用户名: 密码: 验证码:
对二甲苯(PX)氧化反应器的流体动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以探讨大型工业PX氧化反应器设计中的关键技术和开发新型PX氧化反应器为目标,对比分析了两种现有PX氧化反应器的流体力学性能与几何结构部件之间的相互关系,从而为反应器结构改进、强化和新结构反应器探索提供一定依据。相关工作成果现已在某厂PTA装置实际改造工作中得到应用,取得了良好的经济价值。主要工作概括起来主要分以下三个方面:
     1)现有PX氧化反应器工程化分析和结构优化
     系统研究了已工业化的两种PX氧化反应器的流体力学性能,并对气体分布器设计、桨叶液泛等关键问题进行了分析和优化。
     对浅层鼓泡塔PX氧化反应器,其设计考虑的不仅是气体分散,同时还应兼顾液体混合和固体悬浮。文中考察了高径比、管式气体分布器、底部形状、短尺寸导流筒等结构对反应器性能的影响,并对其进行结构优化,以便指导反应器的放大设计。
     对翼型/涡轮组合桨PX氧化反应器,桨叶液泛特性决定反应器的最大操作能力。文中研究了工况高气速、高固含率下翼型桨液泛规律,探讨了通气管设计与桨叶液泛的关系,优化了通气管与桨叶之间的位置,以降低甚至消除液泛发生的可能
     2)相关基础问题研究
     针对工业PX氧化反应器高通气量的工况,在研究大孔径单孔气体射流及其流型转变过程中作出了新的尝试,建立了一种客观的电容层析成像(ECT)测试技术,揭示了气体鼓泡过程中管径大小与流型转变之间的关系,提出了区分大小孔径的临界孔径,为气体分布器的设计提供了一定指导。
     利用粒子图像测速(PIV)技术和大涡(LES)模拟计算得到了翼型桨反应器内的详细流场结构信息,系统阐述了翼型桨叶片尾涡的结构特征,揭示了其与透平桨等径向流桨流型差异的原因所在,从而进一步解释翼型桨液泛规律。
     3)工程应用
     在比较分析国内外氧化反应器现有结构,和对所涉基本物理现象进一步理解的基础上,应用开发了一种新型PX氧化反应器,在一个反应器内实现全混流与活塞流的合理组合,与PX氧化反应特性更加匹配。将其与现有两种PX氧化反应器进行比较,具有明显的结构和性能优势,进一步优化开发有工业应用前景。
This research investigated the key technologies for designing large-scale industrial PX oxidation reactor and the development of a new style PX oxidation reactor. A serious of technical suggestions have been proposed for the structure intensification of existed reactor and the design of a new reactor after the investigation on the relationships between hydrodynamics and geometrical structures of two existed representative PX oxidation reactors. Some proposals have already been applied for the modification of a PTA process in a company and created economic value.
     This research consisted of three parts which were shown as follows:
     1) Structure Optimization of Existed PX Oxidation Reactor
     Based on the systematical investigation on the hydrodynamics of two existed industrial-scale PX oxidation reactors, the gas sparger design and impeller flooding etc. were optimized.
     The design of shallow bubble column PX oxidation reactor is usually controlled by gas dispersion, liquid mixing and solid suspension. This research investigated the influences of aspect ratio, gas sparger, bottom shape and short size draft tube on the reactor performance. The optimized structure design was accordingly proposed.
     The maximum capability of hydrofoil/turbine mixed impellers stirred vessel PX oxidation reactor is generally controlled by the impeller flooding. This research investigated the hydrofoil impeller flooding characters of the reactor with high gas velocity and high solid concentration. The relationship between the position of gas inlet and flooding impeller was also investigated and the optimized position of gas inlet was found.
     2) Foundamental Research
     An electrical capacitance tomography (ECT) method corresponding to the high gas flow rate in the industrial PX oxidation reactor has been developed to identify bubbling/jetting regimes transition from large submerged orifices. The influences of the nozzle diameter on the flow regime transition were investigated during the gas bubbling process. The critical nozzle diameter for distinguishing small nozzles from large nozzles was proposed.
     With the particle image velocimetry technique (PIV) and the large eddy simulation (LES), the flow pattern and the trailing vortex structure of a hydrofoil impeller stirred reactor were investigated. The difference between flow patterns induced by axial flow impeller and those induced by radial flow impeller was understood and the occurrence of the impeller flooding was accordingly explained.
