜春雷.ARM体系结构与编程[M].北京:清华大学出版社,2003.2:1-2.
    [31]张小鸣.DSP控制器原理及应用[M].北京:清华大学出版社,2009.2:8-10.
    [32]赵世廉.TMS320X240xDSP原理及应用开发指南[M].北京:北京航空航天大学出版社,2007.7.
    [33]胡静波.装载机容错线控转向系统研究[D].长春:吉林大学博士学位论文,2008.6:83-84,89-92.
    [34]王茂飞,程昱.TMS320C2000 DSP技术与应用开发[M].北京:清华大学出版社,2007.5:244-247.
    [35]李书龙,许超,杨智.汽车电动助力转向系统硬件设计[J].机电工程,2004年01期.
    [36]刘和平,邓力,江渝等.DSP原来及电机控制应用[M].北京:北京航空航天 大学出版社,2006.11.
    [37]王幸之,王雷,钟爱琴等.单片机应用系统电磁干扰与抗干扰技术[M].北京:北京航空航天大学,2006.2.
    [38]张培仁.嵌入式微处理器原理系统设计与应用[M].北京:清华大学出版社,2007.2.
    [39]郝晓弘.智能控制全数字交流伺服系统[C].第五届中国交流电机调速传动学术会议文集,1997,34-36.
    [40]孙肖子,邓建国.电子设计指南[M].北京:高等教育出版社,2006.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700