用户名: 密码: 验证码:
海水中DMS和DMSP的生物生产与消费的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲基硫(DMS)是参与全球硫循环的最主要的海洋生源硫化物,其在大气中的氧化产物会对全球气候变化和酸雨的形成产生重要影响。二甲基巯基丙酸内盐(DMSP)是DMS的重要前体物质,在DMSP裂解酶的作用下分解产生DMS。生物生产与消费被认为是海洋中DMS和DMSP的主要来源和去除途径,在DMS及DMSP的生物地球化学循环中起着重要作用,决定表层海水中DMS浓度以及海-气通量。因此表层海水中DMS及DMSP生物生产和消费的研究,有助于衡量海洋生物对海水中DMS和DMSP的贡献,进一步深入了解DMS和DMSP的生物地球化学循环过程。
     本论文首先以受人类活动影响较大的中国半封闭海域北黄海为研究区域,对海水中DMS生物生产和消费速率的时空变化及其影响因素进行系统的研究,初步衡量了此海域表层海水中微生物消费和海-气扩散在DMS去除过程中的相对重要性。其次,通过室内藻类培养实验,研究了中国近海海域常见藻种DMS和DMSP生产释放情况,并探讨了相关理化因子的影响。在美国Mexico海湾沿岸海域,通过35S同位素示踪法,首次评估了溶解态DMSP (DMSPd)的生物可利用率,并定量研究了DMSPd和颗粒态DMSP (DMSPp)生物消费对于DMS生物生产的相对贡献。主要研究结果如下:
     1.北黄海表层海水中DMS生物生产与消费速率以及相关因素的研究
     (1)于2006年12月-2007年1月、2007年4-5月和10月对我国北黄海海域表层海水中DMS生物生产和消费速率的时空变化进行了研究。冬季北黄海表层海水中DMS生物生产和消费速率分别为5.41(1.91~13.0)和3.84(0.81~11.6)nM d-1;春季速率分别为6.42(2.38~18.9)和3.71(1.74~13.2)nM d-1;秋季速率分别为7.35(2.04~15.9)和5.67(1.67~13.8)nM d-1。研究表明,北黄海表层海水中DMS生物生产速率在各季节变化趋势为:秋季>春季>冬季,三个季节的平均值为6.39±0.152 nM d-1;而DMS生物消费速率季节变化中,秋季明显高于春、冬两季,三个季节的平均值为4.41±0.249 nM d-1。从空间分布看来,各季节DMS生物生产和消费速率具有相似的空间变化趋势。冬季,DMS生产速率和消费速率在辽东半岛和山东半岛近岸出现高值区,而中部海域则为其低值区。春季,二者的高值区位于靠近辽东半岛东南部的近海海域,在鸭绿江入海口达到最低值。秋季,辽南沿岸区域是DMS生物生产和消费速率高值区,北黄海中部海区的生产和消费速率值则偏低。
     (2)北黄海表层海水中DMS生物生产与消费过程受现场海洋物理、化学和生物条件(如:温度、盐度、DMSPd和DMS浓度、叶绿素a以及浮游植物组成等)不同程度的影响,是一个复杂的生物地球化学过程。冬季,DMS生物生产速率皆受到各种物理、化学和生物因子的影响,其中Chl a的影响最为显著,其次为海水表层温度和DMSPp浓度。春季和秋季,现场DMSPd和DMSPp浓度对于DMS生物生产速率的影响均较为显著。而对于DMS生物消费速率,冬季和秋季均受到DMS现场浓度的影响,海水表层温度和盐度只在冬季有显著的影响。海水物理、化学和生物因子皆会影响北黄海表层海水中DMS生物生产速率和消费速率,但其影响程度具有明显的季节差异性。
     (3)北黄海表层海水中DMS生物生产速率皆高于其消费速率,总体平均高出65%,导致DMS净生物生产作用。而且,DMS生产速率和消费速率二者之间存在很好的相关性,表明DMS生物生产与其微生物消费构成一个紧密的生物循环过程。冬季、春季和秋季北黄海表层海水中DMS微生物消耗的生物周转时间τbio分别为0.834(0.2~1.73)、1.59(0.406~4.65)和0.666(0.240~1.36)d;而DMS海—气周转时间τsea-air分别为6.30(0.122~32.3)、5.04(0.868~32.6)和10.0(0.635~56.2)d。冬季、春季和秋季,τsea-air/τbio的比值平均值分别为10.95、3.97、17.94。由此看来,北黄海表层中DMS微生物消耗相对于海—气扩散在DMS迁移转化中的作用更加明显。
     2.三种海洋浮游微藻的DMS、DMSP生产的研究
     本文选取了三种中国近海常见藻种,即三角褐指藻(Phaeodactylum tricornutum)、海洋原甲藻(Prorocentrum micans)和球等鞭金藻(8701品系,Isochrysis galbana)为研究对象,通过实验室培养实验研究了这些海洋微藻生长周期内藻体细胞内外DMSP及释放到水体中DMS浓度,并研究了不同盐度、硝酸盐浓度和Fe3+浓度条件对三种微藻DMSP、DMS生产的影响以及硅酸盐浓度对三角褐指藻的影响。结果表明:
     (1)海洋原甲藻细胞外的DMSP浓度显著高于三角褐指藻和海洋原甲藻的相应浓度。单位生物量内,海洋原甲藻DMSPp含量分别比三角褐指藻高出3个数量级,比球等鞭金藻8701也高出2个数量级。这三种微藻在生长期后期DMS浓度增长速率均较初期明显提高。
     (2)高硝酸盐浓度抑制海洋原甲藻和三角褐指藻DMSPp的产生;但球等鞭金藻8701的DMSPp生产却不受硝酸盐浓度的影响。海洋原甲藻的DMS生产受[NO3-]影响最为显著,低[NO3-]下DMS/Chl a的比值是高[NO3-]下的7倍。
     (3)高盐环境能够增强三角褐指藻和海洋原甲藻细胞内DMSP的生产,并促进培养液中DMS生产,而低盐度则明显降低这两种微藻生产DMS的能力。盐度对球等鞭金藻8701细胞内外DMSP产量和DMS生产无明显影响。
     (4)高[Fe3+]有助于三角褐指藻和海洋原甲藻藻液中DMSPd的形成,降低球等鞭金藻8701中DMSPd的生产。高浓度Fe3+能够促进球等鞭金藻8701细胞内DMSP的合成,却抑制了海洋原甲藻细胞内DMSP的生产。低浓度Fe3+则明显提高海洋原甲藻和球等鞭金藻藻液中DMS的产量;[Fe3+]的变化未对三角褐指藻DMS和DMSPp生产有影响。
