用户名: 密码: 验证码:
广东典型海域微生物群落特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物在海洋生态系统的物质循环和转化过程中发挥着重要作用。本研究选择广东省两个典型海域:珠海桂山岛海域(受人类活动影响明显)和汕头南澳海域(海水养殖规模大),采用微生物群落水平生理特征(Community-level physiologicalprofiling,CLPP)分析和变性梯度凝胶电泳(Denatured gradient gel electrophoresis,DGGE)分析技术,从微生物群落的生理生化特征和分子生态两方面系统研究了两典型海区微生物群落功能和结构特征。进一步从龙须菜栽培体系分离筛选有益菌,将大型海藻修复与微生物修复相结合,初步探讨了龙须菜-有益菌对水质的协同净化效果,以期为养殖海区环境修复和海水养殖业的可持续发展提供基础数据和科学依据。
     主要研究结果如下:
     1.于2011年8月,采用CLPP和DGGE方法,研究了珠海桂山岛海域12个采样站点(S1~S12)水体和沉积物微生物群落结构和环境特征。结果表明,养殖区(S6、S7、S8)和受人类活动影响较大站点(S11、S12)表层水体微生物群落代谢活性和多样性指数高于其他站点。表层水体的主要优势菌群为变形细菌,以γ-变形菌和α-变形菌最多。除S10和S12站点外,其他站点的主要优势菌为交替假单胞菌Pseudoalteromonas sp.,属于γ-变形菌。表层沉积物17个主要优势菌分别属于γ-变形菌、-变形菌、拟杆菌、酸杆菌、放线菌等五大类,所占比例分别为27.8%、19.8%、23.1%、22.2%和7.0%。γ-变形菌为表层水体和表层沉积物的共有优势菌类。
     基于CLPP和DGGE与环境因子的冗余分析(Redundancy analysis,RDA)发现总磷(Total Phosphorus,TP)和盐度是影响桂山岛海域表层水体微生物群落结构的重要因子。养殖区域和受人类活动影响较大的S6、S8、S11和S12站点的表层水体微生物群落结构受TP、盐度和TN的影响较大。表层沉积物中δ-变形菌所占的相对百分含量与沉积物中重金属Ni、Cr、Fe和Pb含量呈显著正相关(P﹤0.05)。
     2.于2012年2月,对汕头南澳岛白沙湾养殖海域鱼类养殖区、龙须菜栽培区和对照区表层水体和表层沉积物微生物群落功能和结构进行了比较研究。结果表明,龙须菜栽培区水体微生物群落具有较高的代谢活性和遗传多样性。该海域表层水体优势细菌主要属于α-变形菌、黄杆菌、γ-变形菌、β-变形菌、厚壁菌、蓝细菌和放线菌等七大类。龙须菜栽培区主要优势菌种类与自然海区一致,为α-变形菌,所占比例分别为39.9%和34.5%,鱼类养殖区的主要优势菌种类为黄杆菌,所占比例为32.2%。龙须菜栽培区水体氮、磷和化学需氧量(Chemical Oxygen Demand,COD)含量均低于鱼类养殖区。
     鱼类养殖区表层沉积物微生物群落具有较高的代谢活性,对聚合物、糖类、氨基酸、羧酸、胺类和其他等六大类碳源利用率均为最高,其次为龙须菜栽培区,对照区最低。该海域沉积物主要优势菌属于α-变形菌、γ-变形菌、δ-变形菌、ε-变形菌、酸杆菌、放线菌、厚壁菌、拟杆菌、浮霉菌等九大类群。不同功能区沉积物优势菌均为γ-变形菌和δ-变形菌,龙须菜栽培区这两类细菌所占的比例高达39.6%和19.9%。对照区、龙须菜栽培区和鱼类养殖区表层沉积物变形菌所占比例分别为60.1%,68.8%和66.8%。鱼类养殖区沉积物中总氮(Total Nitrogen,TN)、TP和总有机碳(TotalOrganic Carbon,TOC)含量显著高于龙须菜栽培区和对照区(P<0.05),微生物群落组成受沉积物中TOC、TP和TN的影响显著。
     3.从龙须菜栽培环境和龙须菜体表分离、筛选了6株优势芽孢杆菌(3株短小芽孢杆菌GS6、GS11和GS12以及3株地衣芽孢杆菌GS4、EGW1和EGS4),分析了上述六株菌株对碳源的利用能力。据此选择短小芽孢杆菌GS11作为龙须菜-有益菌协同净化研究的实验菌株。
     龙须菜-有益菌的协同净化实验表明,龙须菜-菌添加组和龙须菜-菌浸泡组(后称龙须菜-菌协同组)中的芽孢杆菌GS11均能在饲料浸出液生长;经过7d的培养,龙须菜-菌协同组龙须菜增重率达12.2%和11.7%,显著高于龙须菜组(P<0.05)。两种龙须菜-菌协同组均对饲料浸出液中的硝氮、亚硝氮、氨氮、磷酸盐和COD值有吸收或降解作用,尤其对氨氮、磷酸盐和COD的降解效果明显,降解率分别为51.3%和54.4%、63.0%和61.3%、53.6%和52.1%,均高于加菌组和龙须菜组。同时,两种龙须菜-菌协同组饲料浸出液的微生物群落代谢活性也显著高于对照组和龙须菜组(P<0.05)。综合考虑养殖海区的特点,可尝试采用有益菌菌液浸泡的方式,使有益菌与龙须菜协同净化海域环境。
Microorganisms play an important role in the material cycle and transformation process ofmarine ecosystem. Two typical sea areas of Guangdng Province, Guishan Island in Zhuhaiwhich was mainly affected by human activities and Nan’ao Island in Shantao whichoperated large-scale mariculture activities, were chosen in present study. The phylogeneticand metabolic features of microbial communities in these two areas were analyzed usingcommunity-level physiological profiling (CLPP) and denaturing gradient gelelectrophoresis (DGGE). In addition, potential probiotics were isolated and screened fromseaweed Gracilaria lemaneiformis cultivation system. Combining the bioremediationroles of seaweed and probiotic, the purification effects of Gracilaria-probioticcollaborative system on water quality was explored. These results will provide the datasupport and technical reference for environmental remediation and the sustainabledevelopment of mariculture.
     The main results of the present research are as followed.
