用户名: 密码: 验证码:
端到端多路径传输关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet的快速发展、新兴接入技术的不断涌现以及异构网络的重叠覆盖,当前网络的终端正在呈现多宿化的趋势。终端多宿为用户提供了随时、随地及以任意一种或多种方式接入网络的可能。但是由于Internet对多宿使用的原始设计缺陷,终端的多宿特性难以被有效利用。现有技术在使用多宿特性的同时又带来网络路由与传输性能等方面的问题。因此,如何在不为网络带来额外负担的情况下有效利用终端的多宿特征进行数据传输,成为近年来研究人员关注的热点。
     本文在深入分析现有网络多宿技术和多路径传输的基础上,设计了一种基于端到端的多路径传输方法,以提高多宿终端的聚合带宽、网络资源利用率、服务可靠性、数据隐私性及实施网络边缘处的流量工程。本文按照自顶向下的顺序,主要从数据传输、路径选择和路径发现三个方面对端到端多路径传输相关关键技术进行深入研究,具体工作如下:
     1.对现有端到端多路径传输方案进行比较,归纳了端到端多路径传输的设计原则,在SCTP的基础上提出了一种新的端到端多路径传输方案*E2EMPT。E2EMPT采用双层序列空间映射机制、发送调度和接收缓冲区管理等措施来减少数据包乱序引发的不必要的快速重传,提高多宿终端应对数据包乱序的健壮性,从而有效提高了终端的聚合带宽。
     2.建模分析E2EMPT的稳态吞吐量和数据隐私性。结合SCTP拥塞控制算法的特点,建立基于弃尾队列的E2EMPT传输模型;通过分析传输过程中拥塞避免和超时重传两个阶段的平均吞吐量,建立E2EMPT稳态吞吐量模型,并推导得出E2EMPT急态吞吐量关于路径丢包率和路径时延的函数关系;建立E2EMPT数据隐私性与所使用端到端路径数目的数学模型;在折衷考虑保证E2EMPT的吞吐量性能的内存资源需求和数据隐私性的基础上,启发性的建议了在E2EMPT中使用的最优的路径数目。
     3.建模分析E2EMPT产生接收缓冲区阻塞的原因,提出了一种路径选择算法。建模分析在E2EMPT使用差异化路径的情况下,需要缓存的最大量的乱序数据与路径丢包率及路径时延的函数关系;根据建立的模型,设计了路径选择算法,以得到具有相近路径时延及较小路径丢包率的路径集合,进而消除路径特性差异对E2EMPT总体性能的影响;通过仿真实验,选择合适的路径选择参数,并验证路径选择算法带来的性能提升。
     4.提出了一种源端参与的域间路径多样性方案,从而为E2EMPT提供最大化的链路分离的端到端路径。对采用路由反射结构的iBGP中的路径隐藏问题进行分析;改进路由反射器为支持多路径通告的路由中继,恢复iBGP中的路径冗余;设计基于源端提示的路径选择算法,使得源端通过在数据包中携带路径索引来向BGP路由器表达源端的路径偏好及标识使用路径,而BGP路由器可以根据源端提供的路径选择提示尽可能的利用链路分离的路径;测量源端参与选择的路径的路径伸展度和路径相似度。
     本文研究的基于端到端的多路径传输,对多宿终端的使用具有较好的实用意义。此外,本文尝试从源端视角出发解决Internet存在的相关问题,有助于拓展当前网络研究的思路,为Internet演进及下一代信息网络设计提供有益的参考。
With the rapid development of the Internet, the emergence of the new access technologies and the overlapped coverage of the heterogeneous networks, the terminals of the Internet present the multihoming trend. Multihomed terminals are potentially capable to access the network at anytime, anywhere and with any access technology. However, due to the original design drawbacks of the Internet on the using of multi-homing, the multihoming feature is hard to be utilized effectively. Though designed to make use of the multihoming, the current technologies in the Internet bring side effects in both the network routing and transmission performance. Therefore, how to utilize the multihoming feature to transfer data without introducing additional cost to the network attracts significant research attention recently.