     (5)低硅酸盐浓度条件下三角褐指藻的单位生物量DMSPp浓度高于中高水平硅酸盐条件下的相应浓度,表明低浓度能够有利于其细胞内DMSP的生成。单位生物量DMS生产能力也在低硅酸盐浓度培养液中得到加强,在高于214μM硅酸盐浓度条件下单细胞DMS产量较低且变化不大。
     3. Mexico海湾沿岸海域DMSPd生物可利用率和周转的评估
     DMSPd是海洋细菌体内一种重要酶作用有机底物和活性硫气体DMS的前体物质。本研究中,Mexico海湾沿岸海域DMSPd生物消费速率通过两种方法进行测定:一种是借助于DMSP吸收(DMSP-uptake)的抑制剂甘氨酸甜菜碱(GBT)来确定的抑制剂方法,另一种是35S-DMSP示踪的动力学方法。这两种方法都需要确定海水中DMSPd的浓度,其中,DMSPd样品通过Whatman GF/F滤膜(0.7μm)进行小体积重力过滤(SVDF)采集,随即将DMSP进行碱解得到DMS来定量确定DMSPd。其中,35S-DMSP示踪法提供的DMSPd周转速率(35.7~215nM d-1)比GBT抑制剂方法得到的值(0.34~21.6 nM d-1)高出1.7~152倍。进一步实验确定了GBT能够有效抑制DMSPd的降解,而35S-DMSP示踪法能提供准确的DMSPd降解速率常数,这样采用SVDF方法采集测定DMSPd浓度([DMSPd]SVDF)可能是DMSPd降解速率估算的一个潜在的误差来源。的确,GF/F滤液培养实验表明[DMSPd]SVDF可能高估了DMSPd的生物可利用率,这主要有两个原因:(1)在GF/F滤液中,10~37%的DMSP存在于粒径大于0.2μm的颗粒物中,而并非是溶解态的;(2)在真正以溶解态存在的DMSP (DMSPd<0.2μm)中,0.5~1.0 nM的DMSP在几天内难以降解,这部分DMSP占到相应DMSPdsvDF的40~99%。目前,对于这部分难降解的DMSP本质还是未知的。在此研究海域中,所估测的DMSPd浓度非常低,在0.006~1.0 nM范围内,平均值为0.41 nM。本研究建议DMSPd周转和其对于海洋中硫和碳通量的贡献需要重现评估。
     4. Mexico海湾沿岸海域DMSP生物降解对DMS生物生产的贡献
     表层海水中,溶解态和颗粒态DMSP都是DMS重要来源,对海洋中DMS生产具有重要的贡献。本研究中,监测Mexico海湾沿岸海域的表层海水及其GF/F滤液中DMS和DMSPd浓度变化趋势,结果发现DMSPd消耗可能促进或不影响DMS的生产。GBT能够短时间内抑制DMSPd的降解,并且此期间GBT能够促进DMSPp降解和DMS生产,而不影响DMS的降解和产率,表明DMSPp对DMS生产具有重要贡献。现场海水的黑暗培养实验中,在忽略DMS光化学和海-气扩散过程的情况下,测定DMS净生产速率、DMSPd消费速率、DMSPd降解为DMS的产率及DMS微生物消费速率,首次定量估算了DMSPp寸于DMS生产的贡献。结果表明来自DMSPd降解的DMS生产速率((DMS生产速率)DMSPd)为0.13~1.72 nM d-1,而来自DMSPp转化的DMS生产速率((DMS生产速率)DMSPp)为2.79~6.82 nM d-1,(DMS生产速率)DMSPp明显高于(DMS生产速率)DMSPd,二者比值在1.84~34.1之间,平均为16.4,充分表明DMSPp才是比DMSPd更重要的DMS来源。此发现有助于更好地认识表层海水中DMS生物生产和消费过程。
In marine waters, the most abundant volatile biogenic sulfur compound dimethylsulfide (DMS) is considered to play significant roles in the natural sulphur cycle and has a potential influence on Earth's climate change and the environmental acidification due to its oxidation products in the atmosphere. Dimethylsulfoniopropionate (DMSP) is the major precursor of DMS and DMSP can be degraded to DMS and acrylic acid by DMSP cleavage lyase. The biological production and consumption of DMS are considered to be the principal mechanisms controlling the concentration of DMS in the surface ocean and its sea-to-air flux, and play a key role in the global biogeochemical cycle of DMS and DMSP. Therefore studies on the biological production and consumption of DMS and its precursor DMSP in the surface ocean offer a unique opportunity to make the assessment of the quantitative contributions of halobios to DMS and DMSP accumulations in the ocean, which will be helpful to understand better the biogeochemistry processes of DMS and DMSP.
