用户名: 密码: 验证码:
中国芥菜系统进化研究及重要数量性状的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芥菜(Brassica juncea Tsen et Lee)属十字花科芸薹属作物,具有十分重要的经济价值。Brassica juncea在欧亚大陆长期繁衍过程中,不但在分化出了黄籽芥菜(印度型油用芥菜),而且以中国为演化中心分化出丰富多彩的菜用芥菜。芥菜类蔬菜在漫长的历史演变过程中由原始矮小的根、茎、叶、薹等均不发达的野生类型经过自然选择和人工选择逐渐发展到今天的根、茎、叶、薹等形态和产品器官十分发达且变异类型非常丰富的群体。其丰富的变异为研究芥菜类蔬菜的遗传多样性及系统进化提供了理想材料。此外,芥菜品质性状和重要农艺性状的遗传特性对芥菜品种选育及良种繁育等影响甚大,因此,本论文以中国特有的芥菜类蔬菜为材料,针对芥菜类蔬菜的起源、系统进化以及重要农艺性状及品质性状的遗传规律进行分析。主要的研究内容和结论如下:
     (1)利用基因组原位杂交(genomic in situ hybridization,GISH)来鉴定芥菜的原始亲本并对中国芥菜和印度芥菜的染色体组进行比较。以B.rapa和B.nigra的总基因组为探针,其中B.rapa(A)基因组探针和B.nigra(B)基因组探针分别与B.juncea的20和16条染色体杂交并且信号十分清晰。这就再次证实了B.rapa和B.nigra是异源四倍体中国芥菜和印度芥菜的原始亲本并且两套基因组的同源性很低。A基因组(绿色荧光)信号比较集中的位于染色体的着丝粒附近,我们推测是因为整个芥菜的基因组较小,重复的基因组家族含量相对也较少,因此集中分布于着丝粒周围。而B基因组(红色荧光)信号并没有完全集中在着丝点周围,而是以着丝点为中心向染色体臂方向有明显扩散,这说明芥菜中的来自于B基因组的重复DNA家族在芥菜染色体上以着丝粒为中心向染色体臂区域扩散分布的。A、B基因组不同的分布模式说明两套基因组芥菜进化过程中有着不同的进化途径,结合前人的细胞学和分子研究说明A、B基因组的差异不仅仅是量上的差别。由此推测B基因组是相对较早的从原始十字花科基因组中分化出来的。此外,利用GISH技术获得中国芥菜和印度芥菜荧光图象信号强弱几乎一致,这说明两者的分化时间差别不大,因此我们推测两者在进化上是几乎平行的。
     (2)利用核糖体DNA中的内转录间隔区(internal transcribed spacers,ITS)序列变异对中国芥菜进行系统进化分析和遗传多样性分析。以16个形态差异明显的不同变种中国芥菜材料与芥菜的原始亲本芸薹和黑芥为研究材料,通过对其ITS序列变异进行分析表明,中国芥菜可明显的区分为两组,一组是包括‘中熟芥菜'(分蘖芥),‘浙桐三号'(茎芥),‘黑叶忝菜'(薹芥)和‘广饶芥末'(籽芥菜)的黑芥分支,序列长度均为622 bp。另外的12个材料与芸薹的三个亚种构成芸薹分支,序列长度均为608 bp。中国芥菜从ITS序列上明显的分成A芸薹、B黑芥两组,这说明中国芥菜的进化过程由于不同的亲本重组方式而发生了不同方向的协同进化。据此我们推测芸薹类型的中国芥菜杂种在形成过程中不断的与芸薹类亲本回交,而黑芥分支的中国芥菜在杂种形成中和黑芥发生反复的回交,最后渐渐分别形成稳定的以A、B基因组为主的芥菜类型。
     (3)利用两个叶绿体非编码区,trnL和trnL-F序列变异对芥菜杂种形成的母本遗传进行分析,该序列在芸薹属种内高度保守,但是在黑芥和芜菁之间存在核苷酸突变,芥菜与芜菁(芸薹)的同源性很高,说明芥菜的母本是芸薹而父本为黑芥。
     (4)利用AFLP(Amplified Fragment Length Polymorphism)分子标记对中国芥菜的16个变种材料以及3个芸薹种材料和1个黑芥材料进行系统分类分析。中国芥菜16个材料形成了几个小的分支,其中‘特大棒菜'是和其他芥菜的分歧最大的一支,相似系数为0.67。其次是籽芥菜‘广饶芥末'明显区分与另外14个类型的芥菜形成一个独立的分支。其他的14个芥菜类型分成两个分支,第一组包括两个根芥菜类型,第二组包括其余的12个芥菜类型。从AFLP分子标记聚类分析的结果看,和传统的形态分类有很大的分歧。这些结果表明芥菜在经过长期的栽培和驯化后,表型已经发生了很大的变化,单单以形态进行分类已经不能反应整个芥菜家族的亲缘关系和进化历史。
     (4)针对中国芥菜产量相关的主要农艺性状以及品质性状的遗传规律进行了分析。以根、茎、叶、薹四个变种的芥菜品种为亲本进行双列杂交获得F_1和F_2代杂交组合,以四个亲本、F_1和F_2代组合为材料,于2005年在浙江大学农场和绍兴农科院两个试验点进行了随机区组试验。调查了株高、分蘖数、叶数、最大叶片长度、最大叶片宽度、最大叶片重、单株根重、单株重、株幅9个农艺性状,并取样测定了芥菜叶片中的总氨基酸、维生素C、可溶性糖、可溶性蛋白质、黑芥子硫苷酸钾和总硫代葡萄糖苷含量。采用加性-显性-加加上位性与环境互作的遗传模型对上述性状进行遗传和相关分析。获得了如下主要结果。除了株高和最大叶宽两个性状主要受基因环境互作效应影响外,其他农艺性状主要受遗传效应的影响。在总的遗传效应中,加性效应是控制分蘖数、叶片数、最大叶宽、最大叶重的主要效应;显性效应是控制最大叶重,最大叶长、根重和株高的主要效应;加加上位性效应是控制株幅的主要遗传效应。在基因环境互作效应中,最大叶宽,最大叶重,根重主要受到加性与环境互作效应的影响,单株重、最大叶长、株高和株幅主要受显性环境互作效应影响;此外,加加上位性与环境互作效应是控制中国芥菜分蘖数和叶片数的主要效应。对农艺性状杂种优势进行分析,分蘖数、叶片数、最大叶宽、叶重性状表现正向的平均优势和超亲优势;株高、单株重、最大叶长、株幅和根重性状表现正向的平均优势和超亲优势。不同试点的基因环境互作杂种优势表现不同,这说明不同环境中杂种优势有波动性,因此应该在特定的环境下对杂交组合进行选择。
     品质性状的遗传分析结果表明,维生素C和总蛋白含量主要受加性效应和加性环境互作效应控制;总糖、氨基酸、黑芥子硫苷酸钾和总硫代葡萄糖苷含量主要受显性和显性与环境互作效应的影响;对品质性状的杂种优势分析结果表明,品质性状的平均杂种优势和超亲杂种优势多数不显著或者为负值;互作效应平均优势随着试点和性状不同而表现不同,但超亲优势均表现为负值或不显著,因此利用杂种优势改良品质性状比较困难。
