用户名: 密码: 验证码:
钢悬链线输流立管非线性振动数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢悬链线立管大量的优点使其成为深水油气资源开发的首选立管系统。作为海面与海底的一种联系通道,它既可用于浮式海洋平台,又可用于固定式平台及钻探船舶。钢悬链线立管内部一般有高压的油或气流过,外部承受波浪、海流作用,当波浪、海流流经立管时,在一定的流速下会产生涡旋脱落,使立管发生涡激振动,当海洋立管自振频率与旋涡脱落频率接近时,振动会迫使旋涡脱落频率固定在结构自振频率附近,发生频率锁定(lock—in)现象,引起管道振动加强。所以,在钢悬链线立管的设计中,涡激振动是一个非常重要的问题。另外,钢悬链线立管在触地点附近的管土相互作用、以及触地点弯矩的动力放大等问题,多数是由顶部浮体的运动引起的。因此钢悬链线立管的动力分析需要深入研究立管系统在涡激升力以及在顶部浮体激励下的动力响应。
     当管内介质流经挠曲的管道时,由于管道曲率的变化和管道的横向振动,流体发生加速,这些加速的力会反过来作用在管道上,引起管道的附加振动。钢悬链线输流立管在涡激振动和管内流体流动的共同作用下可能引起大幅度的振动,使得应力加大,易引起管道的疲劳破坏。目前,同时考虑管道内外流共同作用的涡激振动理论研究较少。因此,考虑管内流体流动及管外海洋环境共同作用的钢悬链线输流立管理论研究,不仅有重要的科学意义,在工程上亦有较大的应用价值。
     本文利用虚功原理,其中包括轴向应变能和弯曲应变能所做的虚功以及重力、惯性力、外部流体作用力和结构阻尼所做虚功,建立了适用于计算分析自由悬挂钢悬链线立管的三维动力学数学模型。将Euler方程联合平衡方程得到了立管在笛卡尔坐标系内的整体耦合运动方程。利用Galerkin有限元法得到质量、阻尼和刚度矩阵,通过计算矩阵的特征值来确定立管的固有频率以及模态形状。通过数值计算验证模型的正确性,并且分析各种参数变化对钢悬链线立管动力特性的影响。
     用Matteoluca尾流振子模型来模拟流体对立管的涡激振动作用力,求解立管涡激振动响应;将顶部浮体的运动简化为正弦运动施加于立管顶部,求解立管的动力响应。与相关的研究结果进行比较,验证本文模型的有效性,并用Matlab编制计算程序,分析了内流流速、顶部张力以及外部流体对立管动力响应的影响。结果表明:不同外流流速钢悬链线立管的涡激振动出现不同的多阶模态的耦合振动,内流流速和顶部张力的变化会改变立管的涡激振动响应频率、幅值以及应力和弯矩。顶部浮体激励频率的变化会改变立管的应力和弯矩的分布,特别是顶部和底部的变化较大。激励幅值和内流、顶部张力以及外流的存在对响应应力和弯矩都有不同程度的影响。
Steel catenary risers are the main connecter between a platform and the mouth of a well in the seabed and can be applied to floating platform, fixed platform and drilling shipping systems. The risers generally contain flowing oil or high pressure gas and bear the action of wave and current outside. When current or wave flows across the risers at certain speed, there will appear vortex shedding, and if the frequency of the risers is close to that of the vortex shedding, oscillation will make the vortex shedding frequency fixed nearby to the structural natural frequency and cause large amplitude vibration which is called 'lock-in' state. So the vortex-induced vibration is an important factor in the design of steelcatenary riser system. Otherwise some indicative examples include the riser-soil interaction effects in bottoms of practically unknown contour, the ill-understood vortex induced vibration (VIV) effects and the floater vortex induced motion (VIM) induced riser fatigue, extreme dynamic amplification of bending moments at the touch-down region, etc. Some of these issues are related to the dynamic response of the riser under imposed excitation applied at the top of the structure, which represents the motions of the floating vessel. Therefore the dynamic analysis of steel catenary risers is a key issue that requires deep and comprehensive investigation of the associated system, proper formulation of the theoretical model and finally, the use of an efficient solution method.
