用户名: 密码: 验证码:
基于过程模拟的越流区承压含水层脆弱性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业迅猛发展、人口的不断增长以及城市化进程的加快,对深层承压水的开采增加,从而导致深层承压水水头下降,人为的加强了浅层地下水与深层地下水的水力联系;受到污染的浅层地下水对深层承压水的安全构成威胁,如何衡量承压含水层受到污染的可能性是迫切需要解决的问题。
     本文在全面分析和总结目前国内外地下水脆弱性概念、分类和评价方法的基础上,提出将承压含水层顶板处污染物浓度超过最大允许浓度的累计时间作为承压含水层脆弱性指数,并以单井开采条件下承压含水层脆弱性评价为例对承压含水层脆弱性指数的合理性进行了数值验证。该脆弱性指数具有明确的物理意义,对污染物进入承压含水层的过程进行了详细的刻画,能够很好的反映出承压含水层受到污染的可能性大小,减少了人为因素对承压含水层脆弱性评价的影响。
     运用基于熵权的集对分析模型对济宁市浅层地下水水质进行评价,选出代表性的污染因子,利用MODFLOW和MT3D建立三维地下水流与污染物运移模型,计算承压含水层脆弱性指数;其评价结果与该地区两年后总硬度升高值的分布状况吻合较好,表明了评价结果的合理性,通过与迭置指数法进行对比分析了基于过程模拟的评价方法的优越性。
     在阐述承压含水层脆弱性评价特点以及分析污染物在越流作用下进入承压含水层物理过程的基础上,构建了基于一维描述的越流区承压含水层脆弱性简化评价方法。对理想条件下单井开采和济宁市承压含水层脆弱性,分别用三维模型模拟的方法和简化的一维模型模拟的方法进行评价,通过对评价结果的对比分析验证了简化评价方法的合理性,该方法适应于缺资料地区的承压含水层脆弱性评价。
     将蒙特卡罗随机模拟与参数随机化处理相结合,运用频率分析得到单井开采条件下不同脆弱性评价结果对应的可靠度,为风险决策提供依据。通过局部灵敏度分析和Morris法的全局灵敏度分析对基于一维描述的越流区承压含水层脆弱性简化评价方法中的参数进行灵敏度分析。
With the rapid development of industry and agriculture, the increasing expansion of population, and the acceleration of urbanization process, the confined groundwater exploitation is steadily increasing, resulting in the decline of groundwater head. When the confined groundwater head is lower than that of the shallow aquifer, the polluted shallow groundwater will recharge the confined aquifer through aquitard, which could lead to the pollution of confined aquifer. Hence, it is very urgent to map the degree of confined aquifer vulnerability to contaminants leaking from shallow aquifer due to confined groundwater pumping in order to realize the confined groundwater protection and sustainable development.
     In this thesis, based on the review and summarization of the concept, classification and assessment methods of groundwater vulnerability, the cumulative time for the pollutant concentration at the coping of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index. Then the assessment of confined aquifer vulnerability induced by a single pumping well is used to illustrate the rationality of vulnerability index. The confined aquifer vulnerability index has explicit physical meaning and has a detailed description of the process for the pollutant to enter the confined aquifer. The index can clearly express the probability that the confined aquifer is polluted and diminish the effect of the human factor to the assessment of the confined aquifer vulnerability.
     Shallow groundwater quality in Jining city is evaluated by the set pair analysis model based on entropy weight. Then the representative pollutant is chosen. Three dimensional numerical simulation models of groundwater flow and solute transport are established by MODFLOW and MT3D respectively. Then the confined aquifer vulnerability index is obtained. The results are reasonably consistent with the change of total hardness concentration after 2 years. Through comparison with the results from overlay and index methods, the advantages of the proposed method employing process simulation are analyzed.
     By analyzing the characteristic of vulnerability assessment and physical process of pollutant penetrating the aquitard, the simplified vulnerability assessment method through the establishment of one dimensional groundwater flow and solute transport models in the aquitard is constructed. Compared by the assessment results of the three dimensional groundwater flow and solute transport models, the simplified method is verified to be rational and especially suitable for the lack data area.
