用户名: 密码: 验证码:
化爆材料的新型动态切削温度及切削力测试系统的研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化爆材料的不均匀性,其内部随机分布着硬质点。切削过程中,当切到某个硬质点时,会突然产生大量的切削热而使工件出现瞬时高温脉冲,当这一瞬时高温超出一定的范围时,会引爆工件而发生危险。本文运用半人工热电偶的测温方法实现了对动态切削温度的实时测量,从而为军工企业选择合理的切削用量来提高加工效率提供了理论依据。
     本研制工作包括以下主要内容:测温传感器的结构设计、加工、制作(包括试验所需的各种夹具设计与制作),静态标定、动态标定,冷端补偿及信号调理器的制作,测试系统软件设计与集成,模拟切削实验、现场切削实验数据处理及结果等。
     采用双刀片法研制的半人工热电偶加超前网络以后,响应速度达到5ms以内,具有灵敏度高,动态响应快的特点,能快速并准确地响应被测试件的切削温度。线性好,在0~620℃范围内线性拟合误差小于0.3%。运用ActiveX技术开发的动态切削温度及切削力测试系统界面友好,可操作性强。最后通过模拟切削试验和现场切削试验,我们得出以下结论。对于化爆材料而言,影响切削温度的主要因素是切削深度,其次是切削速度,而进给量对切削温度的影响不显著。
Due to the asymmetry of explosive chemical material, there are many hard points scattered in its interior. During the cutting process, when the cutting tool hits the hard points, the heat generation will increase at the cutting edge of the tool and a sudden heat pulse will occur at this moment. If the maximum of the heat pulse exceeds a certain range, it may cause the work piece to explode. This paper presents a new temperature testing method to measure the cutting temperature dynamically by using semi-thermocouple technology. And the result can be used in power mills to help enhance the machining efficiency by choosing the most optimized cutting conditions.
    A great effort has been made to the following aspects: structure designing, machining and manufacture of the temperature sensor (including the jig designing and machining), static calibration, dynamical calibration, cold junction compensation and signal-adjustment box, software designing and integration, simulated cutting experiment and on-the-spot cutting experiment.
    After adopting phase-leading network, double-blade semi-thermocouple' s responding time will be less than 5 ms. It has a good sensitivity and very fast responding speed which can measure the temperature of the work piece accurately and quickly. The quantity measured will vary linearly with temperature. The error of the linear fit is less than 0.3% among the range of 0~ 620癈.The user' s software interface of the cutting temperature and cutting force system, which adopted the ActiveX technology, is succinct and maneuverable. Through the simulated cutting experiment and on-the-spot cutting experiment, the result presents that with respect to the explosive chemical material, the main factor, which affect the cutting temperature of the tool, is the depth of cut. Next is cutting speed. And the feed rate has little contribution to the rise of temperature.
引文
[1] Marcio Bacci da Silva, James Wallbank. Cutting Temprature: Prediction and Measurement Methods—a Rreview. Journal of Materials Precessing Technology, 1999, 88: 195~202
    [2] D.O'Sullivan,M Cotterell. Workpiece temperature measurement in machining. Proceedings of the Institution of Mechanical Engineers—Part B—Engineering Manufacture. 216(1): 135~139
    [3] D.O'Sullivan , M.Cotterel. Temprature measurement in single point turning. Journal of Materials Precessing Technology, 2001, 118: 301~308
    [4] 秦永列.表面温度测量.中国计量出版社.1989,12
    [5] 陆剑中,孙家宁.金属切削原理与刀具.机械工业出版社.1998,10
    [6] B.serio, Ph.Nika, J.P.Prenel. Static and dynamic calibration of thin-film thermocouples by means of a laser modulation technique. Review of Scientific Instruments. 2000, 71(11): 4306~4313
    [7] E.-G.Ng, D.K.Aspinwall, D.Brazil et al.. Modelling of temperature and forces when orthogonally machining hardened steel. International Journal of Machine Tools & Manufacture. 1999,39(1): 885~903