     When internal fluid travels along the curved path inside the deflected risers, it experiences centrifugal and coriolis accelerations because of the curvature of the risers and the relative motion of fluid to the time dependent risers motion, respectively. Those accelerations exert against the risers and, in turn, affect the dynamic behavior of the risers and cause additional vibrations. Steel catenary risers subjected to the vortex-induced vibration and the internal fluid may experience large response which gives rise to oscillatory stresses and cause fatigue damage. The numerical studies that were focused on the VIV considering internal flowing have not been carried out yet. So the numerical simulation on VIV considering internal flow flowing has both scientific and practical value.
     This paper presents a model formulation that can be used for analyzing the three-dimensional vibration behaviours of inclined extensible steel catenary risers. The virtual work-energy functional, which involves strain energy due to axial stretching and bending moment of the riser and virtual work done by the gravitational, inertial, and external hydrostatic and drag forces, is formulated. The coupled equations of motion in the Cartesian coordinates of global systems are obtained by taking into account the difference between Euler's equations and equilibrium equations. The method of Galerkin finite element is used to obtain the mass damping and stiffness matrices. Then the eigenvalue problem is solved to determine its natural frequencies and corresponding mode shapes. The numerical investigations are carried out to demonstrate the validity of the model and to explore in details the influence of various parameters on the behaviours of steel catenary risers.
     Try to simulate the fluid induced vibration of riser vortex force by Matteoluca wake oscillator model, solving riser vortex induced vibration. The motion of the floating body is simplified as sinusoidal excitation imposed on the riser at the top, solving the dynamic response of riser. And related research results were compared to verify the validity of this model. The program in Matlab was complied, detailed analysis of the dynamic response of riser influenced by the internal fluid velocity, the top tension and the external fluid. The results indicate that:steel catenary riser has different multi-modal coupling vortex induced vibrations under different external fluid velocity. Internal fluid velocity and top tension may change the riser vortex induced vibration frequency, amplitude, dynamic stress and bending moment. Top floating-body excitation frequency may change the distribution of dynamic stress and bending moment of the riser, and large changes in the top and bottom. Excitation amplitude, internal fluid velocity, top tension and the existence of external fluid may change the dynamic stress and bending moment of the response in different degrees.
引文
[1]金庆焕.深水油气是当今海洋油气勘探的主要热点[J].科学中国人,2006,(11):18-19.
    [2]李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气,2006,18(2):130-133.
    [3]C. A. Martins and E. Higashi. A Parametric Analysis of Steel Catenary Risers:Fatigue Behavior near the Top. Proceedings of the International Offshore and Polar Engineering Conference,2000,2,54-59.
    [4]Claudio Marcio Silva Dantas, Marcos Queija de Siqueira, Gilberto Bruno Ellwanger, Ana Lucia F. Lima Torres and Marcio Martins Mourelle. A Frequency Domain Approach for Random Fatigue Analysis of Steel Catenary Risers at Brazil's Deep Waters. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE, 2004,1,199-209.
    [5]Blevins, R D. Flow-induced vibrations[M].2nd edn. New York:Van Nostrand & Co.,1990.
    [6]Feodos'ev, V. P.. Vibrations and stability of a pipe when liquid flows through it[J]. Inzhenernyi Sbornik,10:169-170.
    [7]Housner, G. W.. Bending vibration of pipeline containing flowing fluid[J]. Journal of Applied Mechanics,1952,19:205-208.
    [8]Paidoussis, M. P.. Issid, N.T., Dynamic Stability of pipes conveying fluid[J]. Journal of Sound and Vibration,1974,33 (3):267-294.
    [9]Shilling, R.Ⅲ.. Lou, Y. K., An experimental study on the dynamic response of a vertical cantilever pipe conveying fluid [J]. Journal of Energy Resources Technology,1980,102: 129-135.
    [10]Wu, M. C., Lou, J. Y. K.. Effect of rigidity and internal flow on marine riser dynamics[J]. Applied Ocean Research,1991,13 (5):235-244.
    [11]Chen, S. S.. Dynamics stability of tube conveying fluid[J]. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers,1971, 1469-1485.
    [12]Moe.G. and Chucheepsakul.S. The effect of internal flow on Marine risers.7th Internatinal Conference on Offshore Mechanics and Arctic Engineering,1998,375-382.