     In the present dissertation, at first, we choose the North Yellow Sea as the study area that is affected seriously by human activities. The spatial and temporal variations of DMS biological production and consumption rates and the factors influencing them are systematically studied. The relatively importance of biological consumption and sea-to-air emission for the DMS removal process in the surface water is evaluated. Secondly, we focus on the production of DMS and DMSP during the growth stages of three typical offshore algae by laboratory culture experiment. Other objectives of this study are to assess the bio-availablility of DMSPd and to examine quantitatively the contributions of DMSP consumption to DMS production in coastal water of the Gulf of Mexico. The main conclusions are drawn as follows:
     1. Studies on the biological production and consumption rates of DMS in the North Yellow Sea and the factors influencing them
     (1) The biological production and consumption rates of DMS are determined in the North Yellow Sea during December,2006-January,2007, April-May,2007 and October,2007. In the surface water, the biological production and consumption rates of DMS in winter are 5.41 (1.91~13.0) and 3.84 (0.81~11.6) nM d-1, respectively. In spring, the corresponding rates are 6.24 (2.38~18.9) and 3.71 (1.74~13.2) nM d-1, respectively. During autumn, DMS production and consumption rates are 7.35 (2.04~15.9) and 5.67 (1.67~13.8) nM d-1, respectively. Our results demonstrate that, for DMS biological production rate, highest and lowest values occur in autumn and in winter, respectively; the peak of DMS consumption rate appear in autumn compared to the corresponding values in winter and spring. On average, the DMS production and consumption rates during these three seasons are 6.39±0.152 and 4.41±0.249 nM d-1, respectively. Moreover, both DMS biological production and consumption rates display a similar spatial pattern in different seasons. In winter, the peaks of DMS production and consumption rates coincidently appear near the Liaodong and Shandong Peninsula and the lower values occur in the center of the North Yellow Sea. In spring, the minimum and maximum of DMS production/consumption rates are found in the estuary of Yalu River and in the southeast of Liaodong Peninsula, respectivley. During autumn, the higher and lower values of DMS production/consumption rates appear at inshore locations lying in the south of Liaodong Peninsula and at offshore sites in the center of North Yellow Sea, respectively.
     (2) The biological production and consumption of DMS are influenced by various biological and environmental factors such as in situ temperature, salinity, DMS and DMSPd concentrations, Chl a level and the composition of phytoplankton species. In winter, Chl a concentration as well as seawater surface temperature and DMSPp concentration plays a significant role in DMS biological production. During spring and autumn, DMS biological production rates are influenced obviously by the DMSPd and DMSPp concentrations. In winter and autumn, in situ DMS concentration is the important factor for the DMS consumption rate; moreover, seawater surface temperatue and salinity are responsible for DMS consumption in winter. In the surface water of North Yellow Sea, physical, chemical and biological factors definitely influence DMS production and consumption, but the degree of influence is the issue during spring, autumn and winter.
     (3) In general, DMS biological production is of a magnitude similar to DMS biological consumption and the DMS production exceeded its cleavage by an average factor of 65%. This discrepancy is bound to result in the net DMS biological production which might be balanced by other DMS removal processes. A strong positive correlation present between DMS production and consumption, indicating the intimate interrelation between the DMS biological formation and its microbial cleavage. During winter, spring and autumn, the biological turnover times of DMS in the subsurface water are 0.834 (0.2~1.73),1.59 (0.406~4.65) and 0.666 (0.240~1.36) d, respectively; the sea-to-air turnover times of DMS are 6.30 (0.122~32.3),5.04 (0.868~32.6) and 10.0 (0.635~56.2) d, respectively. On average, the rate ratios of DMS bio-consumption to sea-to-air turnover rates are 10.95,3.97,17.94, respectively, in winter, spring and autumn. Thus the above observations lead to a clear conclusion that the crucial sink of DMS in the surface water is bacterial consumption, which greatly exceeds its sea-to-air emission in the upper water column for our study area.
     2. Studies on DMS and DMSP produced by three species of marine algae
     The production of DMS and DMSP are studied in different growth stages of Phaeodactylum tricornutum, Prorocentrum micans, Isochrysis galbana 8701. Moreover, we have studied the basic physiology of DMSP and DMS in axenic cultures, focusing on effects of varying levels of salinity, NO3-, Fe3+ and SiO32- on cell abundances, DMS and DMSP contents of these three algae as these factors have been found to be important controls on DMSP and DMS dynamics in the seawater. The results are shown as follows:
     (1) On the whole, the DMSPd and DMSPp concentrations per Chl a of Prorocentrum micans cultures are higher than those of Phaeodactylum tricornutum and Isochrysis galbana 8701. DMS has low concentration in the exponential growth stage and stationary growth stage; in the senescent stage, the algae cells produce the largest amount of DMS.
     (2) High nitrate level has an inhibition function on DMSPp production of Phaeodactylum tricornutum and Prorocentrum micans; the effects of nitrate concentration on the DMSPp production of Isochrysis galbana 8701 are not significant. In Prorocentrum micans cultures with the lowest nitrate level, the DMSP/Chl a values are 7-fold higher than those in cultures with highest nitrate level.
     (3) The promotion function of DMS and DMSP production by Phaeodactylum tricornutum and Prorocentrum micans are caused by high salinity, vice versa. DMSP content and DMS production are not markedly different in the Isochrysis galbana 8701 cultures amended with different salinities.
     (4) High Fe3+ concentration stimulates DMSPd production of Phaeodactylum tricornutum and Prorocentrum micans, but inhibits that of Isochrysis galbana 8701. The intracellular DMSP contents of Isochrysis galbana 8701 increase with increasing Fe3+ concentration, but intracellular DMSP production of Prorocentrum micans decreases with Fe3+ concentration increase. High Fe3+ concentration enhances obviously the DMS production by Prorocentrum micans and Isochrysis galbana 8701, but the effects of Fe3+ concentration on the DMS and DMSPp production of Phaeodactylum tricornutum are not significant.
     (5) Compared to medium and highest SiO32- concentrations, lowest SiO32-concentration is helpful to intracellular DMSP accumulation and DMS production of Phaeodactylum tricornutum.