     1. Microbial community structure and environmental characteristic in the water andsediment from12sampling sites (S1~S12) of Guishan Island were analyzed using CLPPand DGGE. The results showed that microbial community metabolic activity and diversityindex of the surface sea waters in the mariculture areas (S6, S7, S8) and the sites affectedby human activities (S11, S12) were higher than that in the other sites. The dominantbacteria in the surface water belonged to Proteobacteria, especially γ-Proteobacteria andα-Proteobacteria. Except for S10and S12, the dominant bacteria specie wasPseudoalteromonas sp., which belonged to γ-Proteobacteria. In the sediment,17dominantbacteria belonged to γ-Proteobacteria,-Proteobacteria, Bacteroidetes, Acidobacteria andActinobacteria, with percentages of27.8%,19.8%,23.1%,22.2%and7%, respectively.γ-Proteobacteria was the only common predominant group occurring both in surface waterand sediment.
     The result of redundancy analysis (RDA) based on CLPP and DGGE withenvironmental factors showed that total phosphorus (TP) and salinity were the majorenvironmental factors influencing the microbial community structures in the surface waterin Guishan Island. The bacterial community structures in the mariculture areas and thesites affected by human activities (S6, S8, S11and S12) are greatly influenced by TP,salinity and TN. Furthermore, the relative percentage of-Proteobacteria in the sediment and the concentrations of heavy metals (Ni, Cr, Fe, Pb and so on) had significantlypositive correlation (P <0.05).
     2. The phylogenetic and metabolic characteristics of microbial communities insurface water and sediment of Baisha Bay mariculture areas in Nan’ao Island wereexplored in February,2012. G. lemaneiformis cultivation zone (GZ), fish culture zone (FZ)and control zone (CZ) were chosen. The results showed that the bacterial communities inGZ had higher microbial metabolic capabilities and phylogenetic diversities. Forty-fourdominant bacterial species belonged to seven major phylogenetic groups (α-Proteobacteria,Flavobacteria, γ-Proteobacteria, β-Proteobacteria, Cyanobacteria, Firmicutes andActinobacteria). The most dominant bacteria in CZ and GZ were α-Proteobacteria (39.9%and34.5%), while that was Flavobacteria in FZ, with the percentage of32.2%. Moreover,the concentrations of nitrogen, phosphorus and COD in GZ were lower than that in FZ.
     Microbial communities in surface sediment in FZ had the highest metabolic activitiesand utilization for six kinds of carbon source. The dominant bacterial species belonged tonine major phylogenetic groups (α-Proteobacteria, γ-Proteobacteria, δ-Proteobacteria,ε-Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Bacteroidetes andPlanctomycetes). γ-Proteobacteria and δ-Proteobacteria were the predominant group, andthe percentage were39.6%and19.9%in GZ. The phylum of Proteobacteria in CZ, GZand FZ were account for60.1%,68.8%and66.8%, respectively. The concentrations of TN,TP and TOC in surface sediment of FZ were significantly higher than that of GZ and CZ(P<0.05). Microbial community composition was influenced by the TOC, TP and TN inthe sediments.
     3. Six strains of Bacillus (three Bacillus pumilus GS6, GS11, GS12and three Bacilluslicheniformis GS4, EGW1, EGS4) were isolated and screened from Gracilaria cultivationsystem. According to the utilization of carbon source, B. pumilus GS11was selected forthe research on purifying effect of Gracilaria-probiotic collaborative system.
     The purifying effect of Gracilaria-probiotic collaborative system showed that B.pumilus GS11could grow well in the feed leaching liquor in the group ofGracilaria-bacteria added directly and the group of bacteria immersed. The growth ratesof Gracilaria-bacteria collaborative group were significantly higher than the group ofGracilaria (P<0.05) after7d cultivation, with12.2%and11.7%, respectively. In thesetwo collaborative groups, nitrate, nitrite, ammonia, phosphate and COD in the feedleaching liquor were absorbed or degraded. The degradation effect on ammonia, phosphateand COD were significant in these two groups, with the percentage of51.3%and54.4%, 63.0%and61.3%,53.6%and52.1%, respectively. Furthermore, the microbial metaboliccapabilities in the feed leaching liquor in two collaborative groups were significantlyhigher than that of the control group and Gracilaria group (P<0.05). Given to thecharacteristics of mariculture ecosystem, Gracilaria cultivation system with probioticimmersed bacteria would be a possible way to improve the mariculture environment.
引文
Abreu M H, Pereira R, Yarish C, et al. IMTA with Gracilaria vermiculophylla: Productivityand nutrient removal performance of the seaweed in a land-based pilot scale system[J].Aquaculture,2011,312:77-87.
    Amaral-Zettler L, Artigas L F, Baross J, et al. Part III Oceans Present-Global Distributions:Chaper12. A Global Census of Marine Microbes[M].2010,223-245.
    Andrews J. Comparative ecology of microorganisms and macroorganisms[M].Springer-Verlag,1991.
    Axler R, Tikkanen C, Mcdonald M, et al.Water quality issues associated with aquaculture:Acasestudy in mine pit lakes[J]. Water Environment Research,1996,68:995-1011.
    Azam F, Fenchel T, Field J, et al. The ecological role of water-column microbes in the sea[J].Marine Ecology Progress Series,1983,10:257-263.
    Azam F, Malfatti F. Microbial structuring of marine ecosystems[J]. Nature ReviewsMicrobiology.2007,5:782-791.
    Balcázar J L, Lee N M, Pintado J, et al. Phylogenetic characterizationand in situ detection ofbacterial communities associated with seahorses (Hippocampus guttulatus) in captivity[J].Systematic and Applied Microbiology,2010,33:71-77.
    Barak Y, Tal Y, van Rjin J. Light-mediated nitrite accumulation during denitrification byPseudomonas sp. strain JR12[J]. Applied and Environmental Microbiology,1998,64:813-817.
    Barns S, Cain E, Sommerville L, et al. Acidobacteria phylum sequences in uraniumcontaminated subsurface sediments greatly expand the known diversity within thephylum[J]. Applied and Environmental Microbiology,2007,73(9):3113-3116.
    Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellularproducts[J]. The Biological Bulletin,1972,143:265-277.
    Beveridge M C M, Ross L G, Kelly L A. Aquaculture and biodiversity[J]. Ambio,1994,23:497-502.
    Bonilla-Findji O, Herndl G J, Gattuso J P, et al. Viral and flagellate control of prokaryoticproduction and community structure in offshore Mediterranean waters[J]. Applied andEnvironmental Microbiology,2009,75:4801-4812.
    Bossio D A, Scow K M. Impact of carbon and flooding on the metabolicdiversity of microbialcommunities in soils [J]. Applied and Environmental Microbiology,1995,61(11):4043-4050.