     As there are some uncertainties in confined aquifer vulnerability assessment, which affect the reliability of assessment results, the reliability of confined aquifer vulnerability assessment results induced by a single pumping well is quantitatively analyzed by randomly generating the most sensitive parameters using Monte Carlo method. The local sensitivity analysis and global sensitivity analysis-Morris screening method are used to analyze the sensitivity of parameters in regional confined aquifer vulnerability assessment.
引文
蔡道基,朱忠林,单正军,等.涕灭威对地下水污染敏感区的预测与区划试点.环境科学进展, 1995, 3(1): 11-37.
    陈崇希,李国敏.地下水溶质运移理论及模型.武汉:中国地质大学出版社, 1996.
    陈守煜,伏广涛,周惠成,等.含水层脆弱性模糊分析评价模型与方法.水利学报, 2002, (7): 23-30.
    陈守煜,王国利.含水层脆弱性的模糊优选迭代评价模型及应用.大连理工大学学报, 1999, 39(6): 811-815.
    陈占成,魏加华,王金凯,等.济宁市地面沉降初步分析.中国地质灾害与防治学报, 1998, 9(2): 167-172.
    丁桑岚.环境评价概论.北京:化学工业出版社, 2001.
    方樟,肖长来,梁秀娟,等.松嫩平原地下水脆弱性模糊综合评价.吉林大学学报:地球科学版, 2007, 37(3): 546-550.
    付素蓉,王焰新,蔡鹤生,等.城市地下水污染敏感性分析.地球科学——中国地质大学学报, 2000, 25(5): 482-486.
    郭永海,沈照理,钟佐燊,等.河北平原地下水有机氯污染及其与防污性能的关系.水文地质工程地质, 1996, 23(1): 40-42.
    郭仲伟.风险分析与决策.北京:机械工业出版社, 1987.
    贺瑞敏,张建云,王国庆,等.基于集对分析的广义水环境承载能力评价.水科学进展, 2007, 18(5): 730-735.
    贺新春,邵东国,陈南祥.地下水环境脆弱性分区研究.武汉大学学报:工学版, 2005, 38(1): 73-78.
    黄振平.水文统计学.南京:河海大学出版社, 2003.
    济宁市水利局.济宁地下水库可行性研究与城市供水应急预案. 2001a.
    济宁市水利局.济宁市地下水环境预测模型研究与南水北调城市水资源规划. 2001b.
    姜桂华.关中盆地地下水脆弱性研究[博士学位论文].西安:长安大学, 2002a.
    姜桂华.地下水脆弱性研究进展.世界地质, 2002b, 21(1): 33-38.
    姜建军.中国地下水污染现状与防治对策.环境保护, 2007, 381(19): 16-17.
    姜志群,朱元生.地下水污染敏感性评价中DRASTIC法的应用.河海大学学报:自然科学版, 2001, 29(2): 100-103.
    雷静.地下水环境脆弱性的研究[硕士学位论文].北京:清华大学, 2002.
    雷静,张思聪.唐山市平原区地下水脆弱性评价研究.环境科学学报, 2003, 23(1): 94-99.
    李爱花,刘恒,耿雷华,等.水利工程风险分析研究现状综述.水科学进展, 2009, 20(3): 453-459.
    李建新.德国饮用水水源保护区的建立与保护.地理科学进展, 1998, 17(4): 88-97.
    李建新.我国生活饮用水水源保护区的问题研究.环境保护科学, 2000, 26(4): 21-22.
    李建新,唐登银.生活饮用水地下水源保护区的划定方法——英国的经验值法与实例.地理科学进展, 1999, 18(2): 153-157.
    李梅,孟凡玲,李群,等.基于改进BP神经网络的地下水环境脆弱性评价.河海大学学报:自然科学版, 2007, 35(3): 245-250.
    李伟.地下水库特征参数分析及降水与地下水资源联合调蓄[硕士学位论文].南京:河海大学, 2005.
    李砚阁,雷志栋.地下水系统保护的标准与研究方法. 2004,Ⅲ-1-Ⅲ-6.
    李祚泳,丁恒康,丁晶.大气颗粒物源解析的BP网络权重分析模型.四川大学学报:自然科学版, 2004, 41(5): 1026-1029.