    [13]Namseeg Hong, Taiknyung Huh. Effect of internal flow on vortex-induced viration of riser. Proceediings of the Ninth International Offshore and Polar Engineering Conference, Brest, France,1999,688-693.
    [14]Hugh Howells. Advances in Steel Catenary Riser Design[R].2H Offshore Engineering Ltd, 1995.
    [15]R.Y. Edwards, R.Z.M. Filho, W.F. Hennessy, C.R. Campman, H. Bailon. Load Monitoring at the Touch Down Point of the First Steel Catenary Riser Installed in a Deepwater Moored Semi-submersible Platform[A]. Proceedings-Offshore Technology Conference[C]. Houston, USA, OTC,1999,2:295-303.
    [16]Ricardo Franciss and Elton Ribeiro. Analyses of a Large diameter Steel Lazy Wave Riser for Ultra Deepwater in Campos Basin. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2004,1:355-361
    [17]K.M. Lund. P. Jensen, D. Karunakaran, K.H. Halse. A Steel Catenary Riser Concept for Statfjord C. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Lisbon, Portugal, OMAE,1998,1-9.
    [18]M. K. Nygard, A. Sele, K.M. Lund. Design of a 25.5-in Titanium Catenary Riser for the Asgard B Platform. Proceedings-Offshore Technology Conference, Houston, USA,2000, 3:343-354.
    [19]G. Chaudhury, J. Kennefick. Design, Testing and Installation of Steel Catenary Risers. Proceedings of Offshore Technology Conference, Houston, USA,1999,2(2):339-346.
    [20]G. Chaudhury, J. Kennefick. Design, Testing and Installation of Steel Catenary Risers. Proceedings of Offshore Technology Conference, Houston, USA,1999,2(2):339-346.
    [21]C. T. Gore, El Paso and Basim B. Mekha. Common Sense Requirements (CSRs) for Steel Catenary Risers (SCRs). Proceedings-Offshore Technology Conference,2002, OTC14153.
    [22]D. R. Korth, B. S. J. Chou and G. D. McCullough. Design and Implementation of the First Buoyed Steel Catenary Risers. Proceedings-Offshore Technology Conference, OTC, 2002,1339-1357.
    [23]H. Howells. Analysing the Practicalities of Moving to Steel Catenary Risers in the Atlantic Frontier. H Offshore Engineering Limited Technology Report, January.1996.
    [24]S.K. Patel, D. Kumar, B. Master, D. Karunakaran. Design of Steel Catenary Riser for Deepwater Fields in Indian Offshore-A Case Study. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2001,2:1-6.
    [25]Stephen A. Hatton, Neil Willis. Steel Catenary Risers for Deepwater Environment[A]. Proceedings-Offshore Technology Conference[C]. Houston, USA, OTC,1998, OTC8607.
    [26]Egil Giertsen, Richard Verley and Knut Schroder. CARISIMA a Catenary Riser/Soil Interaction Model for Global Riser Analysis. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2004,1:633-640
    [27]Basim B. Mekha. New Frontiers in the Design of Steel Catenary Risers for Floating Production Systems[J]. Journal of Offshore Mechanics and Arctic Engineering,2001,123: 153-158
    [28]Phifer, E.H., Frans Kopp, R.C. Swanson, D.W. Allen, C.G. Langner. Design and installation of Auger steel catenary risers[A]. Proceedings-Offshore Technology Conference[C]. Houston, USA, OTC,1994,399-408.
    [29]Hays, P. R. Steel Catenary Risers for Semi-submersible based Floating Production Systems[A]. Proceedings-Offshore Technology Conference[C]. Houston, USA, OTC, 1996,4:845-859.
    [30]Serta, O.B., Mourelle, M.M., Grealish, F.W., Harbert, S.J., Souza, L.F.A. Steel Catenary Riser for the Marlim Field FPS P-ⅩⅧ, OTC,1996,1-9.
    [31]Roderick Y. Edwards, Jr., Remo Zauli Machado Filho, William F. Hennessy, Craig R. Campman, and Hector Bailon, Load Monitoring at the Touchdown Point of the First Steel Catenary Riser Installed in a Deepwater Moored Semisubmersible Platform. OTC,1999, 1-7.