    Bouvy M, Arfi R, Bernard C, et al. Estuarine microbial community characteristics as indicatorsof human-induced changes (Senegal River, West Africa)[J]. Estuarine, coastal and selfscience,2010,87:573-582.
    Burford M A, Costanzo S D, Dennison W C, et al. A synthesis of dominant ecologicalprocesses in intensive shrimp ponds and adjacent coastal environments in NE Australia[J]. Marine Pollutution Bulletin,2003,46:1456-1469.
    Carroll M L, Cochrane S, Fieler R, et al. Organic enrichment of sediments from salmonfarming in Norway: Environmental factors, management practices and monitoringtechniques[J]. Aquaculture,2003,226:165-180.
    Choi K H, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in theirability to distinguish among aquatic microbial communities[J]. Journal of MicrobiologicalMethods,1999,36:203-213.
    Cook P, Veuger B, B er S, et al. Effect of nutrient availability on carbon and nitrogenincorporation and flows through benthic algae and bacteria in near-shore sandysediment[J]. Aquatic Microbial Ecology,2007,49:165-180.
    Corsaro M M, Lanzett A R, Parrilli E, et al. Influence of growth temperature on lipid andphosphate contents of surface poly-saccharides from the Antarctic bacteriumPseudoalteromonas haloplanktis TAC125[J]. Journal of Bacteriology,2004,186(1):29-34.
    Costa-Pierce B. Sustainable ecological aquaculture systems: the need for a new social contractfor aquaculture development[J]. Marine Technology Society,2010,44:88-112.
    Croft M T, Warren M J, Smith A G. Algae need their vitamins[J]. Eukaryot Cell,2006,5:1175–1183.
    Crump B C, Armbrust E V, Baross J A. Phylogenetic analysis of particle-attached andfree-living bacterial communities in the Columbia river, its estuary, and the adjacentcoastal ocean[J]. Applied and Environmental Microbiology,1999,65:3192-3204.
    Danovaro R, Pusceddu A, Covassi A, et al. Community experiment using benthic chambers:microbial and meio-faunal community structure in highly organic enriched sediments[J].Chemistry and Ecology,1999,16:7-30.
    Del Giorgio P A. Progress and perspectives in aquatic microbial ecology: introduction[J].Aquatic microbial ecology,2010,61:219-220.
    Du J K, Xiao K, Huang Y L, et al. Seasonal and spatial diversity of microbial communities inmarine sediments of the South China Sea[J]. Antonie van Leeuwenhoek,2011,100:317-331.
    Dykhuizen D. Santa Rosalia revisited: why are there so many species of bacteria?[J]. AntonieVan Leeuwenhoek.1998,73(1):23-25.
    Fandino L B, Riemann L, Steward G F, et al. Variations in bacterial community structureduring a dinofagellate bloom analyzed by DGGE and16S rDNA sequencing[J]. AquaticMicrobial Ecology,2001,23:119-130.
    Fang J G, Jon F, Qi Z H, et al. Sea cucumbers enhance IMTA system with abalone, kelp inChina[J]. Global Aquaculture Advocate,2009,51-53.
    Farzanfar, A. The use of probiotics in shrimp aquaculture[J]. FEMS immunology and medicalmicrobiology,2006,48(2):149-158.
    Felipe A G, Benjamn GG. Assessment of some chemical parameters inmarine sedimentsexposedto offshore cage fishfarming influence: a pilot study[J]. Aquaculture,2004,242:283-295.
    Fierer N, Morse J L, Berthrong S T, et al. Environmental controls on the landscape-scalebiogeography of stream bacterial communities[J]. Ecology,2007,88:2162–2173.
    Fischer H, Wanner S C, Pusch M. Bacterial abundance and production in river sediments asrelated to the biochemical composition of particulate organic matter (POM)[J].Biogeochemistry,2002,61:37–55.
    Fisher M M, Klug J L, Lauster G, et al. Effects of resources and trophic interactions onfreshwater bacterioplankton diversity[J]. Microbial Ecology,2000,40(2):125–138.
    Fisher M M, Wilcox L W, Graham L E. Molecular characterization of epiphytic bacterialcommunities on Charophycean green algae [J]. Applied and Environmental Microbiology,1998,64(11):4384-4389.
    Fontenot Q, Bonvillain C, Kilgen M. Effect of temprature, sality, and carbon: nitrogen ratio onsequencing batch reactor treating shrimp aquaculture waste water[J]. BioresourceTechnology,2007,98:1700-1703.
    Freitag T E, Chang L, Prosser J I. Changes in the community structure and activity ofbetaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marinegradient[J]. Environmental Microbiology,2006,8:684-696.
    Fujita R M. The role of nitrogen status in regulating transient ammonium uptake and nitrogenstorage by macroalgae[J]. Journal of Experimental Marine Biology and Ecology,1985,92:283-301.
    Gao K, Mckinley K R. Use of marcoalgae for marine biomass production and CO2remediation:a review[J]. Journal of Applied Phycology,1994,1:45-60.
    Garland J L, Mills A L. Classification and characterization of heterotrophic microbialcommunities on the basis of patterns of community-level, sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57:2351-2359.
    Gatesoupe F J. The use of probiotics in aquaculture[J]. Aquaculture,1999,180:147-165.
    Goecke F, Labes A, Wiese J, et al. Chemical interactions between marine macroalgae andbacteria[J]. Marine Ecology Progress Series,2010,409:267-299.
    Goedkoop W, Gullberg K R, Johnson R K, et al. Microbial response of a freshwater benthiccommunity to a simulated diatom sedimentation event: Interactive effects of benthicfauna [J]. Microbial Ecology,1997,34:131-143.
    González J, Simo R, Massana R, et al. Bacterial community structure associated with adimethylsulfoniopropionate-producing North Atlantic algal bloom[J]. Applied andEnvironmental Microbiology,2000,66:4237-4246.
    Gray J, Herwig R. Phylogenetic analysis of the bacterial communities in marine sediments[J].Applied and Environmental Microbiology,1996,62(11):40-49.
    Grossart H P, Simon M. Bacterioplankton dynamics in the Gulf of Aqaba and the northern RedSea in early spring[J]. Marine Ecology Progress Series,2002,239:263-276.
    Hall P, Holby, Kollberg S, et al. Chemical fluxes and mass balances in a marine fish cage farmIV. Nitrogen[J]. Marine Ecology Progress Series,1992,89:81-91.