     3) Industrial Application
     Based on the structure optimization and basic research results, a new PX oxidation reactor has been designed. And the reasonable combination of mixed flow and plug flow in the new reactor was carried out to match with the PX oxidation character. The new reactor has apparent advantages in structure and performance compared with the two existed PX oxidation reactors. With further optimized structure, bright industrial prospects can be foreseen
引文
[1]陈敏恒,袁渭康.工业反应过程的开发方法[M].上海:华东化工学院出版社,1983
    [2]Ruzicka M C, Drahos J, Zahradnik J, Thomas N H. Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows[J]. Int J Multiphase Flow.1997,23:671-682
    [3]陈敏恒,翁元恒.化学反应工程基本原理[M].北京:化学工业出版社,1986
    [4]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,2005
    [5]中国石化仪征化纤股份有限公司等.100万吨/年PTA装置PX氧化反应器工程化开发(验收报告),2008
    [6]中国石化扬子石油化工有限公司等.PX氧化机械搅拌反应器结构设计相关工程问题(验收报告),2009
    [7]孙伟振.PX液相氧化反应过程分析与模型化[博士学位论文].上海:华东理工大学,2008
    [8]Joshi J B, Shah Y T. Hydrodynamic and mixing models for bubble column reactors[J]. Chem Eng Commun.1981,11:165-199
    [9]Shah Y T, Kelkar B G, Godbole S P, Deckwer W D. Design parameters estimations for bubble column reactors[J]. AIChE J.1982,28:353-379
    [10]Deckwer W D, Schumpe A. Improved tools for bubble column reactor design and scale-up[J]. Chem Eng Sci.1993,48:889-911
    [119]Koide K. Design parameters of bubble column reactors with and without solid suspensions[J]. J Chem Eng Jpn.1996,29:745-759
    [12]Joshi J B. Computational flow modelling and design of bubble column reactors[J]. Chem Eng Sci.2001,56:5893-5933
    [13]Krishna R, Van Baten J M. Scaling up bubble column reactors with the aid of CFD[J]. Trans IChemE:Part A.2001,79:283-309
    [14]Krishna R, Van Baten J M. A strategy for scaling up the Fischer-Tropsch bubble column slurry reactor[J]. Topics in Catalysis.2003,26:1-4
    [15]Nigar Kantarci, Fahir Borak, Kutlu O. Ulgen. Bubble column reactors[J]. Process Biochemistry.2005,40:2263-2283
    [16]Gopal J S, Sharma M M. Mass transfer characteristics of low HID bubble columns[J]. Can J Chem Eng.1983,61:517-526
    [17]Miyahara T, Tsuzaki M, Saito T, Matsuba Y, Takahashi T. Froth characteristics of shallow bubble columns with sieve plates[J]. Chem Eng J.1989,40:21-29
    [18]Kuwagi K, Kusu S, Ozoe H. Transient three-dimensional numeriscal anslyses of shallow bubble column[J]. Chem Eng J.2000,78:5-11
    [19]Lau R, Mo R, Sim W S B. Bubble characteristics in shallow bubble column reactors[J]. Trans IChemE:Part A.2009, in press
    [20]Dhotre M T, Ekambara K, Joshi J B. CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors[J]. Experimental Thermal and Fluid Science.2004,28(5):407-421
    [21]Rampure M R, Mahajani S M, Ranade V V. CFD simulation of bubble columns: modelling of nonuniform gas distribution at sparger[J]. Ind Eng Chem Res.2009,48: 8186-8192
    [22]Bahadori F, Rahimi R. Simulations of gas distributors in the design of shallow bubble reactors[J]. Chem Eng Technol.2007,30:443-447
    [23]Dhotre M T, Joshi J B. Design of a gas distributor:Three-dimensional CFD simulation of a coupled system consisting of a gas chamber and a bubble column[J]. Chem Eng J.2007, 125(3):149-163
    [24]Ranade V V, Tayalia Y. Modelling of fluid dynamics and mixing in shallow bubble column reactors:influence of sparger design[J]. Chem Eng Sci.2001,56(4):1667-1675
    [25]李光,杨晓钢,蔡清白,戴干策.CFD优化大型浅层鼓泡塔管式气体分布器结构[J].中国科技论文在线.2008,3:890-896
    [26]Guang Li, Xiaogang Yang, Gance Dai. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column[J]. Chem Eng Sci.2009, 64(24):5104-5116
    [27]Kulkarni A V, Badgandi S V, Joshi J B. Design of ring and spider type spargers for bubble column reactor:Experimental measurements and CFD simulation of flow and weeping[J], Trans IChemE:Part A.2009,87:1612-1630