     On the basis of in-depth analysis of the current multihoming and multipath transport technologies, this dissertation presents the End-to-End Multipath Transfer (E2EMPT) scheme, in order to improve the aggregate bandwidth of the multihoming host, the utilization of the network resource, the reliability of the service, the privacy of the data transferred and carry out the traffic engineering at the edge of the network. This dissertation mainly studies the key technologies of E2EMPT in three aspects, the data transfer, the path selection and path discovery, by following a top-down order. The main work of this dissertation can be summarized as follows:
     1. Through performing in-depth analysis of the multipath transfer schemes based the transport layer protocols, the design principles of the E2EMPT are summarized. A new end-to-end multipath transfer design, E2EMPT, is proposed. E2EMPT adopts the dual sequence space mapping scheme, sending schedule algorithm, and receiver buffer management to eliminate the unnecessary fast retransmission caused by the reordering packets, which improves the reordering robustness of the multihomed terminals and consequently the aggregate bandwidth.
     2. Modeling and analyzing the steady-state throughput and data privacy. A data transport model based Drop-tail Queue of the E2EMPT is proposed, with the consideration of the SCTP congestion control algorithm. By analyzing the average throughput of the congestion avoidance phase and the timeout retransmission phase, the E2EMPT steady-state throughput model is constructed, and a function of the E2EMPT throughput about the path loss ratio and path delay is derived. A relation model about the data privacy and the number of the path used in the E2EMPT is built. By making a tradeoff between the memory resource consumption and the data privacy, the model suggests the optimal number of the path used in E2EMPT heuristically.
     3. Modeling the receiver buffer blocking problem of the E2EMPT and proposing a path selection algorithm. A mathematic model to analyze the relationship between the maximum amount of the reordering packets and the path loss ratio and delay is estab-lished, when E2EMPT using the diverse path. Based on the model, this dissertation proposes a path selection algorithm to choose a set of paths with similar path delay and relatively low path loss ratio. The algorithm attempts to eliminate the influence of the diverse path character to the overall performance of the E2EMPT. Through simulations, the optimal path selection parameters are chosen, and the performance of the E2EMPT with path selection is evaluated.
     4. Proposing a source-directed path diversity in the interdomain routing to provide the best effort link disjointed end-to-end path for the E2EMPT. The iBGP that adopts the route reflection architecture has the path hiding problem. Through modifying the function of the route reflector to the route relay which could advertise multiple paths towards the same destination to the neighbors, the iBGP could recover the path redundancy. This dissertation presents the Source-Directed Path Diversity (SDPD). The SDPD makes the source specify the path used and express the preference on the path to the network, by inserting a path selection hint in the packets. The SDPD also could make the BGP routers forward the packets based the source hint, to exploit the path diversity at the best effort. The path similarity and path stretch of the diverse paths exploited by the source are measured in the simulation.
     This dissertation researches the E2EMPT, which has practical significance for the utilization of the multihomed terminals. Furthermore, this dissertation contributes to expand the ideas about the network researching, by trying to solve the relative issues of the Internet from the view of the terminals, and provides a useful guideline for the evolving of the Internet and the designing of the next generation networking.
引文
[1]第28次中国互联网络发展状况统计报告.中国互联网络信息中心(CNNIC),2011. http: //www.cnnic.cn/research/bgxz/tjbg/201107/P020110721502208383670.pdf.
    [2]移动互联网研究报告.摩根斯坦利,2009.http://www.morganstanley.com/ institutional/techresearch/pdfs/Mobile_Internet_Report_Setup_Chinese.pdf.
    [3]K. Leung. V. Li and D. Yang. An Overview of Packet Reordering in Transmission Control Protocol (TCP):Problems, Solutions, and Challenges. IEEE Transactions on Parallel and Distributed Systems,18(4):522-535,2007.
    [4]D. Meyer, L. Zhang and K. Fall. Report from the IAB Workshop on Routing and Ad-dressing. IETF RFC 4984, September 2007.