Mustard crop(Brassica juncea(L.) Czern.),belonging to the genus Brassica in the Cruciferae family,is an agriculturally and economically important crop widely cultivated in Asia and Europe.In India,B.juncea is used as oil-bearing crop and has been studied extensively.China is considered the original region of varietal differentiation,with the highest level of differentiation around Sichuan san Zhejiang.Chinese vegetable mustard has been increasingly attractive to biologist and plant breeders largely due to its higher diversification and economically important values.According to the U-triangle,B.rapa(2n=20,AA) and B. nigra(2n=16,BB) were hybridized naturally to synthesize the present species of B.juncea (2n=36,AABB).Although most studies on the species of U-triangle have confirmed the diploid origins of amphidiploid species,many questions remain concerning how the amphidiploid species evolved from their parental diploids.My research was focus on the phylogenetic analysis of B.juncea and genetic analysis of important characters on Chinese vegetable mustard.The main contents and results were as follows:
     (1) We applied genomic in situ hybridization(GISH) in this study that has allowed assignment of B.juncea chromosomes to the A or B genomes.The simultaneous application of B.nigra(red) and B.rapa(green) total genomic DNA probes allowed unambiguous discrimination of all 16 and 20 chromosomes of the genomes B and A,respectively.This demonstrates that despite their evolutionary proximity,a majority of repetitive DNA families from these two genomes do not share any significant level of homology.A detailed comparison of different A and B genomes revealed that the hybridization pattern of the B genome nuclear DNA differs from that of A genome.In the chromosomes of the AABB genome of B.juncea,although the GISH signals are localized predominantly in the pericentromeric regions,clear extensions of the signals towards the intercalary parts of the arm can be seen.In contrast,in the A genome,the signals are restricted almost exclusively to the pericentromeric regions;this may suggest that some differences in the distribution of repetitive DNA between the B genome and A genome.The results of most other cytogenetic (Harrison and Heslop-Harrison,1995) and molecular(Song et al.,1988;Warwick and Black, 1993) studies clearly suggest that these differences are not only quantitative but also qualitative.This result also supported the hypothesis that the B genome was the first to diverge from the common ancestral Brassica genome(Quiros,1995).