    林学钰,陈梦熊,王兆馨,等.松嫩盆地地下水资源与可持续发展研究.北京:地震出版社, 2000.
    林学钰,廖资生.中国的地下水资源开发及其负效应.长春地质学院学报, 1995,增刊Ⅱ: 2-7.
    刘长礼,张云,叶浩,等.包气带粘性土层的防污性能试验研究及其对地下水脆弱性评价的影响.地球学报, 2006, 27(4): 349-354.
    刘慧,龚士良.集对分析及在地下水环境质量评价中的应用.工程勘察, 2000, (5): 16-18.
    刘文国,武勇.城市地下水污染状况堪忧.瞭望, 2005, (42): 27-29.
    马金珠.塔里木盆地南缘地下水脆弱性评价.中国沙漠, 2001, 21(2): 170-174.
    马金珠,高前兆.干旱区地下水脆弱性特征及评价方法探讨.干旱区地理, 2003, 26(1): 44-49.
    孟宪萌.济宁市地表河流与地下水流耦合模拟与预测模型[硕士学位论文].南京:河海大学, 2007.
    邱林,唐红强,陈海涛,等.集对分析法在地下水水质评价中的应用.节水灌溉, 2007, (1): 13-15.
    邱菀华.管理决策与应用熵学.北京:机械工业出版社, 2001.
    束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析.河海大学学报:自然科学版, 2007, 35(5): 491-495.
    束龙仓,朱元生.地下水资源评价中的不确定性因素分析.水文地质工程地质, 2000a, (6): 6-8.
    束龙仓,朱元生.晋祠泉域地下水开采决策的风险分析.河海大学学报:自然科学版, 2000b, 28(6): 90-93.
    孙才志,林山杉.地下水脆弱性概念的发展过程与评价现状及研究前景.吉林地质, 2000, 19(1): 30-36.
    孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景.水科学进展, 1999, 10(4): 444-449.
    孙才志,左海军,栾天新.下辽河平原地下水脆弱性研究.吉林大学学报:地球科学版, 2007, 37(5): 943-948.
    唐克旺,吴玉成,侯杰.中国地下水资源质量评价(Ⅱ)——地下水水质现状和污染分析.水资源保护, 2006, 22(3): 1-4.
    王栋,朱元甡.随机观测误差对水环境评价的影响.水利学报, 2003, (10): 1-5.
    王栋,朱元甡,赵克勤.基于集对分析和模糊集合论的水体营养化评价模型的应用研究.水文, 2004, 24(3): 9-13.
    王国利,周惠成,杨庆.基于DRASTIC的地下水易污染性多目标模糊模式识别模型.水科学进展, 2000a, 11(2): 173-179.
    王国利,周惠成,张文国.含水层易污染性评价的模糊优选方法.水利学报, 2000b, (12): 72-76.
    王金生,王澎,刘文臣,等.划分地下水源地保护区的数值模拟方法.水文地质工程地质, 2004, 31(4): 83-86.
    王丽萍,傅湘.洪灾风险及经济分析.北京:水利电力出版社, 1999.
    武强,戴国锋,吕华,等.基于ANN与GIS耦合技术的地下水污染敏感性评价.中国矿业大学学报, 2006a, 35(4): 431-436.
    武强,王志强,赵增敏,等.油气田区承压含水层地下水污染机理及脆弱性评价.水利学报, 2006b, 37(7): 851-857.
    吴夏懿.基于GIS的济宁市地下水水质脆弱性评价[硕士学位论文].南京:河海大学, 2006.
    吴晓娟,孙根年.西安市地下水污染广义/狭义脆弱性对比研究.地球学报, 2007, 28(5): 475-481.
    徐崇刚,胡远满,常禹,等.生态模型的灵敏度分析.应用生态学报, 2004, 15(6): 1056-1062.
    徐海珍,李国敏,张寿全,等.地下水水源地保护区划分方法研究综述.水利水电科技进展, 2009, 29(2): 80-84.
    徐明峰,李绪谦,金春花,等.尖点突变模型在地下水特殊脆弱性评价中的应用.水资源保护, 2005, 21(5): 19-22.