    [28]Buwa V V, Ranade V V. Characterization of dynamics of gas-liquid flows in rectangular bubble columns[J]. AIChE J.2004,50(10):2394-2407
    [29]Reese L, Fan L S. Transient flow structure in the entrance region of a bubble column using particle image velocimetry[J]. Chem Eng Sci.1994,49:5623-5636
    [30]Kulkani A A. Effect of sparger design on the local flow field in a bubble column analysis using LDA[J]. Trans IChemE:Part A.2005,83(41):59-66
    [31]Bhole M R, Roy S, Joshi J B. Laser doppler anemometer measurements in bubble column:effect of sparger[J]. Ind Eng Chem Res.2006,45(26):9201-9207
    [32]Harteveld W K, Mudde R F, van den Akker, Harrie E A. Dynamics of a bubble column: Influence of gas distribution on coherent structures[J]. Can J Chem Eng.2003,81:389-394
    [33]Vial Ch, Laine R, Poncin S, Midoux N, Wild G. Influence of gas distribution and regime transitions on liquid velocity and turbulence in a 3-D bubble column[J]. Chem Eng Sci.2001, 56(3):1085-1093
    [34]Ruzicka M, Drahos J, Zahradnik J, Thomas N H. Structure of gas pressure signal at two-orifice bubbling from a common plenumfJ]. Chem Eng Sci.2000,55(2):421-429
    [35]沈春银,蔡清白,戴干策.浅层气液两相鼓泡塔非线性混沌特征[J].华东理工大学学报自然科学版.2008,4:461-466
    [36]何广湘,张同旺,靳海波,佟泽民.喷管分布器大型浆态鼓泡塔反应器气含率的研究[J].石油化工.2003,32:495-498
    [37]Polli M, Stanislao M D, Bagatin R, Bakr E A, Masi M. Bubble size distribution in the sparger region of bubble columns[J]. Chem Eng Sci.2002,57:197-205
    [38]Veera U P, Joshi J B. Measurement of Gas Hold-Up Profiles by Gamma Ray Tomography:Effect of Sparger Design and Height of Dispersion in Bubble Columns[J]. Trans IChemE:Part A.1999,77(4):303-317
    [39]Ong B C, Gupta P, Youssef A, Al-Dahhan M, Dudukovic M P. Computed tomographic investigation of the influence of gas sparger design on gas holdup distribution in a bubble column[J]. Ind Eng Chem Res.2009,48(1):58-68
    [40]黄子宾,程振民.鼓泡床中分布器对气泡行为影响的电容层析成像分析[J].华东理工大学学报自然科学版.2009,35(1):1-4
    [41]Jin Hai-bo, M Wang, R A Williams. The effect of sparger geometry on gas bubble flow behaviors using electrical resistance tomography [J]. Chin J Chem Eng.2006,14:127-131
    [42]Vijayan M, Schlaberg H I, Wang M. Effects of sparger geometry on the mechanism of flow pattern transition in a bubble column[J]. Chem Eng J.2007,130:171-178
    [43]Hebrard G, Bastoul D, Roustan M. Influence of the gas sparger on the hydrodynamic behavior of bubble columns[J]. Trans IChemE:Part A.1996,74(A3):406-414
    [44]Lu Han, Muthanna H Al-Dahhan. Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs[J]. Chem Eng Sci.2007,62:131-139
    [45]Zhang Li-juan, Li tao, Ying Wei-yong, Fang Ding-ye. Experimental study on bubble rising and descending velocity dostribution in a slurry bubble column reactor [J]. Chem Eng Technol.2008,31:1362-1368
    [46]李建辉,王亦飞,曾清华,苏宜丰,于遵宏.浆态鼓泡塔新型锐孔分布器气含率分布[J].化学反应工程与工艺.2008,24(2):108-114
    [47]王丽雅,庄华洁,宋景祯,陈斌,李希.高气速下鼓泡塔中气含率分布的测定[J].化学反应工程与工艺.2006,22(1):1-6
    [48]Haque M W, Nigam K D P, Joshi J B. Optimum gas sparger design for bubble columns with a low height-to-diameter ratio[J]. Chem Eng J.1986,33(2):63-69
    [49]Abraham M, Sawant S B. Effect of sparger design on the hydrodynamic and mass transfer characteristics of a bubble column[J]. Indian Chemical Engineer.1989,31(4):31-36
    [50]Thorat B N, Shevade A V, Bhilegaonkar K N, etc. Effect of sparger design and height to diameter ratio on fractional gas hold-up in bubble columns[J]. Trans IChemE:Part A.1998, 76:823-834
    [51]Ravinath M, Kasat G R, Pandit A B. Mixing time in a short bubble column[J]. Can J Chem Eng.2003,81(2):185-195
    [52]Bahadori F, Rahimi R. Simulations of gas distributors in the design of shallow bubble column reactors[J]. Chem Eng Technol.2007,30(4):443-447