    [32]C.P. Pesce, J.A.P. Aranha, C.A. Martins, O.G.S. Ricardo, S. Silva. Dynamic curvature in catenary risers at the touch down point region:An experimental study and the analytical boundary-layer solution[J]. International Journal of Offshore and Polar Engineering,1998, 8(4):303-310.
    [33]C.P. Pesce, M.O. Pinto. First-Order Dynamic Variation of Curvature and Tension in Catenary Risers[A]. Proceedings of the International Offshore and Polar Engineering Conference[C]. Florence, Italy, ISOPE,1996,2:163-174.
    [34]C. A. Martins and E. Higashi. A Parametric Analysis of Steel Catenary Risers:Fatigue Behavior near the Top. Proceedings of the International Offshore and Polar Engineering Conference,2000,2:54-59.
    [35]B.J. Leira, E. Passano, D. Karunakaran, K.-A. Farnes. Analysis Guidelines and Application of a Riser-Soil Interaction Model Including Trench Effects. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2004, 23(1B):955-962.
    [36]N.R.T. Willis and K.S. Thethi. Stride JIP:Steel Risers for Deepwater Environment-Progress Summary. OTC,1999, Paper No 10974
    [37]Carl, M. L., Karl H. H., Comparison of models for vortex induced vibrations of slender marine structures [J]. Marine Structure,1997,10:413-441.
    [38]J.A.P. Aranha, C.A. Martins, C.P. Pesce. Analytical approximation for the dynamic bending moment at the touchdown point of a catenary riser[J]. International Journal of Offshore and Polar Engineering,1997,7(4):293-300.
    [39]B. Bostrom, G. Svano, G. Eiksund, B.J. Leira, A. Bjorset. Response effects of riser-soil interaction modeling[A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering[C]. Lisbon, Portugal, ASME,1998, OMAE98-3093.
    [40]G. Moe, O. Arnisen. A Analytic Model for Static Analysis of Catenary Risers. Proceedings of the International Offshore and Polar Engineering Conference,2001,2:248-253.
    [41]Ana Lucia F. Lima Torres, M.M. Mourelle, Renato Marques C. da Silva. Fatigue Damage Verification of Steel Catenary Risers. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2001,1:749-759.
    [42]Luciano de A. Campos, C. A. Martins. Nonlinear dynamic response of a steel catenary riser at the touch-down point[A]. Proceedings of the International Offshore and Polar Engineering Conference[C]. Stavanger, Norway, ISOPE,2001,2:234-238.
    [43]Mekha, B.B. On the Wave and VIV Fatigue of Steel Catenary Risers connected to Floating Structures[A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering [C]. Oslo, Norway, OMAE,2002,1:57-63.
    [44]Senra, S. F., Jacob, B.P. Ana Lucia F. L. Torres and Marcio M. Mourelle. Sensitivity Study on Fatigue Behavior of Steel Catenary Risers[A]. Proceedings of the International Offshore and Polar Engineering Conference[C]. Kitakyushu, Japan, ISOPE,2002,12:193-198.
    [45]Douglas R Korth, Bob Shian J Choo, Gary D, Mc Cullough. Design and implementation of the first buoyed steel catenary risers [C]. Proceedings Offshore Technology Conference. USA:OTC,2002:14152.
    [46]Chai, Y.T., Varyani, K.S., Barltrop, N.D.P. Three-dimensional Lump-Mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect[J]. Ocean Engineering,2002,29:1503-1525
    [47]Daniel Averbuch, Cedric Le Cunff, David Costal, Francis Biolley, Analytical Methods for Predicting Displacements and Stresses in SCRs Subjected to Static Loading. Proceedings of The Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA,2003,25-30,
    [48]宋儒鑫.深水开发中的海底管道和海洋立管[J].船舶工业技术经济信息,2003,218(8):31-42
    [49]Lauro Massao Yamada da Silveira, Clovis de Arruda Martins. A numerical method to solve the static problem of a catenary riser[A]. Proceedings of International Conference on Offshore Mechanics and Arctic Engineeing[C]. Vancouver, British Columbia, Canada, OMAE,2004,1:693-702.