    He B, Dai M, Huang W, et al. Sources and accumulation of organic carbon in the Pearl RiverEstuary surface sediment as indicated by elemental, stable carbon isotopic, andcarbohydrate compositions[J]. Biogeosciences,2010,7:3343-3362.
    He Z L, Van Nostrand J D, Zhou J Z. Applications of functional gene microarrays for profilingmicrobial communities[J]. Current Opinion in Biotechnology,2012,23(3):460-466.
    He Z L, Deng Y, Van Nostrand J D, et al. GeoChip3.0as a high-throughput tool for analyzingmicrobial community composition, structure and functional activity[J]. ISME Journal,2010,4:1167-1179.
    Hernes P J, Hedges J I, Peterson M L, et al. Neutral carbohydrate geochemistry of particulatematerial in the central equatorial Pacific[J]. Deep-Sea Research. Part II: Topical Studies inOceanography,1996,43:1181-1204.
    Hill G T, Mitkowski N A, Aldrich-Wolfe L, et al. Methods for assessing the composition anddiversity of soil microbial communities[J].Applied Soil Ecology,2000,15:25-36.
    Holby O, Hall P O J. Chemical fluxes and mass balances in a marine fish cage farm II.Phosphorus[J]. Marine Ecology Progress Series,1991,70:263-272.
    Hong Y G, Li M, Cao H, et al. Residence of habitat-specific anammox bacteria in the deep-seasubsurface sediments of the South China Sea: analyses of marker gene abundance withphysical chemical parameters[J]. Microbial Ecology,2011,62:36-47.
    Ikenaga M, Guevara R, Dean A, et al. Changes in community structure of sediment bacteriaalong the Florida coastal everglades marsh-mangrove-seagrass salinity gradient[J].Microbial Ecology,2010,59(2):284-295.
    Inagaki F, Suzuki M, Takai K, et al. Microbial communities associated with geologicalhorizons in coastal subseafloor sediments from the Sea of Okhotsk [J]. Applied andEnvironmental Microbiology,2003,69(12):7224-7235.
    Jensen P R, Kauffman C A, Fenical W. High recovery of culturable bacteria from the surfacesof marine algae[J]. Marine Biology,1996,126:1–7.
    Jin Q, Dong S L. Comparative studies on the allelopathic effects of two different strains of U.pertusa on Heterosigma akashiwo and Alexandrium tamarense [J]. Journal ofExperimental Marine Biology and Ecology,2003,293:41-55.
    Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing Archaea and Bacteriain sediment of the Pearl River Estuary, China[J]. Applied Microbiology andBiotechnology,2011,90:1137-1145.
    Jin X, Wang S, Pang Y, et al. The adsorption of phosphate on different trophic lakesediments[J]. Colloids Surfaces A,2005,254:241-248.
    Kaeberlein T, Lewis K, Epstein S. Isolating ‘uncultivable’ microouganisms in pure culture in asimulated natural environment[J]. Science.2002,296:1127-1129.
    Kalinovskaya N I, Ivanova E P, Alexeeva Y V, et al. Low molecular weight biologically activecompounds from marine Pseudoalteromonas species[J]. Current Microbiology,2004,48:441-446.
    Keiji W, Noritaka T, Hideki A, et al. Symbiotic association in Chlorella culture[J]. FEMSMicrobiology Ecology,2005,51:187-196.
    Kennedy J, Flemer B, Jackson S, et al. Marine metagenomics-new tools for the study andexploitation of marine microbial metabolism[J]. Marine Drugs,2010,8:608-628.
    Kirk J L, Klironomos J N, Lee H, et al. The effects of perennial ryegrass and alfalfa onmicrobial abundance and diversity in petroleum contaminated soil[J]. EnvironmentalPollution,2005,133:455-465.
    Krupesha Sharma S R, Shankar K M, Sathyanarayana M L, et al. Development of biofilm ofVibrio alginolyticus for oral immunostimulation of shrimp[J]. Aquaculture International,2010,19(3):421-430.
    Kubane K J, Jensen P R, Keifer P A, et al1Seaweed resistance to microbial attack: atargetedchemical defense against marine fungi[J]. Proceedings of the National Academy ofSciences,2003,19:1-6.
    Lachnit T, Meske D, Wahl M, et al. Epibacterial community patterns on marine macroalgae arehost-specific but temporally variable[J]. Environmental Microbiology,2011,13(3),655-665.
    Lajos V, Katalin V B, Eazter K, et al. Phytoplankton and bacterioplankton production in areed-covered water body[J]. Aquatic Botany,2003,77:99-110.
    Larosa T, Mirto S, Mazzola A, et al. Differential responses of benthic microbies andmeiofauna to fish-farm disturbance in coastal sediments [J]. Environmental Pollution,2001,112(3):427-434.
    Lawson P. In In Mannitol[M]. Blackwell Publishing Ltd.2007,219-225.
    Lee E H, Kim J, Kim J Y, et al. Comparison of microbial communities in petroleum-contaminated groundwater using genetic and metabolic profiles at Kyonggi-Do, SouthKorea[J]. Environmental Earth Sciences,2010,60:371-382.
    Li R W. Contamination of sediments and environmental sedimentology[J]. Advance in EarthSciences,1998,13(4):398-402.
    Liu M, Dong Y, Zhao Y, et al. Structures of bacterial communities on the surface of Ulvaprolifera and in seawaters in an Ulva blooming region in Jiaozhou Bay, China[J]. WorldJournal of Microbiology&Biotechnology,2011,27:1703-1712.
    Liu Z H, Huang S B, Sun G P, et al. Phylogenetic diversity, composition and distribution ofbacterioplankton community in the Dongjiang River, China[J]. FEMS MicrobiologyEcology,2012,80:30-44.
    Lu K G, Lin W, Liu J G. The characteristics of nutrient removal and inhibitory effect of Ulvaclathrata on Vibrio anguillarum65[J]. Journal of Applied Phycology,2008,20:1061-1068.
    Manage P M, Kawabata Z, Nakano S. Dynamics of Cyanophae-like particles and algicidalbacteria causing microcystis aerug-inosa mortality[J]. Limnology,2001,2(2):73-78.
    Mao Y Z, Yang H S, Zhou Y, et al. Potential of the seaweed Gracilaria lemaneiformis forintegrated multi-trophic aquaculture with scallop Chlamys farreri in North China[J].Journal of Applied Phycology,2009,21:649-656.