    [5]Y. Rekhter, T. Li and S. Hares. A Border Gateway Protocol 4 (BGP-4). IETF RFC 4271, January 2006. http://www.ietf.org/rfc/rfc4271.txt.
    [6]C. Labovitz. A. Ahuja and A. Bose. Delayed Internet Routing Convergence. IEEE/ACM Transactions on Networking,9(3):293-306,2001.
    [7]P. Francois, C. Filsfils and J. Evans. Achieving Sub-second IGP Convergence in Large IP Networks. ACM Computer Communication Review,35(3):35-44,2005.
    [8]J. Abley, K. Lindqvist, E. Davies, B. Black and V. Gill. IPv4 Multihoming Practices and Limitations. IETF RFC 4116, July 2005.
    [9]A. Dhamdhere and C. Dovrolis. ISP and Egress Path Selection for Multihomed Networks. In IEEE INFOCOM, pp.1-12. Barcelona, Spain,2006.
    [10]X. Liu and L. Xiao. A Survey of Multihoming Technology in Stub Networks:Current Research and Open Issues. IEEE Network,21(3):32-40,2007.
    [11]董平.基于身份与位置分离映射的可扩展路由体系研究[学位论文].北京交通大学.2008年12月.
    [12]T. Bu, L. Gao and D. Towsley. On Characterizing BGP Routing Table Growth. Computer Network,45(1):45-54,2004.
    [13]C.D. Launois and M. Bagnulo. The Paths Toward IPv6 Multihoming. IEEE Communi-cations Surveys & Tutorials,8(2):38-51,2006.
    [14]B. Carpenter and S. Jiang. Problem Statement for Renumbering IPv6 Hosts with Static Addresses. IETF Draft, December 2011. http://www.ietf.org/id/ draft-carpenter-6renum-static-problem-01.txt.
    [15]D. Farinacci, V. Fuller, D. Meyer and D. Lewis. Locator/ID Separation Protocol (LISP). IETF Draft. January 2012. http://www.ietf.org/id/draft-ietf-lisp-20.txt.
    [16]D. Farinacci, V. Fuller, D. Meyer and D. Lewis. LISP Alternative Topology (LISP+ALT). IETF Draft, December 2011. http://www.ietf.org/id/draft-ietf-lisp-alt-10.txt.
    [17]M. Wasserman and P. Seite. Current Practices for Multiple-Interface Hosts. IETF RFC 6419. November 2011.
    [18]E. Nordmark and M. Bagnulo. Shim6:Level 3 Multihoming Shim Protocol for IPv6. IETF RFC 5533, June 2009.
    [19]R. Moskowitz, P. Nikander, P. Jokela and T. Henderson. Host Identity Protocol. IETF RFC 5201, April 2008.
    [20]P. Nikander, T. Henderson, C. Vogt and J. Arkko. End-Host Mobility and Multihoming with the Host Identity Protocol. IETF RFC 5206, April 2008.
    [21]D. Johnson, C. Perkins and J. Arkko. Mobility Support in IPv6. IETF RFC 3775, June 2004.
    [22]R. Wakikawa, V. Devarapalli, G. Tsirtsis, T. Ernst and K. Nagami. Multiple Care-of Addresses Registration. IETF RFC 5648, October 2009.
    [23]D. Farinacci, D. Lewis, D. Meyer and C. White. LISP Mobile Node. IETF Draft, October, 2011. http://www.ietf.org/id/draft-meyer-lisp-mn-06.txt.
    [24]J. Ylitalo, V. Torvinen and E. Nordmark. Weak Identifier Multihoming Protocol Framework (WIMP-F). IETF Draft, June 2004. http://tools.ietf.org/html/ draft-ylitalo-multi6-wimp-01.
    [25]Erik Nordmark. Strong Identity Multihoming using 128 bit Identifiers (SIM/CBID128). IETF Draft, October 2003. http://tools.ietf.org/html/ draft-nordmark-multi6-sim-01.