    [53]Roy N K, Guha D K, Rao M N. Suspension of solids in a bubbling liquid:critical gas flow rates for complete suspension [J]. Chem Eng Sci.1964,19:215-225
    [54]Imakufu K, Wang T Y, Koide K, Kuboto H. The behaviour of suspended solid particles in the bubble column[J]. J Chem Eng Jpn.1968,1:153-158
    [55]Heck J, Onken U. Hysteresis effects in suspended solid particles in bubble columns with and without draught tube[J]. Chem Eng Sci.1987,42:1211-1212
    [56]Pandit A B, Joshi J B. Three phase sparged reactors:some design aspects[J]. Rev Chem Eng.1984,2:1-84
    [57]Pandit A B, Joshi J B. Effect of physical properties on the suspension of solid particles in three phase sparged reactors[J]. Znt J Multiphase Flow.1987,13:415-427
    [58]Abraham M, Khare A S, Sawant S B, Joshi J B. Critical gas velocity for suspension of solid particles in three-phase bubble columns[J]. Ind Eng Chem Res.1992,31:1147-1156
    [59]Koide K, Yasuda T, Iwamoto S, Fukuda E. Critical gas velocity required for complete suspension of solid particles in solid suspended bubble column[J]. J Chem Eng Jpn.1983,16: 7-12
    [60]Koide K, Horibe K, Kawabata H, Ito S. Critical gas velocity required for complete suspension of solid particles in solid suspended bubble columns with draft tube[J]. J Chem Eng Jpn.1984,17:368-374
    [61]Koide K, Terasawa M, Hiroshi T. Critical gas velocity required for complete suspension of multi-component solid particle mixtures in solid suspended bubble columns with and without draught Tube[J]. J Chem Eng Jpn.1986,19:341-344
    [62]Narayanan S, Bhatia V K, Guha D K. Suspension of solids by bubble agitation[J]. Can J Chem Eng.1969,47:360-364
    [63]Petrovic D, Posarac D, Dudkovic A. Minimum fluidization velocity of large particles in a draft tube airlift reactor[J]. Chem Eng Sci.1993,48:2663-2667
    [64]Kojima H, Sawai J, Uchino H, Ichige T. Liquid circulation and critical gas velocity in slurry bubble column with short size draft tube[J]. Chem Eng Sci.1999,54:5181-5185
    [65]Muthukumar K, Prasad B N, Velan M. Critical gas velocity in a three-phase internal loop airlift reactor with low-density particles[J]. J Chem Technol Biotechnol.2004,79:1376-1380
    [66]Yang G. Q, Du Bing, Fan L S. Bubble formation and dynamics in gas-liquid-solid fluidization—Areview[J]. Chem Eng Sci.2007,62(1-2):2-27
    [67]Muller R L, Prince R G H. Regimes of bubbling and Jetting from submerged orifices[J]. Chem Eng Sci.1972,27(8):1583-1592
    [68]Pinczewski W V, Yeo H K, Fell C J D. Transition behavior at submerged orifices [J]. Chem Eng Sci.1973,28(12):2261-2264
    [69]Payne G J, Prince R G H. The transition from jetting to bubbling at a submerged orifice[J]. Trans Instn Chem Engrs.1975,53(4):209-223
    [70]Spells K E. Bubble formation by rapid air flow through slots submerged in waterfJ]. Trans Instn Chem Engrs.1954,32a:167-173
    [71]Mori K, Ozawa Y, Sano M. Characterization of gas jet behavior at a submerged orifice in liquid metal[J]. Trans ISIJ.1982,22(5):377-384
    [72]Ozawa Y, Mori K. Effect of physical properties of gas and liquid on bubbling-jetting phenomena in gas injection into liquid[J]. Trans ISIJ.1986,26(4):291-297
    [73]Chen K, Richter H J. Instability analysis of the transition from bubbling to jetting in a gas injected into a liquid[J]. International Journal of Multiphase Flow.1997,23(4):699-712
    [74]McNallan M J, King T B. Fluid dynamics of vertical submerged gas jets in liquid metal processing systems[J]. Met Trans.1982,13B:165-173
    [75]Leibson I, Holcomb E G, Cacoso A G, Jacmic J J. Rate of flow and mechanics of bubble formation from single submerged orifices[J]. AIChE J.1956,2:296-306