     (2) Sequence variation of nuclear internal transcribed spacer regions of ribosomal DNA (ITS1,5.8S rRNA and ITS2) from Chinese vegetable mustards(AB-genome) and its putative parents Brassica rapa(the A-genome) and Brassica nigra(the B-genome) were used to investigate the molecular phylogeny and the probable evolutional pattern of this amphidiploid species that uniquely formed in China.Totally,sixteen accessions of Chinese vegetable mustard those covering nearly all the diverse variations were included in this study, and together with three accessions of B.rapa and one accession of B.nigra.The results disclosed two strongly supported clades,one containing four accessions of vegetable mustard which have closer relationship with B-genome species "B.nigra" lineage and the other containing twelve accessions of B.juncea and three A-genome accessions.This classification was in disagreement with the evidence from chloroplast DNA,mitochondrial DNA,nuclear DNA restriction fragment length polymorphism(RFLP),which suggested that B.juncea was closely related to the A-genome type.For the incongruence,we speculated that the B.juncea crops derived from Chinese have evolved through different recombined events of the diploid morphutypes and evolved unidirectional concerted evolution.The traditional phenotypic classification of B.juncea was not wholly supported by ITS results,and hence the phylogenetic relationships among these subspecies need to be reconsidered on molecular level.
     (3) trnL intron and trnL-F were highly conserved among B.juncea species,however, nucleotide mutation points were found between B.rapa and B.nigra species.Informative sites in these two cpDNA regions povided evidence of the maternal origin of B.juncea.It was found that the materal parent of B.juncea could be B.rapa because the B.juncea were closely related to the accession of B.rapa
     (4) Amplified fragment length polymorphism(AFLP) analysis was used to evaluate the genetic relationships and diversities of Chinese vegetable mustards.The cluster analysis showed that the vegetable mustards could be grouped into two main groups and some minor rami,which was partially in accordance with the traditional classification that based on different edible organs of vegetable mustards.The incongruity between morphological and molecular classification might be attributed to the high selection pressure during domestication of Chinese vegetable mustards,producing some accessions with similar genetic backgrounds evolving into abundant morphological variations.The great diversification among Chinese vegetable mustards not only provides an excellent object for molecular evolution research of B.juncea but also is of great value for widening the genetic basis of breeding programs and breeding materials selection.Besides,our study also indicates that AFLP are informative and can provide significant insights for genetic diversity research in B.juncea.
     (5) Genetic effects and genotype by environment(GE) interaction effects for some important agronomic traits and qualitative traits of Chinese vegetable mustard were analyzed by using a genetic model including additive,dominance,additive×additive effects and their interaction effects with environments.Four different variations of Chinese vegetable mustard as parental lines and their F_(1s),F_(2s) were evaluated in fields of two locations.It was revealed that the agronomic traits of Chinese vegetable mustard were mainly controlled by genetic effects except plant weight(PW) and leaf weight(LW) were observed to be more affected by GE interaction effects.Among the genetic effects,additive effects took the main proportion for tillering number(TN),leaf number(LN),leaf breadth (LB) and LW;dominance effects were the main components of PW,leaf length(LL),root weight(RW) and plant height(PH);additive×additive effects were the main components of plant breadth(PB).Among the GE interaction effects,LB,LW and RW were mainly affected by additive interaction effects and PW,LL,PH and PB were mainly controlled by dominance interaction effects.Besides,additive×additive interaction was the main factor which controlled TN and LN of Chinese vegetable mustard.For heterosis analyses,TN,LN, LB and LW of Chinese vegetable mustard showed positive H_(PM) and negative H_(PB).The other traits showed positive H_(PM) and H_(PB).Heterosis arising from GE interaction was found to varying degree for different locations.It was shown that genetic heterosis and GE interaction effects were important factors for agronomic traits in Chinese vegetable mustard.