     3. Assessment of the bio-availability and turnover of dissolved Dimethylsulfoniopropionate (DMSP) in coastal waters of the Gulf of Mexico
     Dissolved dimethylsulfoniopropionate (DMSPd) is an important substrate for marine bacteria and a precursor of reactive sulfur gases. We compared biological consumption rates of DMSPd in coastal seawater determined by two different methods, an inhibitor approach with the established DMSP-uptake inhibitor glycine betaine (GBT), and the 35S-DMSP tracer loss kinetics approach. Both approaches rely on determination of the DMSPd concentration, which was measured by small volume drip filtration (SVDF) through Whatman GF/F filters (0.7μm nominal retention) and subsequent base hydrolysis of the DMSP to DMS. In unfiltered coastal seawater, the 35S-DMSP tracer method yielded DMSPd turnover fluxes of (35.7~215 nM d-1) that were 1.7 to 152 times higher than those obtained in parallel samples with the inhibitor method (0.34~21.6 nM d-1). Further tests confirmed that GBT strongly inhibited DMSPd degradation and that 35S-DMSP gave an accurate estimate of DMSPd loss rate constants, leaving the initial DMSPd concentration by SVDF ([DMSPd]SVDF) as a potential source of error for the rate estimates. Indeed, experiments with GF/F filtrate cultures showed that [DMSPd]SVDF is likely to overestimate the bioavailable DMSPd concentration for at least two reasons:1) a significant fraction (10~37%) of DMSP passing through GF/F filters was in particles> 0.2μm and therefore not dissolved, and 2) a significant pool (0.5~1.0 nM) of operationally-dissolved, non-particle DMSP ([DMSPd]     4. The contribution of DMSP biological consumption on the DMS biological production in the coastal waters of the Gulf of Mexico
     In the surface water, DMSP are the major precursor of DMS and the biological turnover of DMSP plays a significant role in DMS production. In the present study, the dark incubations for the surface water sampled from the Gulf of Mexico and the corresponding GF/F filtration are conducted. The variations of DMS and DMSPd during the incubation period demonstrate that the consumption of DMSPd stimulates DMS production or doesn't influence DMS production. Moreover, GBT inhibits DMSPd consumption effectively and enhances the DMSPp consumption and DMS production. But GBT hasn't influenced the consumption rates of DMS and DMS yield. Our results indicate the important contribution of DMSPp on DMS production. Furthermore, we measure the rates of net DMS accumulation, as well as the DMSPd consumption rates by the GBT-inhibition approaches. Concurrently, we also establish the DMS production yield from DMSPd and the microbial consumption of DMS by the radio-isotope methods. Subsequently, based on these results, we make the estimates of the DMS production rates from DMSPp with the aim of obtaining a better understanding of the DMS biological production and consumption in the surface ocean and quantitatively assessing the dominant role of DMSPd and DMSPp in the oceanic DMS production. The estimates of (DMS production rate)DMSPd range from 0.13 to 1.72 nM d-1 and (DMS production rate)DMSPp vary between 2.79 and 6.82 nM d-1. Significantly, the estimated DMS production from DMSPp consumption is superior to that from DMSPd degradation by an average factor of 16.4. Herein, relative to the DMSPd, the particulate DMSP seems to be a major source of DMS.
引文
[1]Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry,1990,30:1~29
    [2]Lovelock J E, Maggs R J, Rasmussen R A. Atmospheric dimethylsulphide and the natural sulphur cycle. Nature,1972,237:452~453
    [3]Andreae M O, Barnard W R. The marine chemistry of dimethylsulfide. Marine Chemistry, 1984,14:267~279
    [4]Andreae M O. The emission of sulfur to the remote atmosphere. In:Galloway J N, Charlson R J, Andreae M O, et al., eds. The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere. Dordrecht Holland:D. Reidel Publishing Company,1985.5~52
    [5]Bates T S, Cline J D, Gammon R H, et al. Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. Journal of Geophysical Research,1987,92: 2930~2938
    [6]Wakeham S G, Howes B L, Dacey J W H. Dimethyl sulfide in a stratified coastal salt pond. Nature,1984,310:770~772
    [7]Andreae M O. The ocean as a source of atmospheric sulfur compounds. In:Buat-Menard P, ed. The role of air-sea exchange in geochemical cycling. Dordrecht Holland:D. Reidel Publishing Company,1986.331~362
    [8]Kettle A J, Andreae M O. Flux of dimethylsulfide from the oceans:A comparison of updated data sets and flux models. Journal of Geophysical Research,2000,105:26793~26808
    [9]Simo R. Production of atmospheric sulfur by oceanic plankton:biogeochemical, ecological and evolutionary links. Trends in Ecology and Evolution,2001,16 (6):287~294
    [10]Lomans B P, van der Drift C, Pol A, et al. Review. Microbial cycling of volatile organic sulfur compounds. CMLS Cellular and Molecular Life Science,2002,59:575~588
    [11]Shaw G E. Bio-controlled thermostasis involving the sulfur cycle. Climatic Change,1983,5: 297~303
    [12]Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature,1987,326:655~661
    [13]Andreae M O, Ferek R J, Bermond F, et al. Dimethylsulfide in the marine atmosphere. Journal of Geophysical Research,1985,90:12891~12900
    [14]Andreae M O, Jones C D, Cox P M. Strong present-day aerosol cooling implies a hot future. Nature,2005,435:1187~1190
    [15]Nguyen B C, Mihalopoulos N, Putaud J P, et al. Covariations in oceanic dimethylsulfide, its oxidation products and rain acidity at Amsterdam Island in the southern Indian Ocean. Journal of Atmospheric Chemistry,1992,15:39~53