    Marinho-soriano E, Nunes S O, Carneiro M A A, et al. Nutrients’ removal from aquaculturewastewater using the macroalgae Gracilaria birdiae[J]. Biomass and Bioenergy,2009,33:327-331.
    Martin-Cuadrado A, Lopez-Garcia P, Alba J, et al. Metagenomics of the deep Mediterranean, awarm bathypelagic habitat[J]. PLoS One,2007,2:e914.
    Martinez, N. D.1996. Defining and measuring functional aspects of biodiversity. Pages114-148in K. J. Gaston (editor). Biodiversity: A biology of numbers and difference.Blackwell Press, Oxford, UK.
    Matos J, Costa S, Rodrigue A, et al. Experimental integrates aquaculture of fish and redseaweeds in Northern Porugal[J]. Aquaculture,2006,252:31-42.
    Max T, Alyssa J, Thierry C, et al. Ecological engineering in aquaculture–Potential forintegrated multi-trophic aquaculture (IMTA) in marine offshore systems[J]. Aquaculture,2009,297(1-4):1-9.
    Mitsutani A, Yamasaki I, Kitaguchi H, et al. Analysis of algicidal proteins of adiatomlyticmarine bacterium Pseudoalteromonas sp. strain A25by two-dimensional electrophoresis[J]. Phycologia,2001,40(3):286)-291.
    Mosier A C, Francis C A. Relative abundance and diversity of ammonia-oxidizing archaea andbacteria in the San Francisco Bay estuary[J]. Environmental Microbiology,2008,10:3002–3016.
    Moss A, Bassall M. Effects of disturbance on the biodiversity and abundance of isopods intemperature grasslands[J]. European Journal of Soil Biology,2006,42:S254-S268.
    Musat F, Galushko A, Jacob J, et al. Anaerobic degradation of naphthalene and2-methylnaphthalene by strains of marine sulfate-reducing bacteria[J]. EnvironmentalMicrobiology,2009,11:209-219.
    Muyzer G, de Waal E, Uitterlinden A. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S rRNA[J]. Applied and environmental microbiology,1993,59:695-700.
    Naldi M, Pierluigi V. Nitrate uptake and storage in the seaweed Ulva rigida C. Agardh inrelation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon(Saccadi Goro,Po River Delta, Italy)[J]. Journal of Experimental Marine Biology andEcology,2002,269:65-83.
    Neori A, Chopin T, Troell M, et al. Integrated aquaculture: rationale, evolution and state of theart emphasizing seaweed biofiltration in modern mariculture[J]. Aquaculture,2004,231:361-391.
    Niemi M, Taipalinen I. Faecal indicator bacteria at fish farms[J]. Hydrobiologia,1982,86(1-2):171–175.
    Olson J B, Kellogg C A.Microbial ecology of corals, sponges, and algae in mesophotic coralenvironments[J]. FEMS Microbiology Ecology,2010,73:17–30.
    Paerl H W, Dyble J, Moisander P H, et al. Microbial indicators of aquatic ecosystem change:current applications to eutrophication studies[J]. FEMS Microbiology Ecology,2003,46:233-246.
    Paerl H W, Dyble J, Twomey L, et al. Characterizing man-made and natural modifications ofmicrobial diversity and activity in coastal ecosystems[J]. Antonie van Leeuwenhoek,2002,81:487-507.
    Paez-Osuna F. The envrionmental impact of shrimp aquaculture: a global perspective [J].Environmental Pollution,2001, l12(2):229-231.
    Pang S J, Xiao T, Bao Y. Dynamic changes of total bacteria and Vibrio in an integratedseaweed-abalone culture system[J]. Aquaculture,2006,252:289–297.
    Paul N, de Nys R. Promise and pitfalls of locally abundant seaweeds as biofilters for integratedaquaculture[J]. Aquaculture,2008,281:49-55.
    Peters S, Koschinsky S, Schwieger F, et al. Succession of microbial communities during hotcomposing as detected by PCR-single strand conformation polymorphism based geneticprofiles of small subunit rRNA genes[J]. Applied and environmental microbiology,2000,66:930-936.
    Planas M, Pérez-Lorenzo M, Hjelm M, et al. Probiotic effect in vivo of Roseobacter strain27-4against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximusL.) larvae[J]. Aquaculture,2006,255:323-333.
    Polymenakou P, Bertilsson S, Tselepides A, et al. Bacterial community composition indifferent sediments from the Eastern Mediterranean Sea: a comparison of four16Sribosomal DNA clone libraries [J]. Microbial Ecology,2005,50(3):447-62.
    Poté J, Bravo A G, Mavingui P, et al. Evaluation of quantitative recovery of bacterial cells andDNA from different lake sediments by Nycodenz density gradient centrifugation[J].Ecological Indicators,2010,10(2):234-240.
    Ravenschlag K, Sahm K, Amann R. Quantitative molecular analysis of the microbialcommunity in marine Arctic sediments (Svalbard)[J]. Applied and EnvironmentalMicrobiology,2001,67:387-395.
    Rengpipat S, Phianphak W, Piyatiratitivorakul S, et al. Effects of a probiotic bacterium onblack tiger shrimp Penaeus monodon survival and growth [J]. Aquaculture,1998,167:301-313.
    Ridler N, Wowchuk M, Robinson B, et al. Integrated multi-tropic aquaculture (IMTA): apotential strategic choice for farmers[J]. Aquaculture Economics&Management,2007,11:99-110.
    Sakami T, Abo K, Takayanagi K. Microbial activity and community structure in a net penaquaculture area[J]. Bulletin of Fisheries Research Agency,2007,19:53-68.
    Sala M M, Arin L, Balague V, et al. Functional diversity of bacterioplankton assemblages inwestern Antarctic seawaters during late spring[J]. Marine Ecology Progress Series,2005,292:13-21.
    Schiff K, Luk B, Gregorio D, et al. Assessing water quality in Marine Protected Areas fromSouthern California, USA[J]. Marine pollution bulletin,2011,62:2780-2786.
    Sekiguchi H, Koshikawa H, Hiroki M, et al. Bacterial distribution and phylogenetic diversityin the Changjiang estuary before the construction of the Three Gorges Dam[J]. MicrobialEcology,2002,43:82-91.
    Skriptsova A V, Miroshnikova N V. Laboratory experiment to determine the potential of twomacroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture(IMTA)[J]. Bioresource Technology,2011,102:3149-3154.
    Song H, Li Z, Du B, et al. Bacterial communities in sediments of the shallow Lake Dongpingin China[J]. Journal of Applied Microbiology,2011,112:79-89.