    [76]Mersmann A. Flooding point of countercurrent liquid-liquid columns[J]. Chem Eng Technol.1980,52(12):933-942
    [77]Miyahara T, Takahashi T. Transition from froth to spray on perforated plates[J]. J Chem EngJpn.1984,17(2):211-214
    [78]Idogawa K, Ikeda K, Fukuda T, Morooka S. Formation and flow of gas bubbles in a pressurized bubble column with a single orifice or nozzle gas distributor[J]. Chem Eng Comm. 1987,59(1-6):201-212
    [79]Kyriakides N K, Kastrinakis E G, Nychas S G, Goulas A. Bubbling from nozzles submerged in water:transitions between bubbling regimes[J]. Can J Chem Eng.1997,75(4): 684-691
    [80]Warsito W, Fan L S. Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT[J]. Chem Eng Sci.2005, 60(22):6073-6084
    [81]刘明言,胡宗定.气液两相单孔鼓泡过程泊混沌分析[J].化工学报.2000,51(3):338-343
    [82]Liu Mingyan, Hu Zongding. Studies on the hydrodynamics of chaotic bubbling in a gas-liquid bubble column with a single nozzle[J]. Chem Eng Technol.2004,27(5):537-547
    [83]Cieslinski J T, Mosdorf R. Gas bubble dynamics—experiment and fractal analysis[J]. Int J Heat& Mass Transfer.2005,48(9):1808-1818
    [84]Gerlach D, Alleborn N, Buwa V, Durst F. Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate[J]. Chem Eng Sci.2007,62(7): 2109-2125
    [85]Buwa V V, Gerlach D, Durst F, Schlucker E. Numerical simulations of bubble formation on submerged orifices:period-1 and period-2 bubbling regimes[J]. Chem Eng Sci.2007, 62(24):7119-7132
    [86]沈雪松,沈春银,李光,戴干策.大孔径高气速单孔气泡形成[J].化工学报,2008,59(9):2220-2225
    [87]Calderbank P H. Physical rate processes in industrial fermentation[J]. Transactions of the Institution of Chemical Engineers.1958,36:443-463
    [88]Westerterp K R., Van Dierendonck, L. L., De Kraa, J. A., Interfacial areas in agitated gas-liquid contactors[J]. Chem Eng Sci.1963,18(3):157-176
    [89]Rushton J H, Bimbinet J. Holdup and flooding in air liquid mixing[J]. Can J Chem Eng. 1968,46:16-21
    [90]Nienow A W, Wisdom D J, Middleton J C. The effect of scale and geometry on flooding recirculation and power in gassed stirred vessels[J]. In:Proc 2nd Eur Conf on Mixing. Clarke J A, Stephens H S, eds, Bhra, Cambridge, F1.1-F1.16 (1977)
    [91]Warmoeskerken M M C G, Smith J M. Flooding of disc turbines in gas-liquid dispersions:Anew description of the phenomenon [J]. Chem Eng Sci.1985,40:2063-2071
    [92]Lu Wei Ming, Chen Hsuan. Flooding and critical impeller speed for gas dispersion in aerated turbine-agitated vessels[J]. Chem Eng J.1986,33(2):57-62
    [93]Lu Wei Ming, Ju Shin Jon. Cavity configuration, flooding and pumping capacity of disc-type turbines in aerated stirred tanks[J]. Chem Eng Sci.1989,44(2):333-342
    [94]Nienow A W, Warmoeskerken M M C G, Smith J M, Konno M. On the flooding/loading transition and the complete dispersal condition in aerated vessels agitated by a Rushton turbine[J]. In:Proc 5th Eur Conf on Mixing, Bhra, Wiirzburg,143-154 (1985)
    [95]Sharma R N, Howk R A, Lally K S. Flooding characteristics of impellers in stirred tanks[J]. AIChE Symposium Series,293(Process Mixing),85-96 (1993)
    [96]Bombac A, Zun I, Filipik B, Zumer M. Gas-filled cavity structures and local void fraction distribution in aerated stirred vessels[J]. AIChE J.1997,43(11):2921-2931
    [97]Paglianti A, Pintus S, Giona M. Time-series analysis approach for the identification of flooding/loading transition in gas-liquid stirred tank reactors[J]. Chem Eng Sci.2000,55(23): 5793-5802
    [98]Paglianti A. Simple model to evaluate loading/flooding transition in aerated vessels stirred by Rushton disc turbines[J]. Can J Chem Eng.2002,80(4):660-664
    [99]Bombac A, Zun I. A simple method for detecting individual impeller flooding of dual-Rushton impellers[J]. In:Proc 10th Eur Conf on Mixing, Elsevier, Amsterdam,469-476 (2000)