    [16]Burgermeister S, Zimmermann R L, Georgii H W, et al. On the biogenic origin of dimethylsulfide:relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere. Journal of Geophysical Research,1990,95 (D12):20607~20615
    [17]Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton. In:Saltzman S, Cooper W J, eds. Biogenic sulfur in the environment. Washington D C:American Chemical Society Symposium Series,1989.167~182
    [18]Hass P. The liberation of methylsulfide in seaweed. Biochemistry,1935,29:1297~1299
    [19]Challenger F, Simpson M I. Studies on biological methylation. Part Ⅻ:A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata, Dimethyl-2-carboxyethyl-sulphonium hydroxide and its salts. Journal of the Chemical Society,1948,3:1591~1597
    [20]Kirst G O. Osmotic adjustment in phytoplankton and macroalgae:The use of dimethylsulfoniopropionate (DMSP). In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York:Plenum Press,1996.121~130
    [21]Van Duyl F C, Gieskes W W C, Kop A J, et al. Biological control of short-term variation in the concentration of DMSP and DMS during a Phaeocystis spring bloom. Journal of Sea Research,1998,40:221~231
    [22]Stefels J. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research,2000,43:183~197
    [23]Belviso S P. Reduction of dimethylsulphoniopropionate (DMSP) by a microbial food web. Limnology and Oceanography,1990,35:1801~1821
    [24]Gage D A, Rhodes D, Nolte K D, et al. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature,1997,387:891~894
    [25]Kiene R P, Linn L J, Bruton J A. New and important roles for DMSP in marine microbial communities. Journal of Sea Research,2000,43:209~224
    [26]Hill R W, White B, Cottrell M, et al. Virus-mediated release of dimethylsulfoniopropionate from marine phytoplankton. Aquatic Microbial Ecology,1998,14:1-6
    [27]Vairavamurthy A, Andreae M O, Iverson R L. Biosynthesis of dimethylsulfide and dimthylopropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnology and Oceanography,1985,30 (1):59~70
    [28]Grone T, Kirst G O. The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein). Marine Biology,1992,112:497~503
    [29]Nishigchi M K. Somero G N. Temperature and concentration dependence of compatibility of the organic osmolyte P-dimethylsulphoniopropionate. Cryobiology.1992,29:1~7
    [30]Karsten U. Kuck K, Vogt C. Dimethylsulphoniopropionate (DMSP) production in phototrophic organisms and its physiological function as a cryoprotectant. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York:Plenum Press,1996.109~119
    [31]Lesser M P, Shick J M. Effects of irradiance and ultraviolet radiation on photo-adaptation in the zooxanthellae of Aiptasia pallida:primary production, photoinhibition and enzymatic defenses agaist oxygen toxicity. Marine Biology,1989,102:243~255
    [32]Butow B, Wynne D, Sukenik A, et al. Synergistic effect of carbon concentration and high temperature on lipid peroxidation in peridinium gatunense. Journal of Plankton Research, 1998,20:355~369
    [33]Stefels J, Van L M. Effects of iron and light stress on the biochemical compound of Anarctica Phaeocystis sp. (Prymnesiophyceae).I:Intracellular DMSP concentrations. Journal of Phycology,1998,34:486~495
    [34]Okamoto O K, Pinto E, Latorre L R, et al. Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Archives of Environmental Contamination and Toxicology,2000,40:18~24
    [35]Sunda W, Kieber D J, Kiene R P, et al. An antioxidant function for DMSP and DMS in marine algae. Nature,2002,418:317~320
    [36]Matrai P A, Keller M D. Dimethylsulphide in a large scale coccolithophore bloom in the Gulf of Maine. Continental Shelf Research,1993,13:831~843
    [37]Kiene R P, Linn L J. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnology and Oceanography,2000,45:849~861
    [38]Keller M D, Bellows W K. Physiological aspects of the production of dimethylsulfoniopropionate (DMSP) by marine phytoplankton. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York:Plenum Press,1996.131-142
    [39]Matrai P A. Keller M D. Total organic sulfur and dimetylsulfoniopropionate in marine phytoplankton:intracellular variations. Marine Biology,1994,119:61~68
    [40]Liss P S, Malin G, Turner S, et al. Dimethylsulfide and phaeocystis:A review. Journal of Marine Systems,1994,5:41~53
    [41]Matrai P A, Vernet M. Dynamics of the vernal bloom in the marginal ice-zone of the Barents Sea:Dimethylsulfide and dimethylsulfoniopropionate budgets. Journal of Geophysical Research,1997,102:22965-22979
    [42]Ackman R G, Tocker C S, Mclachlan J M. Occurrance of dimethyl-p-propiothetin in marine phytoplankton. Journal of Fisheries Research Board of Canada,1996,23:357~364
    [43]陈葵,沈颂东DMSP对大气环境的影响及其对水产动物营养的促进作用.海洋湖沼通报,2002,3:36~45
    [44]Karsten U, Wiencke C, Kirst G O. β-Dimethylsulphoniopropionate (DMSP) content of macroalgae from Antarctica and southern Chile. Botanica Marina,1990,33:143~146
    [45]Van Rijssel M, Gieskes W W C. Temperature, light and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). Journal of Sea Research,2002. 48:17~27
    [46]Sheets E B, Rhodes D. Determination of DMSP and other onium compounds in Tetraselmis subcordiformis by plasma desorption mass spectronmetry. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York:Plenum Press,1996.55~63
    [47]王艳,齐雨藻,沈萍萍,等.温度和盐度对球形棕囊藻细胞DMSP产量的影响.水生生物学报,2003,27(4):367~371
    [48]Variamuthy A, Andreae M A, lverson R L. Biosynthesis of dimethylsulfide and dimethyl-propionthetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnology and Oceanography,1985,30:59~70
    [49]De Sonza M P, Chen Y P, Yoch D C. Dimethylsulfoniopropionate from the marine macroalga ulva curvata:purification and characterization of the enzyme. Planta,1996,199:433~438