     For quality traits,it was revealed that Vitamin C content and total protein content were mainly controlled by additive effects and additive environment interaction effects.Sugar content,amino acid content,sinigrin content and total glucosinolate content were mainly controlled by dominance and dominance environment interaction effects.For heterosis analyses,sinigrin content and total glucosinolate content of Chinese vegetable mustard showed positive H_(PM) and negative H_(PB) The sugar content and total protein content showed negative H_(PM) and H_(PB).Vitamin C content showed negative H_(PB) although no H_(PM).Amino acid content of Chinese vegetable mustard showed positive H_(PM)(F_1) and negative H_(PM)(F_2) and H_(PB).
引文
卜慕华.我国栽培作物来源的探讨.中国农业科学,1981,4:86-95
    陈材林,周源,周光凡,陈学群,范永红.中国的芥菜起源探讨.西南农业学报,1992,5(3):6-11
    储椒生.榨菜之遗传研究.浙大园艺,1942,3(3):49-58
    李家文.中国蔬菜作物的来历和变异.中国农业科学,1981,1:90-95
    刘爱华,王建波,朱英国.芸薹属多倍体植物基因组进化的RAPD分析.植物分类学报,2003.41(6):520-530
    刘佩瑛.中国芥菜.中国农业出版社,1996
    乔爱民,刘佩瑛,雷建军.芥菜16个变种的RAPD研究.植物学报,1998,40(10):915-921
    谭俊杰.试论芥(芸薹)属植物的起源和分类.河北农大学报,1980,4(1):111-113
    童南奎,陈世儒.芥菜不同类型品种及杂种的过氧化物同工酶酸性磷酸酶同工酶分析.西南农业大学学报,1988,10(3):327-333
    童南奎,陈世儒.芥菜及其原始亲本种的酸性磷酸酶同工酶分析.园艺学报,1990,17(4):293-298
    童南奎,陈世儒,郭余龙.芥菜氨基酸含量及成分的遗传分析.西南农业大学学报,1991,13(2):161-164
    童南奎.菜用芥菜不同变种的核型及杂种染色体行为的观察.西南农业大学学报,1991,13(3):321-324
    童南奎,陈世儒.芥菜几个品种主要经济性状的遗传规律研究.园艺学报,1992,19(2):151-156
    王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物分类学报,1999,37(4):407-416
    汪小全,洪德元.植物分子系统学近五年的研究进展概况.植物分类学报,1997,35(5): 465-480
    杨以耕,刘念慈,陈学群,陈材林,周光凡,廖克礼.芥菜分类研究.园艺学报,1989,2:113-121
    周源,周光凡.栽培芥菜,野生芥菜及其基本祖种的同工酶分析,西南农业学报,1990,3(4):42-46
    朱军.作物杂种后代基因型值和杂种优势的预测方法.生物数学学报,1993,8(1):32-44
    朱军.广义遗传模型与数量遗传分析新方法.浙江农业大学学报,1994,20(6):551-559
    朱军.遗传模型分析方法.北京:中国农业出版社,1997
    朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(农业与生命科学版),2000,26(1):1-6
    左清凡,朱军,刘宜柏,潘晓云,张建中.非等试验设计植株农艺及产量性状的数量遗传分析方法.中国农业科学,2000,33(2):30-33
    Alam,Zafar and Aziz,M A.Inheritance of flower colour in some self-fertile Oleiferous Brassicae,Pakistan J.Sci.Res,1954
    Axelsson T,Bowman C M,Sharp A G,Lydiate D J,Lagercrantz U,Amphdiploid Brassica juncea contains conserved progenitor genomes.Genome,2000,43:679-688
    Baldwin BG.Molecuar phylogentics of Calycadenia(Compositae) based on ITS sequences of nuclear ribosomal DNA:Chromosomal and morphological evolution reexamined.Amer J Bot,1993,80:222-238
    Baldwin B.G.,Sanderson M.J.,Porter J.M.,Wojciechowski M.F.,Campbell C.S.and Donoghue M.J.The ITS region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny.Ann Mo Bot Gard,1995,82:247-277
    Baum D A,Small R L,Wendel J F.Biogeography and floral evolution of Baobabs (Adansonia,Bombacaceae) as inferred from multiple data sets.Syst Biol,1998,47:181-207
    Benabdelmouna A,Shi Y,Abirached-Darmency M.Genomic in situ hybridization(GISH)discriminates between the A and B genome in diploid and tetraploid Setaria species.Genome,2001,44:685-690
    Bennett S T,Bennett M D.Spatial distribution of ancestral genomes in the wild grass Milium montianum Pari.Ann Bot,1992,70:111-118
    Bennett S T,Kenton AY,Bennett M D.Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum(Gramineae).Chromosoma,1992,101:420-424
    Bosttcin D R,White R L,Skolnick M,Davis R W.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.American Journal of Human Genetics,1980,32:314-331
    Burkill I H.The'Chinese mustard in the Malay Peninsula Gads' Bull,1930,5:99-117
    Chen S R.The origin and differentiation of mustard varieties in China.Cruciferae Newsletter,1982,7:7-10
    Cervera M T,Gusmao J.Steenackers M 1996 application of AFLP-based molecular markers to breeding of Populas spp.Plant Growth Regulation,1996,20(1):47-52
    Clegg M T.Gant B S.Learn G H.Rates and patterns of chloroplast DNA evolution.Proc Natl Acad Sci USA,1994,91:6795-6801