    [50]Pesce, C.P., Martins, C.A. Riser-soil interaction:local dynamics at TDP and a discussion on the eigenvalue problem[A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering[C]. Vancouver, Canada, ASME,2004,23(1):583-594
    [51]Ioannis K. Chatjigeorgiou. A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers[J]. Ocean Engineering,2008,35:616-636
    [52]Ioannis K. Chatjigeorgiou. Application of the WKB method to catenary-shaped slender structures[J]. Mathematical and Computer Modelling,2007
    [53]Jie Xia, PurnenduK. Das, Daniel Karunakaran. A parametric design study for a semi/SCR systemin Northern North Sea[J]. Ocean Engineering,2008,35:1686-1699
    [54]Chakrabarti, S.K., Frampton, R.E. Review of riser analysis techniques[J]. Applied Ocean Research,1982,4:73-90.
    [55]Ertas, A., Kozik, T.J. A review of current approaches to riser modeling[J]. ASME Journal of Energy Resources Technology 1987,109:155-160.
    [56]Jain, A.K. Review of flexible risers and articulated storage systems[J]. Ocean Engineering, 1994,21:733-750.
    [57]Patel, H.M., Seyed, F.B. Review of flexible riser modeling and analysis techniques[J]. Engineering Structures,1995,17:293-304.
    [58]Chung, J.S., Whitney, A.K. Dynamic vertical stretching oscillation of a deep-ocean mining pipe[J]. ASME Journal of EnergyResources Technology 1983,105:195-200.
    [59]Chung, J.S., Cheng, B. R., Huttelmaier, H. P. Three-dimensional coupled responses of a vertical deep-ocean pipe:Part I. Excitation at pipe ends and external torsion[J]. International Journal of Offshore and Polar Engineering,1994,4:320-330.
    [60]Chung, J.S., Cheng, B.-R.,1996. Effects of elastic joints on 3-D nonlinear responses of a deep-ocean pipe:modeling and boundary conditions[J]. International Journal of Offshore and Polar Engineering,1996,6:203-211.
    [61]Leklong J, Chucheepsakul S, Kaewunruen S. Dynamic Responses of marine risers/pipes Transporting fluid Subject to Top End Excitations[C]. Proc of 8th ISOPE Pacific/asia Offshore Mech Symposium,2008,105-112.
    [62]Paidoussis, M.P. Fluid-Structure Interactions:Slender Structures and Axial Flow, Vol.1. New York:Academic Press,1998
    [63]Irani, M.B., Modi, V.J., Weit, F. Risers dynamics with internal flows and nutation damping. Proceedings of Sixth International Offshore Mechanics and Arctic Engineering Symposium, ASME, Houston,1987,3:119-125.
    [64]Chucheepsakul, S., Huang, T. Influence of transported mass on the equilibrium configuration of risers. Proceedings of the Fourth International Offshore and Polar Engineering Conference (ISOPE),1994,2,:246-249.
    [65]郭海燕,吴世明,王优龙.输液管道地震反应分析[J].地震工程与工程振动,1997,17(1):219-224.
    [66]Chen, Y. N., Fluctuating lift forced of the Karman vortex streets on single circular cylinder and in tube bundles[J]. Journal of Engineering. for Industry, Tran. Of ASME, Ser. B, 1972,94 (2):603-628.
    [67]Griffin, O.M., Ramberg S.E., On vortex strength and drag in bluff body wakes[J]. J. of Fluid Mech,1975,69:721-728.
    [68]Sarpkaya, T., Inrig C.J. Impulsively started flow about rectangular prisms:experiments and discrete vortex analysis[C]. Symposium on Flow-Induced Vibration,1984,2:1-10.
    [69]凌国灿,尹协远.圆柱高雷诺数层流非定常运动初期流动[J].力学学报,1981,2:109-119.
    [70]凌国灿.圆柱体非定常运动初期漩涡运动[J].力学学报,1983,3:211-216.
    [71]Sarpkaya, T. Vortex-induced oscillation:a selective review[J]. Journal of Applied Mechanics,1979,46:241-258.
    [72]Carl, M. L., Karl H. H., Comparison of models for vortex induced vibrations of slender marine structures [J]. Marine Structure,1997,10:413-441.
    [73]Skomedal, N. G., Vada T. Numerical simulation of vortex shedding induced oscillations of a circular cylinder [R]. A.S. Veritas Research Report No.87-2005, Oslo, Norway,1987.