    徐明峰,马振洲.长春市区地下水源地保护区划分研究.东北水利水电, 2006, 24(9): 22-24.
    徐中华.济宁市水资源数据库管理系统的研建[硕士学位论文].西安:长安大学, 2003.
    徐钟济.蒙特卡罗方法.上海:上海科学技术出版社, 1985.
    严明疆,张光辉,王金哲,等.地下水的资源功能与易遭污染脆弱性空间关系研究.地球学报, 2007, 28(6): 585-590.
    闫文周,顾连胜.熵权决策法在工程评标中的应用.西安建筑科技大学学报, 2004, 36(1): 98-100.
    杨庆,栾茂田.地下水易污性评价方法—DRASTIC指标体系.水文地质与工程地质, 1999, (2): 4-9.
    杨庆,栾茂田,崇金著,等. DRASTIC指标体系法在大连市地下水易污性评价中的应用.大连理工大学学报, 1999, 39(5): 684-688.
    杨松茂,薛迎春.洛阳市饮用水地下水源保护区划分研究.环境科学研究, 1997, 10(2): 28-31.
    姚文峰.基于过程模拟的地下水脆弱性研究[博士学位论文].北京:清华大学, 2007.
    姚文峰,张思聪,唐莉华,等.海河流域平原区地下水脆弱性评价.水力发电学报, 2009a, 28(1): 113-118.
    姚文峰,唐莉华,张思聪.过程模拟法及其在唐山平原区地下水脆弱性评价中的应用.水力发电学报, 2009b, 28(1): 119-123.
    张保祥.黄水河流域地下水脆弱性评价与水源保护区划分研究[博士学位论文].北京:中国地质大学, 2006.
    张晓明.海河流域华北平原浅层地下水模型研究.海河水利, 2007, (3): 52-54.
    赵克勤.基于集对分析的方案评价决策矩阵与应用.系统工程, 1994, 12(4): 67-72.
    赵克勤.集对分析及其初步应用.杭州:浙江科学技术出版社, 2000.
    赵克勤,宣爱理.集对论——一种新的不确定性理论方法与应用.系统工程, 1996, 14(1): 18-23.
    郑西来,李涛,贾丽华.基于MapInfo的大沽河地下水库脆弱性评价.中国海洋大学学报, 2004, 34(6): 1023-1028.
    郑西来,吴新利,荆静.西安市潜水污染的潜在性分析与评价.工程勘察, 1997, (4): 22-25.
    中国地质调查局.中国地下水资源与环境调查成果, 2005. http://old.cgs.gov.cn/NEWS/Geology%20News/2005/20050826/02.htm.
    中华人民共和国建设部综合勘察设计院.山东省济宁市地下水资源管理模型研究(科研报告). 1990.
    周惠成,王国利.基于DRASTIC模型含水层易污染性模糊综合评价.大连理工大学学报, 2001, 41(2): 212-215.
    周建伟,李菊凤,周爱国等.济宁市城区地面沉降的成因和规律性探讨.湖南科技大学学报: 自然科学版, 2005, 20(1): 6-9.
    周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社, 2005.
    朱元生,韩国宏.风险定量评估的通用理论.南京:河海大学出版社, 1985.
    邹胜章,张文慧,梁彬,等.西南岩溶区表层岩溶带水脆弱性评价指标体系的探讨.地学前缘, 2005, 12(特刊): 152-158.
    邹志红,孙靖南,任广平.模糊评价因子的熵权法赋权及其在水质评价中的应用.环境科学学报, 2005, 25(4): 552-556.
    左其亭,马军霞.地下水系统中的不确定性信息及其处理方法.水文地质工程地质, 1994, (5): 41-43.
    Al-Adamat R, Foster I, Baban S. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography, 2003, 23(4): 303-324.
    Alberti L, De Amicis M, Masetti M, et al. Bayes’rule and GIS for evaluating sensitivity of groundwater to contamination. IAMG Annual Conference, 2001.
    Al-Zabet T. Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environmental Geology, 2002, 43(1-2): 203-208.
    Babiker I S, Mohamed M A A, Hiyama T, et al. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 2005, 345(1-3): 127-140.