    Stevens H, Ulloa O. Bacterial diversity in the oxygen minimum zone of the eastern tropicalSouth Pacific[J]. Environmental Microbiology,2008,10:1244-1259.
    Sun FL, Wang YS, Wu ML, et al. Spatial and vertical distribution of bacteria in the Pearl Riverestuary sediment[J]. African Journal of Biotechnology,2012,11:2256-2266.
    Susoko S T. Effects of co-existence bacteria on the growth of Chattonella marina in nonaxenicculture[J]. Fisheries Science,1996,62:210-214.
    Toranzo A E, Magarinos B, Romalde J L. A review of the main bacterial fish diseases inmariculture systems[J]. Aquaculture,2005,246(1-4):37–61.
    Torsvik V, Goks yr J, Daae F. High diversity in DNA of soil bacteria[J]. Applied andEnvironmental Microbiology.1990,56:782-787.
    Troell M, Hallling C, Neori A, et al. Integrated mariculture: asking the right questions[J].Aquaculture,2003,226:69–90.
    Troell M, Ronnback P, Halling C, et a1. Ecological engineering in aquaculture: Use ofseaweeds for removing nutrients from intensive mariculture[J]. Journal of AppliedPhycology,1999,11:89-97.
    Urakawa H. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan,as determined by16S rRNA gene analysis[J]. Microbiology,1999,145(11):3305-3315.
    Vaseeharan B, Ramasamy P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, apossible probiotic treatment for black tiger shrimp Penaeus monodon [J]. Letters inApplied Microbiology,2003,36:83-87.
    Vezzulli L, Chelossi E, Cardi G, et a1. Bacterial community structure and activity in fish farmsediments of the Ligurian sea(Western Mediterranean)[J]. Aquaculture International,2002,10(2):123-141.
    Wallace J, Stewart L, Hawdon A, et al. Flood water quality and marine sediment and nutrientloads from the Tully and Murray catchments in north Queensland, Australia[J]. Marine andFreshwater Research,2009,60:1123-1131.
    Weber K P, Legge R L. Dynamics in the bacterial community-level physiological profiles andhydrological characteristics of constructed wetland mesocosms during start-up [J].Ecological Engineering,2011,37:666–677.
    Wobus A, Bleul C, Maassen S, et al. Microbial diversity and functional characterization ofsediments from reservoirs of different trophic state[J]. FEMS Microbiology Ecology,2003,46:331-347.
    Wu M, Song L S, Ren J P, et al. Assessment of microbial dynamics in the Pearl River Estuaryby16S rRNA terminal restriction fragment analysis[J]. Continental Shelf Research,2004,24:1925-1934.
    Wu R S. The environmental impact of marine fish culture towards a sustainable future[J].Marine Pollution Bulletin,1995,31:159-166.
    Wu Z J, Zhou H Y, Peng X T, et al. Anaerobic oxidation of methane in coastal sediment fromGuishan Island (Pearl River Estuary) South China Sea[J]. Journal of Earth SystemScience,2008.117:935-943.
    Xu Y J, Fang J G, Tang Q S, et al. Improvement of Water Quality by the Macroalga,Gracilaria lemaneiformis (Rhodophyta), near Aquaculture Effluent Outlets[J]. Journal ofthe world aquaculture society,2008,39(4):549-555.
    Yang H S, Zhou Y, Mao Y Z, et al. Growth characters and photosynthetic capacity ofGracilaria lemaneiformis as a biofilter in a shellfish farming area in Sanggou Bay,China[J]. Journal of Applied Phycology,2005,17:199–206.
    Yang Y F, Fei X G, Song J M, et al. Growth of Gracilaria lemaneiformis under differentcultivation conditions and its effects on nutrient removal in Chinese coastal waters[J].Aquaculture,2006,254:248-255.
    Yoza B A, Harada R M, Nihous G C,et al. Impact of mariculture on microbial diversity insediments near open ocean farming of Polydactylus sexfilis[J].Ecological Indicators,2007,7:108-122
    Yuan S Y, Chang J S, Yen J H, et al. Biodegradation of phenanthrene in river sediment [J].Chemosphere,2001,43:273-278.
    Yuan X C, Yin K D, Harrison P, et al. Variations in apparent oxygen utilization and effects ofP addition on bacterial respiration in subtropical Hong Kong waters[J]. Estuaries andCoasts,2011,34:536-543.
    Zeng R, Zhao J, Zhang R, et al. Bacterial community in sediment from the Western PacificWarm Pool and its relationship to environment [J]. Science in China Series D: EarthSciences,2005,48(2):282-290.
    Zeng Y H, Ma Y, Wei C L, et al. Bacterial diversity in various coastal mariculture ponds inSoutheast China and in diseased eels as revealed by culture and culture-independentmolecular techniques[J]. Aquaculture Research,2010,41:e172-e186.
    Zhang R, Liu B, Lau S, et al. Particle-attached and free-living bacterial communities in acontrasting marine environment: Victoria Harbor, HongKong[J]. FEMS MicrobiolgyEcology,2007,61(3):496-508.
    Zhang R, Lau S C K, Ki J S, et al. Response of bacterioplankton community structures tohydrological conditions and anthropogenic pollution in contrasting subtropicalenvironments[J]. FEMS Microbiolgy Ecology,2009,69:449-460.
    Zhou J Z, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbialcommunities in response to elevated CO2[J]. Mbio,2011,26:2(4):e00122-11.
    Zhou Y, Yang H S, Hu H Y, et al. Bioremediation potential of the macroalga Gracilarialemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of northChina[J]. Aquaculture,2006,252:264-276.
    Zong H M, Ma D Y, Wang J Y, et al. Research on Florfenicol Residue in Coastal Area ofDalian (Northern China) and Analysis of Functional Diversity of the MicrobialCommunity in Marine Sediment[J]. Bulletin of Environmental Contamination andToxicology,2010,84:245–249.
    安鑫龙,周启星,邢光敏.海洋微生物在海洋污染治理中的应用现状[J].水产科学,2006,25(2):97-100.
    白洁,李海艳,赵阳国.黄海北部不同站位海洋细菌群落分布特征[J].微生物学报,2009,49(3):343-350.
    曹琛,黄金勇,李举鹏,等. TCBS培养基在虾病防治监测中的应用[J].水产科学,2003,22(6):46-47.
    曹海鹏,何珊,王会聪,等.我国水产拮抗芽孢杆菌的研究进展[J].食品科学,2012,33(9):314-318.