    [100]Bombac A, Zun I. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers[J].2000, Chem Eng Sci.2000,55(15):2995-3001
    [101]Bombac A, Zun I. Individual impeller flooding in aerated vessel stirred by multiple-Rushton impellers[J]. Chem Eng J.2006,116(2):85-95
    [102]王云兴,汪兵,任聪静,王靖岱,阳永荣.气液搅拌釜泛点转速的声波测量[J].化工学报.2009,60(5):1148-1155
    [103]Wang W J, Mao Z S, Yang C. Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller[J]. Ind Eng Chem Res.2006, 45(3):1141-1151
    [104]Khopkar A R, Ranade V V. CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flowregimes[J]. AIChE J.2006,52(5):1654-1672
    [105]Scargiali F, D'Orazio A, Grisafi F, Brucato A. Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks[J]. Trans IChemE:Part A.2007,85:637-646
    [106]Hudcova V, Nienow A W, Wang Haozhung, Liu Huoxing. On the effect of liquid height on the flooding/loading transition[J]. Chem Eng Sci.1987,42(2):375-377
    [107]Tatterson G B, Morrison G L. Effect of tank to impeller diameter ratio on flooding transition for disc turbines[J]. AIChE J.1987,33(10):1751-1753
    [108]张新年,刘新卫,包雨云,高正明.半椭圆管盘式涡轮搅拌桨气/液分散特性[J].过程工程学报.2008,3:444-448
    [109]McFarlane C M, Zhao X M, Nienow, A W. Studies of high solidity ratio hydrofoil impellers for aerated bioreactors.2. air-water studies[J]. Biotechnol. Prog.1995,11:608-618
    [110]Nienow A W, Konno M, Bujalski W. Studies on three-phase mixing:a review and recent results[J]. Trans IChemE:Part A.1986,64:35-42
    [111]Wiedmann J A. Flooding behavior of two-and three-phase operating stirred reactors[J]. Chemie Ingenieur Technik.1983,55(9):689-700
    [112]Bujalski W, Nienow A W. The use of upward pumping 45° pitched blade turbine impellers in three-phase reactors[J]. Chem Eng Sci.1990,45(2):415-421
    [113]张志兵,戴干策,陈敏恒.气液搅拌反应器尺寸变化对多层桨功率消耗和混合特性的影响[J].华东化工学院学报.1987,13:213
    [114]Mikulcova E, Kudrna V, Vlcek J, Bestimmung der Grenzbedinungen fuer die Ueberflutung des Ruehrers K1[J]. Scientific paper of the Institute of Chemical Technology, Prague, P167 (1967)
    [115]Zlokarnik M. Ruhrleistung in begasten flussigkeiten[J]. Chem Ing Tech.1973,45:689
    [116]Greaves M, Kobbacy K A H. Power consumption and impeller dispersion efficiency in gas-liquid mixing[J]. Fluid Mixing, IChemE Symposium Series No.64, Bradford, UK (1981)
    [117]Wong C W, etc. Fluid dynamics of stirred three-phase reactors[J]. In:Proc ROC-Japan Joint Symp.Three-Phase Reactors, Taipei, Taiwan, P208,1986
    [118]Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: hydrodynamic of the modified Rushton turbine agitators in gas-liquid dispersions [J]. Chem Eng J.1996,61:83-93
    [119]Van't Riet K, Smith J M. The behavior of gas-liquid mixtures near Rushton turbine blades[J]. Chem Eng Sci.1973,28:1031-1039
    [120]Van't Riet K, Smith J M. The trailing vortex system produced by Rushton turbine agitators[J]. Chem Eng Sci.1975,30:1093-1105
    [121]Takahashi K, Nienow A W. Vortex cavity shape and the associated path-line of discharged bubbles in an aerated vessel agitated by a Rushton turbine[J]. J Chem Eng Jpn. 1992,25:539-543
    [122]Yianneskis M, Whitelaw J H. On the structure of the trailing vortices around Rushton turbine blades[J]. Trans IChemE:Part A.1993,71 (A5):543-50
    [123]Lu Wei Ming, Yang Bing Shiou. Effect of blade pitch on the structure of the trailing vortex around Rushton turbine impellers[J]. Can J Chem Eng.1998,76(3):556-562
    [124]Lee K C, Yianneskis M. Turbulence properties of the impeller stream of a Rushton turbine[J].AIChEJ.1998,44:13-24
    [125]Derksen J J, Doelman M S, Van den Akker H E A. Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank[J]. Experiments in Fluids. 1999,27:522-532