    [26]R. Stewart, Ed. Stream Control Transmission Protocol. IETF RFC 4960, September 2007.
    [27]E. Kohler, M. Handlcy and S. Floyd. Datagram Congestion Control Protocol (DCCP). IETF RFC 4340, March 2006.
    [28]Eddie Kohler. Generalized Connections in the Datagram Congestion Con-trol Protocol. IETF Draft, June 2006. http://tools.ietf.org/html/ draft-kohler-dccp-mobility-02.
    [29]A. Ford, C. Raiciu, M. Handley, S. Barre, J. Iyengar. Architectural Guidelines for Multi-path TCP Development. IETF RFC 6182, March 2011.
    [30]M. Scharf and A. Ford. MPTCP Application Interface Considerations. IETF Draft, November,2011. http://www.ietf.org/id/draft-ietf-mptcp-api-03.txt.
    [31]M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round Robin. In ACM SIGCOMM. pp.231-242. Cambridge, MA, USA, 1995.
    [32]M. Laor and L. Gendel. The Effect of Packet Reordering in a Backbone Link on Application Throughput. IEEE Network, 16(5):28-36, 2002.
    [33]M. Yabandeh, S. Zarifzadeh and N. Yazdani. Improving Performance of Transport Pro-tocols in Multipath Transferring Schemes. Computer Communications, 30(17):3270-3284, 2007.
    [34]E. Blanton and M. Allman. On Making TCP More Robust to Packet Reordering. ACM Computer Communication Review, 32(1):20-30, 2002.
    [35]Z. Cao, Z. Wang and E.W. Zegura. Performance of Hashing-based Schemes for Internet Load Balancing. In IEEE INFOCOM, pp.332-341. TelAviv, Israel, 2000.
    [36]S. Kandula. D. Katabi, S. Sinha and A. Berger. Dynamic Load Balancing Without Packet Reordering. ACM Computer Communication Review, 37(2):53-62, 2007.
    [37]21CN Project. http://www.btplc.com/21cn/.
    [38]GENI. http://www.geni.net.
    [39]FIND. http://www.nets-find.net/.
    [40]NetSE. http://www.cra.org/ccc/netse.php.
    [41]SING & NGNI. http://www.nsf.gov/cise/funding/2007_12_net_sci_eng.jsp.
    [42]FIRE. http://cordis.europa.eu/fp7/ict/fire/.
    [43]张宏科,苏伟.新网络体系基础研究—一体化网络与普适服务.电子学报,35(4):593-598,2007.
    [44]董平,秦雅娟,张宏科.支持普适服务的一体化网络研究.电子学报,35(4):599-606,2007.
    [45]杨冬,周华春,张宏科.基于一体化网络的普适服务研究.电子学报,35(4):607-613,2007.
    [46]J. Arkko. B. Briscoe. L. Eggert, A. Feldmann and M. Handley. Dagstuhl Perspectives Workshop on End-to-End Protocols for the Future Internet. ACM Computer Communi-cation Review, 39(2):42-47, 2011.
    [47]A. Vishwanath, V. Sivaraman and G. N. Rouskas. Anomalous Loss Performance for Mixed Real-Time and TCP Traffic in Routers With Very Small Buffers. IEEE/ACM Transactions on Networking, 19(4):933-946, 2011.
    [48]H. Y. Hsien and R. Sivakumar. A Transport Layer Approach for Achieving Aggregate Bandwidths on Multihomed Mobile Hosts. In A CM MobiCom. pp.83-94. New York, USA. 2002.
    [49]M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A Transport Layer Ap-proach for Improving End-to-End Performance and Robustness Using Redundant Paths. In Proc. USENIX, pp.99-112. Boston, USA,2004.
    [50]M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. An Evaluation of Multi-path Transmission Control Protocol (M/TCP) with Robust Acknowledgement Schemes. IEICE transactions on communications,87(9):2699-2707,2005.
    [51]M. Honda, E. Balandina, P. Sarolahti and L. Eggert. Designing a Resource Pooling Transport Protocol. IEEE INFOCOM. Rio de Janeiro, Brazil, April 2009.