    [74]Hansen, H. T., Skomedal, N. G., Vada, T. A method for computation of integrated vortex induced fluid loading and response interaction of marine risers in waves and current[C]. Proc. Fifth Int. Conf. on Behaviour of Offshore Structures,1988,841-857.
    [75]Hansen, H. T., Skomedal, N. G. and Vada, T. Computation of vortex induced fluid loading and the effect of correlation on circular cylinders in oscillatory flow[C]. Proc. Eighth Int. Conf. on Offshore Mechanics and Arctic Engineering,1989,311-318.
    [76]Hansen, H. T., Skomedal, N. G. and Vada, T. Computation of vortex induced fluid loading and response interaction of marine risers[C]. Proc. Eighth Int. Conf. on Offshore Mechanics and Arctic Engineering,1989,327-334.
    [77]Ottesen Hansen, N. E. Vibrations of pipe arrays in waves[C]. Proceedings of the Third Int. Conf. on Behaviour Offshore Structures,1982,641-650.
    [78]Nedergaard, H., Ottesen Hansen, N. E. and Fines, S. Response of free hanging tethers[C]. Proc. Seventh Int. Conf. on Behaviour of Offshore Structures,1994,315-326.
    [79]Lie, H. A time domain model for simulation of vortex induced vibrations on a cable. Proc. Sixth Int. Conf. on Floe Induced Vibrations,1995,455-466.
    [80]Triantafyllou, M. S., Engebretsen, K., Burgess, J. J., Yoerger, D. R. and Grosenbaugh, M. A., A full-scale experiment and theoretical study of the Comparison of models dynamics of underwater vehicles employing very long tethers. In Proc. Fifth Int.Conf. on Behaviour of Offshore Structures, Trondheim, Norway,1988,549-563.
    [81]Lyons, G. J.& Patel, M. H., A prediction technique for vortex induced transverse response of marine risers and tethers[J]. Journal of Sound and Vibration,1986,111:467-487.
    [82]Vandiver, J. K., Li, L. and Venogupal, M. SHEAR Program Theoretical Manual. Dept. of Ocean Engineering, MIT, Cambridge, MA,1993.
    [83]Vandiver, J. K. and Li, L. SHEAR7 Program Theoretical Manual. Dept. of Ocean Engineering, MIT, Cambridge, MA,1994.
    [84]Carl M. Larsen & Karl H. Halse. Comparison of models for vortex induced vibration of slender structures[J], Marine Structures,1997,10:413-441.
    [85]Bishop, R. E. D., A. Y. Hassan, The life and drag forces on a circular cylinder in a flowing field[C], Proc. Roy. Soc. Ser. A,277,51-75.
    [86]Hartlen, R. T., Currie, I. G, Lift oscillation model for vortex-induced vibration[J], Engineering Mechanics.1970,96:577-591.
    [87]Balasubramanian, S., Skop, R.A., A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures,1997,11:395-412.
    [88]Balasubramanian, S., Skop, R.A., Haan, F.L., Szewczyk, A.A., Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow[J]. Journal of Fluids and Structures, 2000,14:65-85.
    [89]Krenk, S., Nielsen, S.R.K., Energy balanced double oscillator model for vortex-induced vibrations[J]. ASCE Journal of Engineering Mechanics,1999,125:263-271.
    [90]Mureithi, N.W., Kanki, H., Nakamura, T., Bifurcation and perturbation analysis of some vortex shedding models[C]. Proceedings of the Seventh International Conference on Flow-Induced Vibrations,2000,61-68.
    [91]Plaschko, P., Global chaos in flow-induced oscillations of cylinders[J]. Journal of Fluids and Structures.2000,14:883-893.
    [92]Noack, B.R., Ohle, F., Eckelman, H., On cell formation in vortex streets[J]. Journal of Fluid Mechanics,1991,227:293-308.
    [93]Balasubramanian, S., Skop, R.A., A nonlinear oscillator model for vortex shedding from cylinders and cones in uniform and shear flows[J]. Journal of Fluids and Structures,1996, 10:197-214.
    [94]Facchinetti, M.L., de Langre, E., Biolley, F., Vortex-induced waves along cables[R]. Bulletin of the American Physical Society,2001,46-128.