    [126]Yianneskis M. Trailing vortex, mean flow and turbulence modification through impeller blade design in stirred reactors[J]. In:Proc 10th Eur Conf on Mixing, Elsevier, Amsterdam, P1-8(2000)
    [127]Schafer M, Yianneskis M, Wachter P, Durst F. Trailing vortices around a 45° pitched-blade impeller[J]. AIChE J.1998,44(6):1233-1246
    [128]Fentiman N J, Lee K C, Paul G R, Yianneskis M. On the trailing vortices around hydrofoil impeller blades[J]. Trans IChemE:Part A.1999,77:731-740
    [129]Suzukawa K, Mochizuki S, Osaka H. Effect of the attack angle on the roll and trailing vortex structures in an agitated vessel with a paddle impeller[J]. Chem Eng Sci.2006,61: 2791-2798
    [130]Doulgerakis Z, Yianneskis M, Ducci A. On the interaction of trailing and macro-instability vortices in a stirred vessel-enhanced energy levels and improved mixing potential[J]. Trans IChemE:Part A.2009,87:412-420
    [131]Bouremel Y, Yianneskis M, Ducci A. Three-dimensional deformation dynamics of trailing vortex structures in a stirred vessel[J]. Ind Eng Chem Res.2009,48(17):8148-8158
    [132]Ranade V V, Deshpande V R. Gas-liquid flow in stirred reactors:Trailing vortices and gas accumulation behind impeller blades[J]. Chem Eng Sci.1999,54:2305-2315
    [133]Ranade V V, Perrard M, Le Sauze N, Xuereb C, Bertrand J. Trailing vortices of Rushton turbine:PIV measurements and CFD simulations with snapshot approach[J]. Trans IChemE:Part A.2001,79:3-12
    [134]Ranade V V, Perrard M, Xuereb C, Le Sauze N, Bertrand J. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine:PFV measurements and CFD Simulations[J]. Trans IChemE:Part A.2001,79:957-96
    [135]周国忠,施力田,王英琛.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报.2002,16:17-22
    [136]Delafosse A, Morchain J, Guiraud P, Line A. Trailing vortices generated by a Rushton turbine:assessment of URANS and large Eddy simulations [J]. Trans IChemE:Part A.2009, 87(4):401-411.
    [137]沈春银.组合桨多相混合性能[博士学位论文],上海:华东理工大学,2002
    [138]Joshi J B, Sharma M M. A circulation cell model for bubble columns[J]. Tans IChemE: Part A.1979,57:244-250
    [139]Pandit A B, Joshi J B. Mixing in mechanically agitated gas-liquid contactors, bubble columns, and modified bubble columns[J]. Chem Eng Sci.1983,38(8):1189-215
    [140]Nishiwaki A, Shinkawa T, Kato Y. Relation between parameters in three kinds of liquid mixing models for batchwise multistage bubble columns[J]. J Chem Eng Jpn,1980,13(6): 490-492
    [141]Luo X, Lee D J, Lau R, Yang G, Fan L. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns[J]. AIChE J,1999,45(4):665-685
    [142]Satoshi A, Kazuaki Y, Akira O. Effect of gas sparger type on operational characteristics of bubble column under mechanical foam control [J]. Chem Technol Biotechnol.1996,66(1): 65-71
    [143]Deckwer W D. Bubble column reactors[M]. Wiley, New York (1992)
    [144]Behkish A, Lemoine R, Oukaci R, Morsi B I. Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures[J]. ChemEng J.2006,115(3):157-171
    [145]Krishna R, De Swart J W A, Ellenberger J, Martina G B, Maretto C. Gas holdup in slurry bubble columns:effect of column diameter and slurry concentrations [J]. AIChE J.1997, 43(2):311-316
    [146]Nishikawa M, Kato H, Hasimoto K. Heat transfer in aerated tower filled with non-Newtonian liquid[J]. Ind Eng Chem, Process Des Dev.1977,16:133-137
    [147]Gandhi B, Prakash A, Bergougnou M A. Hydrodynamic behavior of slurry bubble column at high solids concentrations[J]. Powder Technol.1999,103:80-94
    [148]Chudacek M W. Solids suspension behavior in profiled bottom and flat bottom mixing tanks[J]. Chem Eng Sci.1985,40(3):385-392
    [149]Shimizu K, Nomura T, Takahashi K. Crystal size distribution of aluminum potassium sulfate in a profiled, a dished, or a flat bottom crystallizer equipped with a pitched paddle[J]. Journal of Crystal Growth.1998,191(1-2):185-189