    Bair E S, Lahm T D. Variations in capture-zone geometry of a partially penetrating pumping well in an unconfined aquifer. Ground Water, 1996, 34(5): 842-852.
    Bair E S, Springer A E, Roadcap G S. Delineation of travel time-related capture areas of wells using analytical flow models and particle-tracking analysis. Ground Water, 1991, 29(3): 387-397.
    Bakker M, Strack O D L. Capture zone delineation in two-dimensional groundwater flow models. Water Resources Research, 1996, 32(5): 1309-1315.
    Barca E, Passarella G. Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation. Environmental Monitoring and Assessment, 2008, 137(1-3): 261-273.
    Bates L E, Barber C, Otto C. Aquifer vulnerability mapping using GIS and Bayesian weights of evidence: review of application [poster paper]. Volume HydroGIS '96, 16-19 April 1996, Vienna, Austria: 7-15.
    Bear J, Jacobs M. On the movement of water bodies injected into aquifers. Journal of Hydrology, 1965, 3(1): 37-57.
    Blandford T N, Huyakorn P S. WHPA: an integrated semi-analytical model for delineation of wellhead protection areas. Washington, D. C.: U.S. EPA Office of Ground Water Protection, 1989.
    Bonn B, Rounds S. DREAM: analytical groundwater flow program. Chelsea: Lewis Publishers, 1990.
    Brosig K, Geyer T, Subah A, et al. Travel time based approach for the assessment of vulnerability of karst groundwater: The Transit Time Method. Environmental Geology, 2008, 54(5): 905-911.
    Burkart M R, Kolpin D W, James D E. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US. Water Science and Technology, 1999, 39(3): 103-112.
    Christ J A, Goltz M N. Hydraulic containment: Analytical and semi-analytical models for capture zone curve delineation. Journal of Hydrology, 2002, 262(1-4): 224-244.
    Cukier R I, Fortuin C M, Shuler K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficientsⅠ. Theory. Journal of Chemical Physics, 1973, 59(3): 3873-3878.
    Dixon B. Application of Neuro-Fuzzy techniques to predict ground water vulnerability. In (C. A. Brebbia, ed.) Risk AnalysisⅢ. WIT Press, Southampton, UK. 2002a, 485-495.
    Dixon B, Scott H D, Dixon J C, et al. Prediction of aquifer vulnerability to pesticides using fuzzy rule-based models at the regional scale. Physical Geography, 2002b, 23: 130-152.
    Dixon B. Prediction of ground water vulnerability using an integrated GIS-based neuro-fuzzy techniques. Journal of Spatial Hydrology, 2004, 4(2): 1-38.
    Dixon B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Applied Geography, 2005a, 25(4): 327-347.
    Dixon B. Applicability of Neuro-fuzzy techniques in predicting groundwater vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology, 2005b, 309(1-4): 17-38.
    Esling S P, Keller J E, Miller K J. Reducing capture zone uncertainty with a systematic sensitivity analysis. Ground Water, 2008, 46(4): 570-578.
    Evans B M, Myers W L. A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. Journal of Soil and Water Conservation, 1990, 45(2): 242-245.
    Evers S, Lerner D N. How uncertain is our estimate of a wellhead protection zone. Ground Water, 1998, 36(1): 49-57.
    Fadlelmawla A A, Dawoud M A. An approach for delineating drinking water wellhead protection areas at the Nile Delta, Egypt. Journal of Environmental Management, 2006, 79(2): 140-149.
    Faybishenko B A, Javandel I, Witherspoon P A. Hydrodynamics of the capture zone of a partially penetrating well in a confined aquifer. Water Resources Research, 1995, 31(4): 859-866.
    Ferguson G. Heterogeneity and thermal modeling of ground water. Ground Water, 2007, 45(4): 485-490.
    Feyen L, Gomez-Hernandez J J, Ribeiro P J, et al. A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resources Research, 2003, 39(5): SBH101-SBH1013.
    Fienen M N, Luo J, Kitanidis P K. Semi-analytical homogeneous anisotropic capture zone delineation. Journal of Hydrology, 2005, 312(1-4): 39-50.