    [52]J. R. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer Using SCTP Mul-tihoming Over Independent End-to-End Paths. IEEE/ACM Transactions on Networking, 14(5):951-964,2006.
    [53]J. Liao, J. Wang, and X. Zhu. A Multi-path Mechanism for Reliable VoIP Transmission over Wireless Networks. Computer Networks,52(13):2450-2460,2008.
    [54]A.A.E. Al. T. Saadawi and M. Lee. LS-SCTP:A Bandwidth Aggregation Technique for Stream Control Transmission Protocol. Computer Communications,27(10):1012-1024, 2004.
    [55]Y. Dong, D. Wang. N. Pissinou, and J. Wang. Multipath Load Balancing in Transport Layer. In 3rd EuroNGI Conference on Next Generation Internet Networks. Trondheim, 2007.
    [56]V. Sharma, S. Kalyanaraman, K. Kar, K.K. Ramakrishnan and V. Subramanian. MPLOT: A Transport Protocol Exploiting Multipath Diversity using Erasure Codes. IEEE INFO-COM, pp.121-125. Phoenix, AZ, USA, April 2008.
    [57]M. Fiore and C. Casetti. An Adaptive Transport Protocol for Balanced Multihoming of Real-time Traffic. IEEE GLOBECOM, pp.523-530. St.Louis, MO, USA,2005.
    [58]J. R. Iyengar, P. Amer, and R. Stewart. Receive Buffer Blocking in Concurrent Multipath Transfer. IEEE GLOBECOM, pp.121-126. St.Louis, MO, USA,2005.
    [59]P. Natarajan, N. Ekiz, E. Yilmaz, P.D.Amer, J. Iyengar, R. Stewart. Non-Renegable Selective Acknowledgments(NR-SACKs) for SCTP. IEEE ICNP, pp.187-196. Orlando, USA.2008.
    [60]The network simulator ns-2. http://www.isi.edu/nsnam/ns/.
    [61]M. Allman, V. Paxson and E. Blanton. TCP Congestion Control. IETF RFC 5681, September 2009.
    [62]J. Padhye, V. Firoiu, D. Towsley and J. Kurose. Modeling TCP Reno Performance:A Simple Model and Its Empirical Validation. IEEE/ACM Transactions on Networking, 8(2):133-145,2000.
    [63]B. Sikdar. S. Kalyanaraman and K.S. Vastola. Analytic models for the Latency and Steady-state Throughput of TCP tahoe, Reno, and SACK. IEEE/ACM Transactions on Networking,11(6):959-971,2003.
    [64]P. Loiseau, P. Goncalves, J. Barral and P.V. Primet. Modeling TCP Throughput:An Elaborated Large-Deviations-Based Model and Its Empirical Validation. Performance Evaluation,67(11):1030-1043,2010.
    [65]薛淼,杨冬,高德云,张思东,张宏科.基于弃尾队列的SCTP稳态吞吐量建模与分析.北京交通大学学报,34(5):111-116,2010.
    [66]J. Zou, M.U. Uyar, M.A. Fecko, S. Samtani. Throughput Models for SCTP with Parallel Subfiows. Computer Networks,50(13):2160-2182,2006.
    [67]T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol version 1.2. IETF RFC 5246, August 2008.
    [68]S. Kent and K. Seo. Security Architecture for The Internet Protocol. IETF RFC 4301, December 2005.
    [69]IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard, Aug.1999
    [70]E. Tews, R.P. Weinmann, and A. Pyshkin. Breaking 104-bit WEP in Less Than 60 Seconds. Information Security Applications, LNCS 4867, pp.188-202,2008.
    [71]W. Lou, W. Liu and Y. Fang. SPREAD:Enhancing Data Confidentiality in Mobile Ad Hoc Networks. IEEE INFOCOM, pp.2404-2413. HongKong, China,2004.