    [50]van Alstyne K L, Pelletreau K N, Rosario K. The effects of salinity on dimethylsulfoniopropionate production in the green alga Ulva fenestrate postels et ruprecht (chlorophyta). Botanica Marina,2003,49:350~356
    [51]Iverson R L. Neaehoof F L, Andreae M O. Production of dimethylsulfoniumpropionate and dimethyl sulphide by phytoplankton in estuarine and coastal waters. Limnology and Oceanography,1989,34:53~67
    [52]Cerqueira M A, Pio C A. Production and release of dimethylsulfide from an estuary in Portugal. Atmospheric Environment,1999,33:3355~3366
    [53]杨桂朋,戚佳琳.影响海水中二甲基硫分布的生物因素.海洋科学,2000,24(3):37~40
    [54]Karsten U, Wiencke C, Kirst G O. Growth pattern and P-dimethylphoniopropionate (DMSP) content of green macroalgae at different irradiance. Marine Biology,1991,108:151~155
    [55]Karsten U, Wiencke C, Kirst G O. β-dimethylphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions:interactive effects of light versus salinity and light versus temperature. Polar Biology,1992,12:603~607
    [56]Cuhel R L. Influence of light intensity, light quality, temperature and daylength on uptake and assimilation of carbon dioxide and sulfate by lake plankton. Canadian Journal of Fisheries and Aquatic Sciences,1987,44:2118~2132
    [57]Bates T S. Determination of the physiological state of marine phytoplankton by use of radiosulfate incorporation. Journal of Experimental Marine Biology and Ecology,1981,51: 219~239
    [58]Wilhelm C, Bida J, Domin A, et al. Interaction between global climate change and the physiological responses of algae. Photosynthetica,1997,33:491~503
    [59]杨和福,Kirst G O, Baumann M,等.紫外辐射对南极棕囊藻细胞DMSP合成和DMS释放率的影响.海洋学报,1998,20(5):101~108
    [60]Wilson W H, Turner S, Mann N H. Population dynamics of phytoplankton and viruses in a phosphate limited mesocosm and their effect on DMSP and DMSp reduction. Estuarine Coastal and Shelf Science,1998.46:49~59
    [61]Keller M D, Kiene R P, Matrai P A. Production of glycine betaine and dimethylphoniopropionate in marine phytoplankton. Ⅱ. N-limited chemostat cultures. Marine Biology,1999,135:249~257
    [62]焦念志,柳承璋,陈念红.东海二甲基硫丙酸的分布及其制约因素的初步研究.海洋与湖沼,1999,30:525~531
    [63]Michael J B, Anthony J B, Zbigniew S K, et al. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature,1996,383:508~513
    [64]Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature,1994,371:123~129
    [65]Turner S M, Nightingale P D, Spokes L J, et al. Increased dimethylsulfide concentrations in sea water from in situ iron enrichment. Nature,1996,383:513~517
    [66]Behrenfeld M J, Bale A J, Kolber Z S, et al. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature,1996,383:508~513
    [67]Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the Equatorial Pacific Ocean. Nature,1996, 383:495~501
    [68]Levasseur M, Scarratt G M, Michaud S, et al. DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific Part I:Temporal and vertical distributions. Deep-Sea Research 11,2006,53:2353~2369
    [69]Kettle A J, Andreae M O, Amouroux D, et al. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude and month. Global Biogeochemical Cycles,1999,12:399~444
    [70]Malin G, Kirst G O. Algal production of dimethyl sulfide and its atmospheric role. Journal of Phycology,1997,33:889~896
    [71]Yang G-P, Tsunogai S, Watanabe S. Biogeochemistry of dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface seawater of Funka Bay, Japan. Journal of Oceanography,2005,61:69~78
    [72]Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton. In:Saltzman S, Cooper W J, eds. Biogenic sulfur in the environment. Washington D C:American Chemical Society Symposium Series,1989.167~182
    [73]Kiene R P, Bates T S. Biological removal of dimethylsulphide from seawater. Nature,1990, 345:702~705
    [74]Dacey J W H, Wakeham S G. Oceanic dimethylsulfide:production during zooplankton grazing on phytoplankton. Science,1986,233:1314~1316
    [75]Nguyen B C, Belviso S, Mihalopoulos N. Dimethylsulfide production during natural phytoplanktonic blooms. Marine Chemistry,1988,24:133~141
    [76]Belviso S, Kim S K, Rassoulzadegan F, et al. Production of dimethylsulfonium propionate (DMSP) and dimethylsulfide (DMS) by a microbial food web. Limnology and Oceanography, 1990,35:1810~1821
    [77]Brimblecombe P. Shooter D. Photo-oxidation of dimethylsulfide in aqueous solution. Marine Chemistry,1986,19:343~353
    [78]杨桂朋,张正斌,刘心同,等.二甲基硫的光化学反应的动力学研究.青岛海洋大学学报,1997,27(2):225~232
    [79]Archer S D, Smith G C, Nightingale P D, et al. Dynamics of particulate dimethylsulfoniopropionate during a Lagrangian experiment in the northern North Sea. Deep-Sea Research Ⅱ,2002,49:2979~2999
    [80]Suttle C A, Chan A M, Cottrell M T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature,1990,347:467~469
    [81]Wilson W H, Tarran G A, Schroeder D, et al. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. Journal of the Marine Biological Association of the United Kingdom,2002,82:369~377
    [82]Malin G, Turner S M, Liss P S. Sulfur:The plankton/climate connection. Journal of Phycology,1992,28:590~597
    [83]Malin G, Liss P S, Turner S M. Dimethylsulfide:production and atmospheric consequences. In:Green J C, Leadbeater B S C, eds. The Haptophyte Algae. Oxford:Clarendon Press,1994. 303~320
    [84]Jacobsen A, Bratbak G, Heldal M. Isolation and characterisation of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). Journal of Phycology,1996,32:923~927
    [85]Malin G, Wilson W H. Bratbak G, et al. Elevated production of dimethyl sulfide resulting from viral infection of Phaeocystis pouchetii. Limnology and Oceanography,1998,43: 1389~1393