    Focazio M J, Reilly T E, Rupert M G, et al. Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers. U S Geological Survey Circular 1224, 2002.
    Franzetti S, Guadagnini A. Probabilistic estimation of well catchments in heterogeneous aquifers. Journal of Hydrology, 1996, 174(1-2): 149-171.
    Freeze R A. A stochastic conceptual analysis of one-dimensional groundwater flow in nonuniform homogenous media. Water Resources Research, 1975, 11(5): 725-741.
    Frind E O, Molson J W, Rudolph D L. Well vulnerability: a quantitative approach for source water protection. Ground Water, 2006, 44(5): 732-742.
    Fritch T G, Mcknight C L, Yelderman J C, et al. An aquifer vulnerability assessment of the paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environmental Management, 2000, 25(3): 337-345.
    Gemitzi A, Petalas C, Tsihrintzis V A, et al. Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology. 2006, 49(5): 653-673.
    Gogu R C, Dassargues A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 2000, 39(6): 549-559.
    Haimes Y Y. Risk analysis, systems analysis, and Covey’s seven habits. Risk Analysis, 2001, 21(2): 217-224.
    Hamby D M. A comparison of sensitivity analysis techniques. Health Physics, 1995, 68(2): 195-204.
    Herlinger Jr R, Viero A P. Groundwater vulnerability assessment in coastal plain of Rio Grande do Sul State, Brazil, using drastic and adsorption capacity of soils. Environmental Geology, 2007, 52(5): 819-829.
    Herrera P, Valocchi A. Positive solution of two-dimensional solute transport in heterogeneous aquifers. Ground Water, 2006, 44(6): 803-813.
    Ibe K M, Nwankwor G I, Onyekuru S O. Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri, Southeastern Nigeria. Environmental Monitoring and Assessment, 2001, 67(3): 323-360.
    Indelman P, Lessoff S C, Dagan G. Analytical solution to transport in three-dimensional heterogeneous well capture zones. Journal of Contaminant Hydrology, 2006, 87(1-2): 1-21.
    Jacobson E, Andricevic R, Morrice J. Probabilistic capture zone delineation based on an analytic solution. Ground Water, 2002, 40(1): 85-95.
    Javandel I, Tsang C F. Capture-zone type curves: a tool for aquifer cleanup. Ground Water, 1986, 24(5): 616-625.
    Kim Y J, Hamm S Y. Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique in Cheogju area, South Korea. Hydrogeology Journal, 1999, (7): 227-235.
    Kinzelbach W, Marburger M, Chiang W H. Determination of groundwater catchment areas in two and three spatial dimensions. Journal of Hydrology, 1992, 134(1-4): 221-246.
    Kompani-Zare M, Zhan H, Samani N. Analytical study of capture zone of a horizontal well in a confined aquifer. Journal of Hydrology, 2005, 307(1-4): 48-59.
    Lake I R, Lovett A A, Hiscock K M, et al. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. Journal of Environmental Management, 2003, 68(3): 315-328.
    Lasserre F, Razack M, Banton O. A GIS-linked model for assessment of nitrate contamination in groundwater. Journal of Hydrology, 1999, 224(3-4): 81-90.
    Lerner D N. Well catchments and time-of-travel zones in aquifers with recharge. Water Resources Research, 1992, 28(10): 2621-2628.
    Loague K, Bernknopf R L, Green R E, et al. Uncertainty of groundwater vulnerability assessments for agricultural regions in Hawaii: Review. Journal of Environmental Quality, 1996, 25(3): 475-490.
    Lu Z, Zhang D. On stochastic study of well capture zones in bounded, randomly heterogeneous media. Water Resources Research, 2003, 39(4): SBH71-SBH712.
    Lynch S D, Reynders A G, Schulze R E. A DRASTIC approach to groundwater vulnerability in South Africa. South African Journal of Science, 1997, 93(2): 59-60.
    Mao Yuanyuan, Zhang Xuegang, Wang Liansheng. Fuzzy pattern recognition method for assessing groundwater vulnerability to pollution in the Zhangji area. Journal of Zhejiang University: Science, 2006, 7(11): 1917-1922.
    McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Survey Techniques of Water Resources Investigations, 1988.