    Curtis S E,Clegg T.Molecular evolution of chloroplast DNA sequences.Mol Biol Evol,1984,(1):191-301
    Downie S R,Katz-Downie D S,Spalik K.A phylogeny of Apiaceae tribe Scandiceae:Evidence from nuclear ribosomal DNA inernal transcribed spacer sequences.Amer J Bot,2000,87:76-95
    Fahleson J,Lagercrantz U,Mouras A,Glimelius K.Characterization of somatic hybrids between Brassica napus and Eruca sativa using species-specific repetitive sequences and genomic in situ hybridization.Plant Sci,1997,123:133-142
    Fu J,Zhang M F and Qi X H.Genetic diversity of traditional Chinese mustard crops as revealed by phenotypic differences and RAPD markers.Genetic Resources and Crop Evolution,2006.53:1513-1519
    Gill B S,Friebe B.Plant cytogenetics at the dawn of the 21st century.Current Opinion in Plant Biology,1998:109-115
    Griffing B.Concept of general and specific combining ability in relation to diallel crossing systems.Austrilian Journal of Biology Science,1956,9:463-493
    Guo Z H,Chen Y Y,Li D Z.Genetic variation and evolution of the Alpine Bamboos(Poaceae:Bambusoideae)using DNA sequences data,J P1Res,2001,114:315-322
    Hamby R K,Zimer E A.Ribosomal RNA as a phylogenetic tool in plant systematics of plants.Chapman and Hall,New York,NY 1992,50-91
    Haiti L,Seefelder S.Diversity of selected hop cultivars detected by fluorescent AFLPs.Theor Appl.Genet,1998,96(1):112-116
    Hasterok R,Jenkins G and Draper J.Laying the cytotaxonomic foundations of a new model grass,Brachypodium distachyon(L.)Beauv.Chromosome Research,2004,12:397-403
    Hasterok R,Ksiazczyk T,Wolny E,Maluszynska J.FISH and GISH analysis of Brassica genomes.Acta Biologica cracoviensia,2005,47(1):185-192
    Hills D M,Moritz C,Porter C A,Baker R J.Evidence for biased gene conversion in concerted evolution of ribosomal DNA.Science,1991,251:308-310
    Hill M,Witsenboer H,Zabeau M.PCR-based fingerprinting using AFLPs as a tool for studying gentic relationships in Lactuca spp.Theor Appl Genet,1996,93(8):1202-1210
    Hodkinson T R,Renvoqze S A,Chonghaile G.A comparison of ITS nuclear rDNA sequences data and AFLP markers for phylogenetic studies in Phyllostachys(Bambusoideae,Poaceae).J PI Res,2000,113:259-269
    Hua Y W,Li Z Y.Genomic in situ hybridization analysis of Brassica napus×Orychophragmus violaceus hybrids and production of B.napus aneuploids.Plant Breed,2006,125:144-149
    Humphreys M W,Thomas H M,Morgan W G,Meredith M R,Harper J A,Thomas H,Zwierzykowski Z,Ghesquiere A.Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization.Heredity,1995,75:171-174
    Jaccard P.Nouvelles recherches sur la distribution florale.Bull.Soc.Vaud.Sci.Nat,1908,44:223-270
    Jain A,Bhatia S,Banga S S,Prakash S and Lakshmikumaran M,Potential use of random amplified polymorphic DNA(RAPD)technique to study the genetic diversity in Indian mustard(Brassica juncea)and its relationship to heterosis.Theor Appl Genet,1994,88:116-122
    Kenton A,Parokonny A S,Gleba X Y.Characterization of the Nicotiana tabacum L.genome by molecular cytogenetics.Mol Gen Genet,1993,240:159-169
    Koch M A,Dobe C,Olds T M.Multiple hybrid formation in natural populations:concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA(ITS)in Northern American Arabis divaricarpa(Brassicaceae).Mol Biol Evol,2003,20:338-350
    Koch M.A and I.Al-Shehbaz.Molecular systematics of the Chinese Yinshania(Brassicaeae):evidence from plastid trnL intron and nuclear ITS DNA sequence data.Ann Missouri Bot Gard,2000,87:246-272
    Kumar R,and Gupta V P.Isozyme studies in Indian mustard(Brassica juncea L.).Theor Appl Genet,1985,69:1-4
    Leitch A R,Schwarzacher T,Jacson D.In situ hybridization:a practical guide.RMS microscopy handbooks.Bios Scientific Publishers Ltd,Oxordmanulids L,1994,No.27