    [150]Micale G, Carrara V, Grisafi F, Brucato A. Solid suspension in three-phase stirred tanks[J]. Trans IChemE:Part A.2000,78:319-326
    [151]Tavakoli M H, Wilke H, Crnogorac N. Influence of the crucible bottom shape on the heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth[J]. Crystal Research and Technology.2007,42(12):1252-1258
    [152]Kondo Shin-ichi, Motoda M, Takahashi K, Horiguchi H. The influence of the bottom shape of an agitated vessel stirred by dual impellers on the distribution of solid concentration[J]. J Chem Eng Jpn.2007,40(8):617-621
    [153]Immich M, Onken U. Prediction of minimum gas velocity in suspended bubble columns and airlift reactors[J]. Chem Eng Sci.1992,47:3379-3386
    [154]Pugsley T, Tanfara H, Malcus S, etc. Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe[J]. Chem Eng Sci.2003,58:3923-3934
    [155]Wraith A E, Chalkley M E. Tuyere injection for metal refining[J]. In:Proc Advances in Extractive Metallurgy, IMM, London, P27-33 (1977)
    [156]Makkawi Y T, Wright P C. Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography [J]. Chem Eng Sci.2002,57(13): 2411-2437
    [157]Makkawi YT, Wright P C. Electrical capacitance tomography for conventional fluidized bed measurements—remarks on the measuring technique[J]. Powder Technol.2004,48(2-3): 142-157
    [158]Yang Tung-Yu, Leu Lii-ping. Study of transition velocities from bubbling to turbulent fluidization by statistic and wavelet multi-resolution analysis on absolute pressure fluctuations[J]. Chem Eng Sci.2008,63(7):1950-1970
    [159]Hoefele E O, Brimacombe J K. Flow regimes in submerged gas injection[J]. Met Trans. 1979,10B:631-648
    [160]Luo Xukun, Tsuchiya K., Fan L S. Gas jetting and bubble formation in high pressure liquid-solid suspensions[J]. In:Proc the 9th Engineering Foundation Conference on Fluidization, Durango, New York, P637-644(1998)
    [161]Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE J.1979,25:843-855
    [162]吴民权,戴干策.翼型轴流桨[P].ZL92245125.7,1992
    [163]McFarlane C M, Zhao X M, Nienow, A W. Studies of high solidity ratio hydrofoil impellers for aerated bioreactors.2. air-water studies[J]. Biotechnol. Prog.1995,11:608-618
    [164]Breucker C, Steiff A, Weinspach P M. Interactions between stirrer, sparger and baffles concerning different mixing problems[J]. In:Proc 6th Eur Conf on Mixing, BHRA, Pavia, P399-406(1988)
    [165]Rewatkar V B, Raghava Rao K S M S, Joshi J B. Critical impeller speed for solid suspension in mechanically agitated three-phase reactors.1. Experimental part[J]. Ind Eng Chem Res.1991,30:1770-1784
    [166]Birch D, Ahmed N. The influence of sparger design and location on gas dispersion in stirred vessels[J]. Trans IChemE:PartA.1997,75:487-496
    [167]沈春银,陈剑佩,张家庭,戴干策.气液两相机械搅拌釜中翼型组合桨持气特性[J].化学工程.2004,32:23-27
    [168]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2009
    [169]Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation[J], Annu Rev Fluid Mech.2000,32:1-32
    [170]Derksen J, Van der Akker E A. Large eddy simulations on the flow driven by Rushton turbine[J]. AIChE J.1999,45(2):209-221
    [171]Bittorf K J, Kresta S M. Active volume of mean circulation for stirred tanks agitated with axial impellers[J]. Chem Eng Sci.2000,55:1325-1335
    [172]李冕基.在芳香烷基氧化成芳香羧酸中提高收率和产品质量同时降低能耗的方法和设备[P].CN1036756,1989
    [173]中尾藤正,上田雅则,岩田秀昭,富高正,梅田道生.生产芳族羧酸的方法[P].CN1090170C,1999
    [174]李希,罗文德,宋景祯,谢刚.一种生产对苯二甲酸用的气升式外循环鼓泡塔氧化装置[P].CN1486968A,2004
    [175]冯连芳,张军,顾雪萍,仲军实,王嘉骏,李良超.一种生产芳香酸的内循环鼓泡塔氧化反应器[P].CN101092350A,2007
    [176]戴干策,陈剑佩,张家庭,沈春银.一种芳烷基氧化生产芳香羧酸的方法和氧化反应器[P].02136151.7,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700