    [95]Facchinetti, M.L., de Langre, E., Biolley, F., Vortex shedding modeling using diffusive van der Pol oscillators[M]. Comptes Rendus Mecanique,2002,330:451-456.
    [96]Kim, W.J., Perkins, N.C., Two-dimensional vortex-induced vibration of cable suspensions [J]. Journal of Fluids and Structures,2002,16:229-245.
    [97]Matteoluca F., Emmanuel D. L. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures,2004,1:116-133.
    [98]Iwan, W.D. The vortex induced oscillation of non-uniform structure systems[J]. Journal of Sound and Vibration,1981,79(2):291-301.
    [99]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究.工程力学,2005,22(4):220~224
    [100]娄敏,海洋输流立管涡激振动试验研究及数值模拟[博士学位论文],青岛,中国海洋大学,2007.
    [101]Anthi Miliou, Spencer J., et al. Fluid Dynamic Loading on Curved Riser Pipes[J]. Journal of Offshore Mechanics and Arctic Engineering,2003,125 (3):176-182.
    [102]Ricky Theti. Soil Interaction Effects on Simply Catenary Riser Response[J]. Pipe and Pipeline Interational,2001,46(3):15-24.
    [103]Daniel Karunakaran, Kjell M, Lund, Nils T. Nordsve. Steel Catenary Riser Configurations for North Sea Field Developments[C]. Proceedings-Offshore Technology Conference, 1999, (2):331-338.
    [104]秦荣.计算结构非线性力学.南宁:广西科学技术出版社,1999
    [105]秦荣.计算结构力学.北京:广西科学技术出版社,2001
    [106]S. Chucheepsakul, T. Monprapussorn. T. Huang, Large strain formulation of extensible flexible marine pipes transporting fluid[J]. Journal of Fluids and Structures,2003,17: 185-224.
    [107]Chakrabarti, S.K. Nonlinear Methods in Offshore Engineering. Elsevier, Amsterdam. 1990.
    [108]Huang, T. Kinematics of transported mass inside risers and pipes, Proceedings of the Third International Offshore and Polar Engineering Conference, Singapore,1993,2: 331-336.
    [109]Chucheepsakul, S, Huang, T, and Monprapussorn, T. Influence of transported fluid on behaviour of an extensible flexible riser/pipe. Proc 9th Int Offshore and Polar Eng Conference,1999,2:286-293.
    [110]Somchai Chucheepsakul, Narakorn Srinil. Free vibrations of three-dimensional extensible marine cables with specified top tension via a variational method[J]. Ocean Engineering 2002,29:1067-1096
    [111]Ishii K, Kuwahara K. Computation of compressible flow around a circular cylinder[C]. AIAA-84-163.1,1984.
    [112]Carberry, J., Sheridan, J. Force and wake modes of an oscillating cylinder[J]. Journal of Fluids and Structures,2001,15:523-532.
    [113]Wang C. M., Wu, J., Cand Sankar, L. N., Unsteady aerodynamics of airfoils oscillating in and out of dynamic stall [C]. AIAA-85-4078,1985.
    [114]Pantanzopoulos M. S., Vortex-induced vibration parameters:critical review[C]. Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering,1994,199-255.
    [115]Vickery, B. J., Watkins, R. D. Flow-induced vibration of cylindrical structures[C]. Proceedings of the First Australian Conference,1962,213-241.
    [116]Bishop, R. E.D., Hassan, A. Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid [C]. Proceedings of the Royal Society of London A 277,1964,51-75.
    [117]King, R., Vortex excited oscillations of yawed circular cylinders[J]. Journal of Fluid Engineering,1977,99:495-502.
    [118]Griffin, O.M., Vortex-excited cross flow vibrations of a single cylindrical tube[J]. ASME Journal of Pressure Vessel Technology,1980,102:158-166.
    [119]Stansby, P.K., The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear flows[J]. Journal of Fluid Mechanics,1976,74: 641-665.
    [120]D.R.J欧文,E.辛顿著,曾国平,刘忠,徐家礼译,塑性力学有限元—理论与应用,兵器工业出版社.
    [121]Newmark, N. M. A method of computation for structural dynamics[J]. Journal of Engineering Mechanics. Div.ASCE,1959,85 (3):67-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700