    曹煜成,李卓佳,冯娟,等.地衣芽孢杆菌胞外产物消化活性的研究[J].热带海洋学报,2006,24(6):6-12.
    车玉伶,王慧,胡洪营,等.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005:14(1):127-133.
    陈杰娥,贾晓珊,徐昕荣.应用RAPD方法分析厌氧氨氧化污泥驯化过程中的微生物遗传性质[J].环境科学学报,2007,27(6):961-967.
    陈应华,杨宇峰,焦念志.海水养殖对浮游生物群落和水环境的影响[J].海洋科学,2001,25(10):20-22.
    陈永青,林亮,杨莺莺,等.微生态制剂在水产养殖中的应用[J].生态科学,2005,24(1):80-83.
    邓欢欢,葛利云,蒋愉林,等.水平潜流人工湿地微生物群落的碳源代谢特征和功能多样性研究[J].农业环境科学学报,2007,26(6):2144-2149.
    丁丽,周维仁,章世元,等.益生菌在水产上的应用及其对鱼类肠道菌群的影响[J].饲料工业,2009,30(20):27-30.
    杜虹,郑兵,陈伟洲,等.深澳湾海水养殖区水化因子的动态变化与水质量评价[J].海洋与湖沼,2010,41(6):816-823.
    高菲,孙慧玲,王肖君,等.刺参龙须菜混养系统中细菌数量与群落组成[J].渔业科学进展,2012,33(4):89-98.
    郭鹏然,仇荣亮,王畅,等.珠江口桂山岛沉积物中重金属的污染评价和形态分布特征[J].海洋环境科学,2011,30(2):167-171.
    郭卫东,章小明,杨逸萍,等.中国近岸海域潜在性富营养化程度的评价[J].台湾海峡,1998,17(1):64-70.
    国家海洋局. GB17378-1998海洋监测规范[S].北京:中国标准出版社,1998.
    国家海洋局. GB/T12763-2007海洋调查规范[S].北京:中国标准出版社,2007.
    国家环境保护总局,国家海洋局. GB3097-1997海水水质标准[S].北京:中国标准出版社,1997
    韩宁,李卓佳,曹煜成,等. TCBS培养基筛选的虾池细菌分析[J].广东农业科学,2012,7:141-144.
    何建瑜,赵荣涛,陈永妍,等.海洋微生物多样性研究技术进展[J].生命科学,2012,24(6):526-530.
    何悦强,郑庆华,温伟英,等.大亚湾海水网箱养殖与海洋环境相互影响研究[J].热带海洋,1996,15(2):22-27.
    贺纪正,张丽梅,沈菊培,等.宏基因组学(Metagen-omics)的研究现状和发展趋势[J].环境科学学报,2008,28(2):209-218.
    胡文佳,杨圣云,朱小明.海水养殖对海域生态系统的影响及其生物修复[J].厦门大学学报(自然科学版),2007,46(Sup.1):197-202.
    胡晓娟,李卓佳,曹煜成,等.强降雨对粤西凡纳滨对虾养殖池塘微生物群落的影响[J].中国水产科学,2010,17(5):987-995.
    黄小平,黄良民,谭烨辉,等.近海赤潮发生与环境条件之间的关系[J].海洋环境科学,2002,22(4):63-69.
    计新丽,林小涛,许忠能,等.海水养殖自身污染机制及其对环境的影响[J].海洋环境科学,2000,19(4):66-71.
    江志兵,曾江宁,陈全震,等.大型海藻对富营养化海水养殖区的生物修复[J].海洋开发与管理,2006,4:57-63.
    蒋增杰,方建光,毛玉泽,等.海水鱼类网箱养殖的环境效应及多营养层次的综合养殖[J].环境科学与管理,2012,37(1):120-124.
    赖学文,陈伟洲.南澳岛海水生态养殖的进展和研究[J].水产科技,2006,2:33-34.
    雷光英,杨宇峰,李宵.龙须菜对赤潮异弯藻和海洋原甲藻的生长抑制效应[J].海洋环境科学,2010,29(1):27-31.
    雷光英.大型海藻龙须菜实验生态学的初步研究[D].广州:暨南大学,2007.
    李洪鹏,李秋芬,张艳,等.浅海养殖环境复合生态净化菌群的筛选及其净化功能研究[J].渔业科学进展,2009,30(2):46-53.
    李涛,王鹏,汪品先.南海西沙海槽表层沉积物微生物多样性[J].生态学报,2008,28(3):1166-1173.
    李小蓉,李宝宏.石油污染区域的微生物修复技术及其应用[J].河南科技,2008,5:28-29.
    李友训.胶州湾和东太平洋海隆(~13°N)沉积物微生物多样性研究[D].青岛:中国科学院海洋研究所,2008.
    李卓佳,林亮,杨莺莺,等.芽孢杆菌制剂对虾池环境微生物群落的影响[J].农业环境科学学报,2007,26(3):1183-1189.
    李卓佳,罗勇胜,文国樑.细基江蓠繁枝变种(Gracilarla tenuistipitata Var. liui)与有益菌协同净化养殖废水趋势研究[J].海洋环境科学,2008,27(4):327-330.
    李卓佳,杨莺莺,陈康德.几株有益芽孢杆菌对温度、制粒工艺及pH值的耐受性[J].湛江海洋大学学报,2003,23(6):16-20.
    李卓佳,张庆,陈康德.复合微生物在水产池塘养殖中的应用[J].饲料研究.1999,1:5-8.
    梁晓华,杨莺莺,李卓佳,等.芽孢杆菌K1降解亚硝酸盐的特性研究[J].海洋环境科学,2008,27(3):228-230,235.
    林亮,李卓佳,郭志勋,等.施用芽孢杆菌对虾池底泥细菌群落的影响[J].生态学杂志,2005,24(1):26-29.
    林美兰,倪纯治,刘文华,等.厦门同安西柯对虾养殖池的细菌数量动态[J].台湾海峡,1998,17(2):156-161.
    凌娟.南海典型区域与典型生态系统微生物生态学特征研究[D].广州:中国科学院南海海洋研究所,2012.
    刘慧,唐启升.国际海洋生物碳汇研究进展[J].中国水产科学,2011,18(3):695-702.
    刘晶晶,曾江宁,陈全震,等.象山港网箱养殖区水体和沉积物的细菌生态分布[J].生态学报,2010,30(2):377-388.
    刘晶晶,陈全震,曾江宁,等.海水养殖区微生物生态研究[J].浙江海洋学院学报(自然科学版),2006,25(1):72-77.