    McKay M D, Beckman R J, Conover W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21(2): 239-245.
    Merchant J W. GIS-based groundwater pollution hazard assessment: a critical review of the DRASTIC model. Photogrammetric Engineering and Remote Sensing, 1994, 60(9): 1117-1128.
    Morris M D. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2): 161-174.
    Muskat M. The flow of homogeneous fluids through porous media. New York: Mc Graw-Hill, 1937.
    National Research Council. Groundwater vulnerability assessment, contamination potential under conditions of uncertainty. Washington, D.C.: National Academy Press, 1993.
    National Rivers Authority. Policy and practice for the protection of groundwater. Bristol, United Kingdom: NRA, 1992.
    Neukum C, Azzam R. Quantitative assessment of intrinsic groundwater vulnerability to contamination using numerical simulations. Science of the Total Environment, 2009, 408(2): 245-254.
    Nolan B T. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water, 2001, 39(2): 290-299.
    Pathak D R, Hiratsuka A, Awata I, et al. Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environmental Geology, 2009, 57(7): 1569-1578.
    Peeyush V. Linked GIS with groundwater modeling: a tool for evaluation aquifer vulnerability. American society of Agricultural Engineers, International winter meeting, 1992.
    Pollock D W. User’s Guide for MODPATH/MODPATH-PLOT: a particle tracking post-processing package for MODFLOW. Virginia: the U.S. Geological Survey, Earth Science Information Center, 1994.
    Ranjithan S, Eheart J W, Garrett J H. Neural network-based screening for groundwater reclamation under uncertainty. Water Resources Research, 1993, 29(3): 563-574.
    Ray I A, Odell P W. DIVERSITY: a new method for evaluating sensitivity of groundwater to contamination. Environmental Geology, 1993, 22(4): 344-352.
    Riva M, Sanchez-Vila X, Guadagnini A, et al. Travel time and trajectory moments of conservative solutes in two-dimensional convergent flows. Journal of Contaminant Hydrology, 2006, 82(1-2): 23-43.
    Rock G, Kupfersberger H. Numerical delineation of transient capture zones. Journal of Hydrology, 2002, 269(3-4): 134-149.
    Rupert M G. Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water, 2001, 39(4): 625-630.
    Saltelli A, Chan K, Scott M. Sensitivity analysis, probability and statistics series. New York: John Wiley & Sons, 2000a.
    Saltelli A, Scott E M, Chen K. Sensitivity analysis. Wiley: Chichester, 2000b.
    Schafer D C. Determining 3D capture zones in homogeneous, anisotropic aquifers. Ground Water, 1996, 34(4): 628-639.
    Schlosser S A, McCray J E, Murray K E, et al. A subregional-scale method to assess aquifer vulnerability to pesticides. Ground Water, 2002, 40(4): 361-367.
    Secunda S, Collin M L, Melloul A J. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management, 1998, 54(1): 39-57.
    Shahid S. A study of groundwater pollution vulnerability using DRASTIC/GIS, West Bengal, India. Journal of Environmental Hydrology, 2000, 8(1): 1-8.
    Shammas M I, Jacks G. Seawater intrusion in the Salalah plain aquifer, Oman. Environmental Geology, 2007, 53(3): 575-587.
    Shamrukh M, Corapcioglu M, Hassona F. Modeling the effect of chemical fertilizers on ground water quality in the Nile Valley Aquifer, Egypt. Ground Water, 2001, 39(1): 59-67.
    Simonovic S P. Risk in sustainable water resources management. Sustainability of Water Resources under Increasing Uncertainty (Proceedings of Rabat Symposium S1, April 1997), IAHS-AISH Publication, 1997, 240: 3-17.
    Sobol’I M. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1993, 1(4): 407-414.
    Soutter M, Musy A. Coupling 1D Monte-Carlo simulations and geostatistics to assess groundwater vulnerability to pesticide contamination on a regional scale. Journal of Contaminant Hydrology, 1998, 32(1-2): 25-39.
    Stewart I T, Loague K. A type transfer function approach for regional-scale pesticide leaching assessments. Journal of Environmental Quality, 1999, 28(2): 378-387.