    Li C B,Zhang D M,Ge S,Lu B R,and Hong D Y.Identification of genome constitution of Oryza malampuzhaensis,O.minuta,and O.punctata by multicolour genomic in situ hybridization.Theoretical and Applied Genetics,2001,103:204-211
    Lim KY,Leitch I J,Leitch AR.Genomic characterisation-and the detection of raspberry chromatin in polyploid Rubus.Theor Appl Genet,1998,97:1027-1033
    Lionneton E,Aubert G,Ochatt S,Merah O.Genetic analysis of agronomic and quality traits in mustard(Brassica juncea).Theoretical and Applied Genetics,2004,109:792-799
    Liu Z J,Cordes J F.DNA marker technologies and their applications in aquaculture genetics.Aquaculture,2004,238:1-37
    Liu A H,Wang J B.Genomic evolution of Brassica allopolyploids revealed by ISSR marker.Genetic Resource and Crop Evolution,2006,53:603-611
    Maluszynska J and Hasterok R.Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH.Cytogenetic and Genome Research,2005,109:310-314
    Martin B,Friedrich U,Melchinger A E.Genetic Similarities among winter wheat cultivars determined on the basis of RFLPs,AFLPs and SSRs and their use for predicting progeny variance.Crop Science,1999,39:228-237
    McGregor C E,Lambert M M,Greyling M M,Louw J H,Warnich L A.comparative assessment of DNA fingerprinting techniques(RAPD,ISSR,AFLP and SSR)in tettaploid potato(Solanum tuberosum L.)germplasm.Euphytica,2000,113:135-144
    Morinaga T,Interspecific hybridization in Brassica I.The cytology of F_2 hybrids of B.napella and various other species with 10 chromosomes-Cytologia,1929a,1:16-27
    Morinaga T,Interspecific hybridization in Brassica Ⅱ.The cytology of F_2 hybrids of B.cernua and various other species with 10 chromosomes-Jap.Journ.Bot,1929b,4:277-289
    Morinaga T,Interspecific hybridization in Brassica Ⅲ.The cytology of F_2 hybrids of B.carinata and some other species with ten chromosomes-Cytologia,1929c,1:16-27
    Morinaga T,Interspecific hybridization in Brassica Ⅴ.The cytology of F_2 hybrids of B.carinata and B.alboglabra-Jap.Journ.Bot,1933,6:467-475
    Morinaga T,Interspecific hybridization in Brassica Ⅵ.The cytology of F_2 hybrids of B.juncea and B.nigra-cytologia,1934,6:62-67
    Morinaga T.and Fukushima E.,KaryologicaL studies on a spontanmeous haploid mutant of Brassica napella-Cytologia,1933,4:457-460
    Mukai Y,Nakahara Y,Yamamoto M,Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes.Genome.1993,36:489-494
    Mukherijea P.Karymorphological studies of ten strains of India mustard(Brassica juncea coss).Euphytica,1975,24:483-486
    Negi MS,Devic M,Delseny M.Lakshimikumaran M,Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection.Theor Appl Genet,2000,101:146-152
    Nei M and Li W.H.Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc Nat Acad Sci USA,1979,76:5269-5273
    Oram R N,Kirk J T O,Veness P E,Hurlstone C J,Edlington J P,Halsall D M.Breeding Indian mustard[Brassica juncea(L.)Czem.]for cold-pressed,edible oil production-a review.Australian journal of agricultural research,2005,56:581-596
    Palmer J D.Plastid chromosomes:Structure and evolution,in Bogorad L,The molecular biology of plastids,Cell culture and somatic cell genetics of plants.Academic Press,San Diego,California,USA,1991,7A:5-53
    Palmer J D and Herbon L A.Plant mitochondrial DNA evolves rapidly in structure,but slowly in sequence.J Mol Evol,1988,28:87-97
    Parkin I A P,Sharpe A G,Keith D J,Lydiate D J.Identification of the A and C genomes of amphidiploid Brassica napus(oilseed rape).Genome,1995,38:1122-1131
    Pejic I,Aimone-Marsan P,Morgante M,Kozumplick V,Castiglioni P,Taramino G,Motto M.Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs,SSRs and AFLPs.Theoretical and Applied Genetics,1998,97:1248-1255
    Pradhan A K,Sodhi Y S,Mukhopadhyay A and Pental D.Heterosis breeding in Indian mustard(Brassica juncea L.Czern and Cross):analysis of component characters contributing to heterosis for yield.Euphytica,1993,69:219-229