    刘婷婷,杨宇峰,叶长鹏,等.大型海藻龙须菜对两种海洋赤潮藻的生长抑制效应[J].暨南大学学报(自然科学与医学版),2006,27(5):754-759.
    刘卫云,章守宇,王凯,等.枸杞岛海域春季异养浮游细菌和生态环境因子关系初步研究[J].上海海洋大学学报,2011,20(3):437-444.
    刘欣.胶州湾沉积物细菌多样性及菌群时空分布规律研究[D].青岛:中国科学院海洋研究所,2010.
    柳承璋,宋林生,吴青.分子生物学技术在海洋微生物多样性研究中的应用[J].海洋科学,2002,26(8):27-30.
    路克国.大型藻类在工程治理海水富营养化和抑制病原微生物中的作用[D].青岛:中国科学院海洋研究所,2008.
    栾磊磊,谷阳光,王庆,吴志辉,杨宇峰.珠江口桂山岛表层沉积物中重金属的分布特征及潜在生态危害评价[J].生态科学,2013,32(1):14-21.
    罗丹,李晓蕾,袁晓初,等.我国发展大型海藻碳汇调节产业的条件与政策建议[A].发展低碳农业应对气候变化——低碳农业研讨会论文集[C].2010,136-140.
    马悦欣,王颖,杨凤,等.应用PCR-DGGE技术研究四角蛤蜊的细菌多样性[J].大连海洋大学学报,2011,26(3):167-170.
    毛洁.龙须菜体表附生菌的抑藻效应研究[D].广州:暨南大学,2012.
    倪纯治,林燕顺,叶德赞,等.海水养虾池的几种致病弧菌生态[J].台湾海峡,1995,14(1):73-79.
    彭云辉,王肇鼎.珠江河口富营养化水平评价[J].海洋环境科学,1991,10(3):7-13.
    钱鲁闽,徐永键,王永胜.营养盐因子对龙须菜和菊花江篱氮磷吸收速率的影响[J].台湾海峡,2005,24(4):546-551.
    屈建航,李宝珍,袁红莉.沉积物中微生物资源的研究方法及其进展[J].生态学报,2007,27(6):2636-2641.
    舒廷飞,罗琳,温琰茂.海水养殖对近岸生态环境的影响[J].海洋环境学,2002,21(2):74-79.
    宋志刚,许强芝,鲁心安,等.中国东海海洋微生物种群多样性初步研究[J].微生物学通报,2006,33(1):63-67.
    苏秀榕,秦松,骆其君,等.浙江沿海藻类共生细菌的生理生化特性研究[J].生态环境,2005,14(2):239-241.
    孙昌魁,冯静,马桂荣.海洋微生物多样性的研究进展[J].生命科学,2001,13(3):97-99.
    孙富林,王友绍.珠江口水体浮游细菌种群多样性空间分布特征[J].生态科学,2011,30(6):569-574.
    汤坤贤,游秀萍,林亚森,等.龙须菜对富营养化海水的生物修复[J].生态学报.2005,11:3044-3051.
    王新新.石油污染盐碱土壤的微生物多样性和生物修复技术研究[D].北京:中国科学院研究生院,2011
    王亚南.近海养殖场底泥微生物区系结构和功能的研究[D].广州:华南理工大学,2004.
    吴建平,蔡创华,周毅频,等.大亚湾网箱养殖区异养细菌和弧菌的数量动态[J].湛江海洋大学学报,2006,26(3):21-25.
    吴伟,瞿建宏,王小娟,等.水生植物-微生物强化系统对日本沼虾养殖水体的生物净化[J].生态与农村环境学报.2011,27(5):108-112.
    徐涤.海带外生菌的初步研究[D].青岛:中国科学院海洋研究所,2003.
    徐姗楠,李祯,何培民.大型海藻在近海水域中的生态修复作用及其发展策略[J].渔业现代化,2006,6:12-14.
    徐永健,乐观宗,张友平.龙须菜体表附生细菌的几种分离方法比较[J].微生物学通报,2007,34(1):123-126.
    薛超波,王建跃,王世意,等.大黄鱼养殖网箱内外细菌的数量分布及区系组成[J].中国微生态学杂志,2005,17(5):336-338.
    薛超波,王国良,金珊,等.海洋微生物多样性研究进展[J].海洋科学进展,2004,22(3):377-384.
    颜婷茹.象山港南沙港网箱养殖区沉积物微生物群落多样性的时空分布规律研究[D].上海:上海海洋大学,2012.
    杨美兰,钟彦,林燕棠.大鹏湾南澳养殖水域的氮磷含量特征[J].热带海洋,1998,17(2):74-80.
    杨锐,方文雅,单媛媛,等.条斑紫菜外生细菌的遗传多样性[J].海洋学报,2008,30(4):161-168.
    杨莺莺,李卓佳,梁晓华,等.芽孢杆菌对鱼池微生物群落代谢功能的影响[J].微生物学杂志,2009,29(5):11-17.
    杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25.
    杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(1):53-57.
    杨宇峰,宋金明,林小涛,等.大型海藻栽培及其在近海环境的生态作用[J].海洋环境科学,2005,24(3):77-80.
    姚斌,汪海珍,徐建民,等.除草剂对水稻土微生物的影响[J].环境科学学报,2004,24(2):349-354.
    于明超,李卓佳,文国樑.芽孢杆菌在水产养殖应用中的研究进展[J].广东农业科学,2007,11:78-81.
    岳维忠,黄小平,孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼,2007,38(2):111-117.
    张洪霞,谭周进,张祺玲.土壤微生物多样性研究的DGGE/TGGE技术进展[J].核农学报,2009,23(4):721-727.
    张俊,胡晓娟,杨宇峰,等.冬季南澳岛不同养殖区浮游细菌分布及微表层的富集作用[J].安全与环境学报,2010,10(5):78-82.
    张培军.海洋生物学[M].山东:山东教育出版社,2004:123-128.
    张偲,张长生,田新朋,等.中国海洋微生物多样性研究[J].中国科学院院刊,2010,25(6):651-658.
    张雅芝,苏永全.论我国海水鱼类网箱养殖的可持续发展[J].海洋科学,2001,25(7):52-56.
    张振冬,王淑芬,曹宇峰. DGGE技术及其在海洋环境微生物多样性研究中的应用[J].海洋环境科学,2008,27(3):297-300.
    朱玉玺,王国九.桂山岛供水方案研究[J].给水排水,2010,37(增刊):196-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700