    [8] Kenneth,G.Kreider, FrankDiMeo. Platinum/palladium thin-film thermocouples for temperature measurements on silicon wafers. Sensors and Actuators A. 1998, 69(1): 46~52
    [9] Jib-Fen Lei, Herbert A. Will. Thin-film thermocouples and strain-gauge technologies for engine applications. Sensors and Actuators A. 1998,69(2): 187~193
    [10] Kenneth G.Kreider, Greg Gillen. High temperature materials for thin-film thermocouples on silicon wafers. Thin Solid Films. 2000, 376(1): 32~37
    [11] Himanshu D.Bhatt, Ramakrishna Vedula Vedula, Seshu B.Desu et al.. La_(1-x)Sr_xC_oO_3 for thin film thermocouple applications. Thin Solid Films. 1999, 350(2):249~257
    [12] Himanshu D.Bhatt, Ramakrishna Vedula Vedula, Seshu B.Desu etc.. Thin film TiC/TaC thermocouples. Thin Solid Films. 1999, 342(2): 249~257
    [13] Francis E.Kennedy, Dan Frusescu, Jianying Li. Thin film thermocouple arrays for sliding surface temperature measurement. Wear. 1997, 207(1): 46~54
    [14] 顾彤.辐射测温用于机床切削研究.红外技术.1996,18(5):31~34
    [15] 周书铨.红外辐射测量基础.上海交通大学出版社.1991.3
    [16] 雷敏,王志中,马勤弟,毕海.薄膜热电偶的动态特性及动态补偿研究.计
    
    量学报.1999,20(3)
    [17] 李付国 黄吕权 解亚军 水金诚.薄膜热电偶动态特性研究.仪器仪表学报.1996,Vol.17, No.3:317~322
    [18] 水金城,陈武军.准矩形脉冲对薄膜热电偶传感器响应时间的测量.光电子·激光 1994,5(3) 155~157
    [19] 王西彬,任敬心.磨削温度及热电偶测量的动态分析.中国机械工程.1997,8(6)77~80
    [20] NuDAQ PCI9118DG/HG/HR User's Manual. ADLink Technology Inc.1997~2000
    [21] 谭修琼.热电偶参比端温度补偿方法探讨.甘肃冶金.2003,Vol.25,No.2:58~60
    [22] 游伯坤 等.温度测量与仪表.科学技术文献出版社.1990,9
    [23] 游伯坤 江兆章.温度测量与仪表—-热电偶和热电阻.科学技术文献出版社.1990,9
    [24] 张锦霞.热电偶使用、维修与检定技术问答.中国计量出版社.2000,12
    [25] 王沫然.Matlab 5.X 与科学计算.清华大学出版社.2000,5
    [26] 陈敏 马丽.传感器特性曲线的一种拟合方法.传感器技术.2003,Vol.22,N0.1:38~40
    [27] 周树南 张砚春 方维.电路与电子学基础.科学出版社.2000,9
    [28] 郑德忠 齐广学 陈伟英.热电偶冷端温度的补偿.传感器技术.1997,Vol.16,No.6:32~34
    [29] 杨振江.热电偶冷端补偿的两种方法.电子科技.1996,No.3:32~34
    [30] 王建明 杨颖.利用集成温度传感器 AD590 对热电偶进行冷端补偿的一种方法.大学物理.1995,Vol.14,No.6:32~33
    [31] 朱骥北.机械控制工程基础.机械工业出版社.1989,6
    [32] 李福山 汪金龙.热电偶测温的冷端补偿技术及其实现[J].郑州工学院学报.1995,Vol.16,No.4
    [33] 张诗荣 王殿方.一种高精度热电偶冷端补偿电路设计.电测与仪表.1994,9:35~37
    [34] 毕训银.热电偶参考端的几种补偿方法.仪表技术与传感器.1998,No.3:28~31
    [34] 穆晶 王洪涛.浅谈热电偶的补偿导线.计量技术.2001,No.3:36~37
    [35] 印勇.热电偶的冷端补偿方法.自动化与仪表.1997,Vol.12,No.6:52~53
    [36] 陆金铭.热电偶冷端温度的算法补偿.实用测试技术.2000,No.2:17~19
    [37] 金荣泰 许昌.热电偶冷端补偿电路的一种设计方法.仪表技术.2000,No.5:43~44
    
    
    [38] 常虹.工业用热电偶分度方法的研究.仪器仪表用户.2002,Vol.9,No.1:7~11
    [39] 韩丽艳 施增宁.热电偶标定试验的动态演示.试验研究与探索.1999,No.6:61~63
    [40] 刘渝新.分段拟合热电偶的热电势—温度一元多项式函数.工业仪表与自动化装置.1999,No.5:40~41
    [41] 张庆玲.热电偶测温系统的设计应用.西北轻工业学院学报.2000,Vol.18,N0.1:82~85
    [42] 宋洪才.热电偶的正确使用.工业计量.2002,No.5:51
    [43] 武文革 常兴.半人工热电偶法瞬态铣削温度测量的实现.山西机械.2000,12,NO.4:13~14
    [44] 常兴 陈五一 吕彦明.半人工热电偶瞬态切削温度测量装置.中国机械工程.1996,Vol.6:120~122
    [45] 王东方 何嘉鹏.热电偶动态标定装置的研制.工业仪表和自动化装置.1999,No.1:35~37
    [46] 范朝阳 张良驹.多线程程序设计的概念与应用.小型微型计算机系统.1996,Vol.17,No.4:1~6
    [47] 侯俊杰.深入浅出MFC第2版.华中科技大学出版社.2001,7
    [48] David J.Kruglinski.Visual C++技术内幕.清华大学出版社.2001,4
    [49] 李于剑.Visual C++ 实践与提高图形图像编程.中国铁道出版社.2001,7
    [50] Julio sanchez Maria P.Canton.Windows图形编程.清华大学出版社.2000,5
    [51] 董万胜 刘欣生 张广庶.多通道高速大容量数据采集分析系统.高原气象.1998,Vol.17,No.1:101~105
    [52] 黄胜 顾根华 肖维鹏 秦勤 周洪敏.快速热电偶测温虚拟仪表的制作.工业加热.2001,4:37~39
    [53] 姚宗国 王孝红 景绍洪 孟庆金 袁铸钢.在Windows95平台上实现数据采集与处理.山东建材学院学报.1998,Vol.12,No.2:324~326
    [54] 北京大学数学力学系概率统计组编.正交设计法.化学工业出版社,1979,7:38~41
    [55] 陈明,袁人炜,薛秉源等.铝合金高速铣削中切削温度动态变化规律的实验研究.工具技术.2000,34(5)
    [56] 李连兵.热电偶检定装置的误差分析.工业计量.2000增刊:307~309
    [57] 朱敏.热电偶测温误差分析及解决方法.内蒙古技术监督.1998,4:34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700