    Prain D.The mustard cultivated in Bengal Agr Ledger,1898,5:1-80
    Prakash S.and K.Hinata.Taxonomy,cytogenetics and origin of crop Brassica.a review.Opera.Bot,1980,55:1-57
    Quiros C F,Grellet F,Sadowski J,Suzuki T,Li G,Wroblewski T,Arabidopsis and Brassica comparative genomics:sequence,structure and gene content in the ABI1-Rps2-Ck1 chromosomal segment and related regions.Genetics,2001,157:1321-1330
    Raina S N,Mukai Y.Genomic in situ hybridization in Arachis(Fabaceae)identifies the diploid wild progenitors of cultivated(A.hypogaea)and related wild(A.monticola)peanut species.Pl Syst Evol.1999,214:251-262
    Raina S N,Mukai Y,Yamamoto M.In situ hybridization identifies the diploid progenitor species of Coffea arabica(Rubiaceae).Theor Appl Genet,1998,97:1204-1209
    Rohlf F J.NTSYS-pc,Numerical Taxonomy and Multivariate Analysis System Version 2.0.Exeter Software,Setauket,New York,1994
    Sang T,Crawford D J,Stuessy T F,Documentation of reticulate evolution inpeonies(Paeonia)using internal transcribed spacer sequences of nuclear ribosomal DNA:implications for biogeography and concerted evolution.Proceedings of the National Academy of Sciences of the United States of America,1995,92:6813-6817
    Sasaoka T.Karyological observations in different interspecific hybrids of Brassica-Jap.Journ Gerel,1930,6:20-32
    Schmidt R,Acarkan A,Boivin K.Comparative structural genomics in the Brassicaceae family.Plant Physiol Biochem,2001,39:253-262
    Schwarzacher T,Leitch A R,Bennett M D.In situ localization of parental genomes in a wide hybrid.Ann Bot,1989,64:315-324
    Sharma S K,Knox M R,Ellis T H N.AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis.Theor Appl Genet,1996,93(5-6):751-758
    Shi C H,Zhu J,Zang R C,Chen G L.Genetic and heterosis analysis for cooking quality traits of indica rice in different environments.Theor Appl Genet,1997,95:294-300
    Sighn D.A new leaf colour variant in rye(Brassica juncea),Sci.and Culture,1954
    Sighn D.Inheritance of some qualitative Characters in Indian mustard[Brassica juncea(L.)Gern & Coss.]Indian Journal of Agricultural Sciences,1967,38(1):97-100
    Sinskaia E N.The oleiferous plant and root crops of the family cruciferae.Bull Appl Bot Genet and pi Breed,1928,19:1-648
    Skarzhinskaya M,Fahleson J,Glimelius K,Mouras A.Genome organization of Brassica napus and Lesquerella fendleri and analysis of their somatic hybrids using genomic in situ hybridization.Genome,1998,41:691-701
    Snowdon R J,Kohler W,Kohler A.Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids.Theor Appl Genet.1997.95:1320-1324
    Snowdon R J,Winter H,Diestel A,Sacrist'an M D.Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans.Theor Appl Genet,2000,101:1008-1014
    Song K M,Lu P,Tang K,Thomas C.Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution.Proc Natl Acad Sci,1995,92:7719-7723
    Song K M,Osborn T C and Williams P H.Brassica taxonomy based on nuclear restriction fragment length polymorphisms(RFLPs)1.Genome evolution of diploid and amphidiploid species.Theor Appl Genet,1988,75:784-794
    Song K M,Osborn T C and Williams P H.Brassica taxonomy based on nuclear restriction fragment length polymorphisms(RFLPs)3.Genome relationships in Brassica and related genera and the origin of B.oleracea and B.rapa(syn.campestris).Theor Appl Genet,1990,76:497-506
    Southern E M.Detection of specific sequences among DNA fragments separated by gel electrophoresis.Journal of Molecular Biology,1976,98:503-517
    Srivastava A,Gupta V,Pental D and Pradhan A K.AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica junce.Theor Appl Genet,2001,102:193-199
    Stanford A M,Harden R,Parks C R.Phylogeny and biogeorgraphy of Jugland(Juglandaceae)based on matK and ITS sequences data.Amer J Bot,2000,87:50-66