    [72]P. Papadimitratos and Z. Haas. Secure Data Communication in Mobile Ad hoc Networks. IEEE Journal on Selected Areas in Communications,24(2):343-356,2006.
    [73]P.P.C. Lee, V. Misra and D. Rubenstein. Distributed Algorithms for Secure Multi-path Routing in Attack-Resistant Networks. IEEE/ACM Transactions on Networking, 15(6):1490-1501,2007.
    [74]C.F. Kuo, A.C. Pang and S.K. Chan. Dynamic Routing with Security Considerations. IEEE Transactions on Parallel and Distributed Systems,20(1):48-58,2009.
    [75]D. Wendlandt, I. Avramopoulos, D.G. Andersen and J. Rexford. Don't Secure Routing Protocols. Secure Data Delivery. ACM HotNets, pp.7-12. Irvine, California, USA,2006.
    [76]T. Ye, D. Veitch and J. Bolot. Improving Wireless Security Through Network Diversity. ACM Computer Communication Review,39(1):35-44,2009.
    [77]I. Csiszar and J. Korner. Broadcast Channels With Confidential Messages. IEEE Trans-actions on Information Theory,24(3):339-348,1978.
    [78]M. van Dijk. On a Special Class of Broadcast Channels With Confidential Messages. IEEE Transactions on Information Theory,43(2):712-714,1997.
    [79]Y.S. Qiao, E. Fallon and J. Murphy. Transmission Scheduling for Multi-homed Transport Protocols with Network Failure Tolerance. Telecommunication Systems,43(1-2):39-48. 2010.
    [80]R. Fracchia, C. Casetti, C.F. Chiasserini and M. Meo. WiSE:Best-Path Selection in Wire-less Mmultihoming Environments. IEEE Transactions on Mobile Computing,6(10):1130-1141.2007.
    [81]P. Natarajan, N. Ekiz, P.D. Amer and R. Stewart. Concurrent Multipath Transfer During Path Failure. Computer Communications,32(15):1577-1587,2009.
    [82]T. Dreibholz. M. Becke, E.P. Rathgeb and M. Txen. On the Use of Concurrent Multipath Transfer Over Asymmetric Paths. IEEE GLOBECOM, pp.1-6.2010.
    [83]J.X. Liao, J.Y. Wang, T.H. Li and X.M. Zhu. Introducing Multipath Selection for Con-current Multipath Transfer in the Future Internet. Computer Networks,55(4):1024-1035, 2011.
    [84]PingER Project,2010. http://www-iepm.slac.stanford.edu/pinger/ pinger-metrics-motion-chart-all-EDU.SLAC.STANFORD.N3-allyearly.html.
    [85]R. Teixeira, K. Marzullo, S. Savage and G.M. Voelker. Characterizing and Measuring Path Diversity of Internet Topologies. ACM SIGMETRICS, pp.304-305. San Diego, California, USA.2003.
    [86]S. Savage, A. Collins, E. Hoffman, J. Snell and T. Anderson. The End-to-End Effects of Internet Path Selection. ACM SIGCOMM, pp.289-299. Cambridge, MA, USA,1999.
    [87]D. Wischik, M. Handley and M. Bagnulo. The Resource Pooling Principle. A CM Computer Communication Review,38(5):47-52,2008.
    [88]L. Muscariello, D. Perino and D. Rossi. Do Next Generation Networks Need Path Diver-sity. IEEE ICC, pp.1-6. Dresden, Germany,2009.
    [89]S. Fashandi, S.O. Gharan and A.K. Khandani. Path Diversity over Packet Switched Networks:Performance Analysis and Rate Allocation. IEEE/ACM Transactions on Net-working,18(5):1373-1386,2010.
    [90]B. Albrightson, J. Garcia-Luna-Aceves and J. Boyle. EIGRP-A Fast Routing Protocol Based on Distance Vectors. Networld Interop, pp.136-147. Las Vegas. USA,1994.
    [91]J. Moy. OSPF Version 2. IETF RFC 2328, September 1998.