    [86]Schroeder D, Oke J, Malin G, et al. Coccolithovirus (Phycodnaviridae):characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Archives of Virology,2002,147: 1685~1698
    [87]Evans C, Archer S D, Jacquet S, et al. Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquatic Microbial Ecology,2003.30:207~219
    [88]Lancelot C, Billen G. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Advances in aquatic microbiology,1985,3:263~321
    [89]Gifford D J. Impact of grazing by microzooplankton in the northwest arm of Halifax Harbour, Nova Scotia. Marine Ecology-Progress Series,1988,47:249~258
    [90]Christaki U. Belviso S, Dolan J R. et al. Assessment of the role of copepods and ciliates in the release to solution of particulate DMSP. Marine Ecology-Progress Series,1996,141: 119~127
    [91]Leck C. Larsson U. BAgander L E, et al. Dimethyl sulfide in the Baltic Sea:annual variability in relation to biological activity. Journal of Geophysical Research,1990,95: 3353~3363
    [92]Holligan P M, Fernandez E, Aiken J, et al. A biogeochemical study of the coccolithophore (Emiliania-Huxleyi) in The North-Atlantic. Global Biogeochemical Cycles,1993,7:879~900
    [93]Daly K L, Ditullio G R. Particulate dimethylsulfoniopropionate removal and dimethylsulfide production by zooplankton in the Southern Ocean. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum Press,1996.223~238
    [94]Leck C, Larsson U, Bagander L E, et al. DMS in the Baltic Sea-annual variability in relation to biological activity. Journal of Geophysical Research,1989,95:3353~3363
    [95]Yang G-P, Zhang J-W, Li L, et al. Dimethylsulfide in the surface water of the East China Sea. Continental Shelf Research,2000,20:69~82
    [96]Cantin G, Levasseur M, Gosselin M, et al. Role of zooplankton on the mesoscale distribution of dimethylsulfide concentrations in the Gulf of St. Lawrence, Canada. Marine Ecology-Progress Series,1996,141:103~117
    [97]Kwint R L J, Irigoien X, Kramer K J M. Copepods and DMSP. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum Press,1996.239~252
    [98]Archer S D, Stelfox-Widdicombe C, Burkill P H, et al. A dilution approach to quantify the production of dissolved dimethylsulfoniopropionate and dimethyl sulfide due to microzooplankton herbivory. Aquatic Microbial Ecology,2001,23:131~154
    [99]Kiene R P. Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Marine Chemisty,1996,54:69~83
    [100]Wolfe G V, Steinke M S. Contrasting production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi during growth, and when grazed by Oxyrrhis marina. Limnology and Oceanography,1996,41:1151~1160
    [101]Strom S, Wolfe G, Holmes J, et al. Chemical defense in the microplankton I:Feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnology and Oceanography,2003,48:217~229
    [102]Tang K W, Simo R. Trophic uptake and transfer of DMSP in simple planktonic food chains. Aquatic Microbial Ecology,2003,31:193~202
    [103]Tang K W, Dam H G, Visscher P T, et al. Dimethylsulfoniopropionate (DMSP) in marine copepods and its relation with diets and salinity. Marine Ecology-Progress Series,1999,179: 71~79
    [104]Landry M R, Hassett R P. Estimating the grazing impact of marine microzooplankton. Marine Biology,1982,67:283~288
    [105]Strom S L, Welschmeyer N A. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnology and Oceanography,1991,36:50~63
    [106]Archer S D, Stelfox-Widdecomble C E, Malin G, et al. Is dimethylsulfide production related to microzooplankton herbivory in the southern North Sea? Journal of Plankton Research, 2003,25:235-242
    [107]Archer S D, Widdicombe C E. Tarran G A, et al. Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea. Aquatic Microbial Ecology,2001,24:225~241
    [108]Simo R, Archer S D. Pedros-Alio C, et al. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnology and Oceanography,2002,47:53~61
    [109]Stefels J, Dijkhuizen L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Marine Ecology-Progress Series,1996,131:307~313
    [110]Bacic M K, Yoch D C. In vivo characterization of dimethylsulfoniopropionate lyase in the fungus Fusarium lateritium. Applied and Environmental Microbiology,1998,64:106~111
    [111]Kadota H, Ishida Y. Effect of salts on enzymatical production of dimethyl sulfide from Gyrodinium cohnii. Bulletin of the Japanese Society of Scientific Fisheries,1968,34: 512~518
    [112]De Souza M P, Yoch D C. Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate. Applied and Environmental Microbiology,1995,61:21~26
    [113]Steinke M, Daniel C. Kirst G O. DMSP lyase in marine macro-and microalgae. In:Kiene R P, Visscher P T, Keller M D. et al.. eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York:Plenum Press,1996.317~324
    [114]De Souza M P, Chen Y P, Yoch D C. Dimethylsulfoniopropionate lyase from the marine macroalga Ulva curvata:purification and characterization of the enzyme. Planta,1996,199: 433~438
    [115]Stefels J, Dijkhuisen L, Gieskes W W C. DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance. Marine Ecology-Progress Series,1995,123:235~243
    [116]Niki T, Kunugi M, Otsuki A. DMSP-lyase activity in five marine phytoplankton species:its potential importance in DMS production. Marine Biology,2000,136:759~764
    [117]Steinke M, Malin G, Gibb S W, et al. Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea. Deep-Sea Research Ⅱ,2002, 49:3001~3016
    [118]Steinke M, Malin G, Turner S M. et al. Determinations of dimethylsulphoniopropionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS). Journal of Sea Research,2000,43:233~244
    [119]Wilson W H, Tarran G, Zubkov M V. Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-Sea Research Ⅱ,2002.49:2951~2963