    Sun,P.C.,Genetic studies in Brassica juncea Coss.Flower colour,leaf shape,seed colour and branching habit.J.Agri.Assoc.China.Suppl,1945,50:12-13
    Swofford D L.PAUP* Phylogenetic analysis using parsimony(*and other methods)(version4).Sinauer Associates.Sunderland.Massachusetts.USA,1998
    Tanksley S D,Hewill J.Use of molecular markers in breeding for soluble solides content in tomato a re-examination.Theoretical and Applied Genetics,1988,74:811-823
    Truco M J,Hu J,Sadowski.Inter-and intra-genomic homology of the Brassica genomes:implications for their origin and evolution.Theor Appl Genet.1996.93:1225-1233
    U N.Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization.Jpn J Bot,1935,7:389-452
    Vaughan J G.Contributions to a study of variation in Brassica juncea Coss & Czern J.Linn Soc.Bot,1963,58,374,435-437
    Vaughan J G.A multidisciplinary study of taxonomy and origin of Brassica crops,Bioscience,1977,27:35-40
    Vaughan J G,Gordon E I.A taxonomic study of Brassica juncea using the techniques of electrophoresis,gas-liquid chromatography and serology.Ann.Bot,1973,37:167-184
    Warwick S I and Black L D.Molecular systematics of Brassica and allied genera(Subtribe Brassicinae,Brassiceae)-chloroplast genome and cytodeme congruence.Theor Appl Genet,1991,82:81-92
    Warwick S I and Black L D.Molecular relationships in subtribe Brassicinae(Cruciferae,tribe Brassiceae).Can J Bot,1993,71:906-918
    Warwick S I and Sauder C A.Phylogeny of tribe Brassiceae(Brassicaceae)based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences,Can J Bot,2005,83:467-483
    Wendel J F,Schnabel A and Seelanan T.An unusal ribosomal DNA sequence from Gossypium goddypioides reveals ancient,cryptic,intergenomic introgression.Mol Phylogenet Evol,1995a,4:298-313
    Wendel J F,Schnabel A and Seelanan T.Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton(Gossypium).Proc Natl Acad Sci,1995b,92:280-284
    White T J,Bruns T,Lee S and Taylor J.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.1990,pp.315-322
    Widmer A,Baltisberger M.Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Drabaladina(Brassicaceae).Amer J Bot,1999,86:1282-1289
    Will iams J G K,Kubelic A R.Livak K J.Ratalski J A,Tingey S V.DNA polymorphism amplified by arbitrary primers are useful as genetic markers,Nucleic Acids Research,1990,18:6531-6535
    Xiang Q Y,Crawford D J,Wolfe A D.Origin and biogeography of Aesculus L.(Hippocastanaceae):A molecular phylogenetic perspective.Ann Missouri Bot Gard,1998,80:723-734
    Xu Z C and Zhu J.An approach for predicting heterosis based on an additive,dominance and additive * additive model with environment interaction.Heredity,1999,82:510-517
    Yang Y W,Lai K N,Tai P Y,Ma D P,Li W H.Molecular phylogenetic studies of Brassica,Rorippci,Arabidopsis,and allied genera based on the internal transcribed spacer region of 18S-25S rDNA.Mol Phylogenet Evol,1999,13:455-462
    Yang Y W,Tai P Y,Chen Y and Li W H.A study of the phylogeny of B.rapa,B.nigra,Raphanus sativus,and their related genera using noncoding regions of chloroplast DNA.Mol Phylogenet Evol,2002,13:455-462
    Zhu J.Mixed model approaches for estimating genetic variances and covariances.J Biomath,1992,7(1):1-11
    Zhu J.Methods of predicting genotype value and heterosis for offspring of hybrids.J Biomath,1993,8:32-44
    Zhu J.Analysis methods for genetic models.Agricultural Publishing House of China Peking,1997,pp 88-91
    Zhu J,Weir B S.Analysis of cytoplasmic and maternal effects.I.a genetic model for diploid plant seeds and animals.Theor Appl Genet,1994,89:153-159
    Zhu J,Weir B S.Diallel analysis for sex-linked and maternal effects.Theor Appl Genet,1996,92:1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700