    Stewart I T, Loague K. Development of type transfer functions for regional-scale nonpoint source groundwater vulnerability assessments. Water Resources Research, 2003, 39(12): SBH171-SBH1713.
    Stewart I T, Loague K. Assessing ground water vulnerability with the type transfer function model in the San Joaquin Valley, California. Jounral of Environmental Quality, 2004, 33(4): 1487-1498.
    Taylor J Z, Person M. Capture Zone delineations on island aquifer systems. Ground Water, 1998, 36(5): 722-730.
    Tesoriero A J, Voss F D. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: implications for aquifer susceptibility and vulnerability. Ground Water, 1997, 35(6): 1029-1039.
    Thomas H. Delineating groundwater sources and protection zones. Davis: University of California, 2002.
    Tim U S, Jain D, Liao H. Interactive modeling of ground-water vulnerability within a geographic information system environment. Ground Water, 1996, 34(4): 618-627.
    Todd D K. Groundwater hydrology. New York: John Wiley, 1959.
    Tosco T, Sethi R, Di Molfetta A. An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas. Water Resources Research, 2008, 44(7): 295-307.
    Turanyi T. Sensitivity analysis of complex kinetic systems: tools and applications. Journal of Mathematical Chemistry, 1990, 5(3): 203-248.
    Twarakavi N K C, Kaluarachchi J J. Arsenic in the shallow ground waters of conterminous United States: assessment, health risks, and costs for MCL compliance. Journal of the American Water Resources Association, 2006, 42(2): 275-294.
    Uddameri V, Honnungar V. Combining rough sets and GIS techniques to assess aquifer vulnerability characteristics in the semi-arid South Texas. Environmental Geology, 2007, 51(6): 931-939.
    United States Environmental Protection Agency. Guidelines for delineation of wellhead protection areas. Washington, D.C.: U.S. Environmental Protection Agency, Office of Groundwater Protection, 1987.
    Van Duijvenbooden W, Van Waegengh H G. Vulnerability of soil and groundwater to pollutants. TNO Committee on Hydrological Research, Delft, the Netherlands, 1987.
    Van Leeuwen M, Butler A P, te Stroet C B M, et al. Stochastic determination of well capture zones conditioned on regular grids of transmissivity measurements. Water Resources Research, 2000, 36(4): 949-957.
    Van Leeuwen M, te Stroet C B M, Butler A P, et al. Stochastic determination of well capture zones. Water Resources Research, 1998, 34(9): 2215-2223.
    Van Leeuwen M, te Stroet C B M, Butler A P, et al. Stochastic determination of the Wierden (Netherlands) capture zones. Ground Water 1999, 37(1): 8-17.
    Vassolo S, Kinzelbach W, Schafer W. Determination of a well head protection zone by stochastic inverse modeling. Journal of Hydrology, 1998, 206(3-4): 268-280.
    Vrba J, Zaporozec A. Guidebook on Mapping Groundwater Vulnerability. International Contributions to hydrogeology Founded by G.Castany, E.Groba, E.Romijn. Volume (16). Hanover: Heise, 1994.
    Wagner B J, Gorelick S M. Optimal groundwater quality management under parameter uncertainty. Water Resources Research, 1987, 23(7): 1162-1174.
    Worrall F, Kolpin D W. Aquifer vulnerability to pesticide pollution-combining soil, land-use and aquifer properties with molecular descriptors. Journal of Hydrology, 2004, 293(1-4): 191-204.
    Zhang D, Lu Z. Stochastic analysis of well capture zones in heterogeneous porous media: a moment equation-based approach. IAHS-AISH Publication, 2002, (277): 515-521.
    Zheng C. MT3D, a modular three-dimensional transport model for simulation of advection, dispersion, and chemical reactions in groundwater systems. Report to the U.S. Environmental Protect. Agency, Ada, OK, 1990.
    Zhou Huicheng, Wang Guoli, Yang qing. A multi-objective fuzzy recognition model for assessing groundwater vulnerability based on the DRASTIC system. Hydrological Sciences, 1999, 44(4): 611-618.
    Zlotnik V A. Effects of anisotropy on the capture zone of a partially penetrating well. Ground water, 1997, 35(5): 842-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700