    [92]J. Hagino and H. Snyder. IPv6 Multihoming Support at Site Exit Routers. IETF RFC 3178, October 2001.
    [93]C. Launois and M. Bagnulo. The Paths Towards IPv6 Multihoming. IEEE Communica-tions Surveys and Tutorials,8(2):38-51,2006.
    [94]J. Han, D. Watson and F. Jahanian. An Experimental Study of Internet Path Diversity. IEEE Transactions on Dependable and Secure Computing,3(4):273-288,2006.
    [95]C. Raiciu, M. Handly and D. Wischik. Coupled Congestion Control for Multipath Trans-port Protocols. IETF RFC 6356, October 2011.
    [96]P. Psenak, S. Mirtorabi. A. Roy, L. Nguyen and P. Pillay-Esnaul. Multi-Topology (MT) Routing in OSPF. IETF RFC 4915, June 2007.
    [97]W. Xu and J. Rexford. MIRO:Multi-Path Interdomain Routing. ACM SIGCOMM, pp.171-182. Pisa, Italy,2006.
    [98]F. Wang and L. Gao. Path Diversity Aware Interdomain Routing. IEEE INFOCOM, pp.307-315. Rio de Janeiro,2009.
    [99]V.V. Schrieck, P. Francois and O. Bonaventure. BGP Add-Paths:The Scal-ing/Performance Tradeoffs. IEEE Journal on Selected Areas in Communications. 28(8):1299-1307,2010.
    [100]X. Yang, D. Clark and A. Berger. NIRA:A New Inter-domain Routing Architecture. IEEE/ACM Transactions on Networking,15(4):775-788,2007.
    [101]I. Ganichev, B. Dai, B. Godfrey and S. Shenker. YAMR:Yet Another Multipath Routing Protocol. ACM Computer Communication Review,40(5):14-19,2010.
    [102]P. B. Godfery, I. Ganichev, S. Shenker and I. Stoica. Path Diversity Aware Interdomain Routing. IEEE INFOCOM, pp.307-315. Rio de Janeiro.2009.
    [103]X. Yang and D. Wetherall. Source Selectable Path Diversity via Routing Deflections. A CM SIGCOMM, pp.159-170. Pisa, Italy,2006.
    [104]M. Motiwala, M. Elmore, N. Feamster and S.Vempala. Path Splicing. ACM SIGCOMM, pp.27-38. Seattle, Washington, USA,2008.
    [105]G.T.K. Nguyen, R. Agarwal, J. Liu, M. Caesar, P. B. Godfrey and S. Shenker. Slick Sackets. SIGMETRICS Performance Evaluation Review,39(1):205-216.2011.
    [106]Y. Rekhter, T. Li and S. Hares. A Border Gateway Protocol 4 (BGP-4). IETF RFC 4271, January 2006.
    [107]T. Bates, R. Chandra and E. Chen. BGP Route Reflection-An Alternative to Full Mesh iBGP. IETF RFC 2796, April 2000.
    [108]BGP Multipath. Cisco online documention. http://www.cisco.com/en/US/tech/tk365/ technolo-gies_tech_note09186a0080094431.shtml#bgpmpath.
    [109]J. Qiu. SimBGP:Python Event-Driven BGP Simulator. http://www.bgpvista.com/ simbgp.php.
    [110]Juniper. Configuring Per-flow Load Balancing Based on Hash Values. https://www.juniper.net/techpubs/en_US/junos11.1/topics/usage-guidelines/ policy-configuring-per-flow-load-balancing-based-on-hash-values.html.
    [111]B. Quoitin, S. Uhlig. C. Pelsser, L. Swinnen and O. Bonaventure. Interdomain Traffic Engineering with BGP. IEEE Communications Magazine, 39(1):205-216, 2011.
    [112]R. Zhang and M. Bartell. BGP Design and Implementation: Practical Guidelines for Designing and Deploying a Scalable BGP Routing Architecture. CISCO Press. 2003.
    [113]R. Braden. Requirements for Internet Hosts - Communication Layers. IETF RFC 1122, June 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700