    [120]Archer S D, Gilbert F J, Allen J I, et al. Modelling of the seasonal patterns of dimethylsulphide production and fate during 1989 at a site in the North Sea. Canadian Journal of Fisheries and Aquatic Sciences,2004,61:765~787
    [121]Evans C, Kadner S V, Darroch L J, et al. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage:An Emiliania huxleyi culture study. Limnology and Oceanography,2007,53 (3):1036~1045
    [122]Stefels J, Van Boekel W H M. Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp.. Marine Ecology-Progress Series, 1993,97:11~18
    [123]Wolfe G V, Strom S L, Holmes J L, et al. Dimethylsulfoniopropionate cleavage by marine phytoplankton in response to mechanical, chemical, or dark stress. Journal of Phycology, 2002,38:948~960
    [124]Steinke M, Malin G, Archer S D, et al. DMS production in a coccolithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases. Aquatic Microbial Ecology, 2002,26:259~270
    [125]Zeyer J. Oxdation of dimethylsulfide (DMS) to dimethyl sulfoxide (DMSO) by phototrophic purple bacteria. Applied and Environmental Microbiology,1987,53: 2026~2032
    [126]Wolfe G V, Bates T S. Biological consumption of dimethylsulfide in the marine euphotic Zone:result of radioisotope experiments. In:Oremland R S, ed. The biogeochemistry of global change:Radiatively active trace gases. New York:Chapman and Hall,1993.691~703
    [127]Kieber D J, Jiao J F, Kiene R P, et al. Impact of dimethylsulfide photochemistry on methyl sulphur cycling in the equatorial Pacific Ocean. Journal of Geophysical Research,1996,101: 3715~3722
    [128]德斯马E K,道森R.海洋有机化学(纪明侯,钱佐国等译).北京:海洋出版社,1992.382~414
    [129]Yang G-P, Li C-X, Qi J-L, et al. Photochemical oxidation of dimethylsulfide in seawater. Acta Oceanologica Sinica,2007,26 (5):32~42
    [130]Simo R, Pedros-Alio C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature,1999,402 (25):396~399
    [131]Simo R. From cells to globe:approaching the dynamics of DMS(P) in the ocean at multiple scales. Canadian Journal of Fisheries and Aquatic Sciences,2004,61:673~684
    [132]Kiene R P, Service S K. The influence of glycine betaine on dimethyl sulfide and dimethylsulfoniopropionate concentrations in seawater. In:Oremland R S, ed. The biogeochemistry of global change:radiatively important trace gases. New York:Chapman and Hall,1993.654~671
    [133]King G M. Distribution and metabolism of quaternary amines in marine sediments. In: Blackburn T H, Sorensen J, eds. Nitrogen cycling in coastal marine environments. New York: John Wlley,1988.143~173
    [134]Kiene R P, Gerard G. Evaluation of glycine betaine as an inhibitor of dissolved dimethylsulphoniopropionate degradation in marine waters. Marine Ecology-Progress Series, 1995,128:121~131
    [135]Peroud B. LeRudulier D. Glycine betaine transport in Escherichia coli:osmotic modulation. Journal of Bacteriology,1985,161:393~401
    [136]Chambers S T, Kunin C M. Miller D, et al. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia cob. Journal of Bacteriology,1987,169: 4845~4847
    [137]Kiene R P, Slezak D. Low dissolved DMSP concentrations in seawater revealed by small volume gravity filtration and dialysis sampling. Limnology and Oceanography:Methods, 2006,4:80~95
    [138]Kiene R P. Turnover of dissolved DMSP in estuarine and shelf waters from the Northern Gulf of Mexico. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum Press,1996.337~349
    [139]Ledyard K M, Dacey J W H. Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnology and Oceanography,1996,41:33~40
    [140]Taylor B F. Gilchrist D C. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Applied and Environmental Microbiology,1991,57:3581~3584
    [141]Taylor B F, Visscher P T. Metabolic pathways involved in DMSP degradation. In:Kiene R P, Visscher P T. Keller M D, et al., eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York:Plenum Press,1996.265~276
    [142]Kiene R P, Linn L J. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochimica Et Cosmochimica Acta,2000,64:2797~2810
    [143]Kiene R P, Linn L J, Gonzalez J, et al. Dimethylsulfoniopropionate and' methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology,1999,65:4549~4558
    [144]Suylen G M H, Large P J, Dijken J P V, et al. Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulfur compounds by Hyphomicrobium EG. Journal of General and Applied Microbiology.1987,133:2989~2997
    [145]Ledyard K M, Dacey J W H. Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium. Marine Ecology-Progress Series,1994,110:95~103
    [146]De Souza M P, Yoch D C. N-terminal amino acid sequences and comparison of DMSP lyases from Pseudomonas doudoroffii and Alcaligenes strain M3A. In:Kiene R P, Visscher P T, Keller M D, et al.. eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York:Plenum Press,1996.293~304
    [147]Yoch D C, Ansede J H, Rabinowitz K S. Evidence for intracellular and extracellular dimethylsulfoniopropionate (DMSP) lyases and DMSP uptake sites in two species of marine bacteria. Applied and Environmental Microbiology,1997,63:3182~3188
    [148]Gonzalez J M, Kiene R P, Moran M A. Transformations of sulfur compounds by an abundant lineage of marine bacteria in the a-subclass of the class Proteobacteria. Applied and Environmental Microbiology,1999,65:3810~3819
    [149]Brugger A D, Slezak D, Obernosterer I. Photolysis of dimethylsulfide in the northern Adriatic Sea:dependence on substrate concentration, irradiance and DOC concentration. Marine Chemistry,1998,59:321~331
    [150]Aas P, Lyons M, Pledger R, et al. Inhibition of bacterial activities by solar radiation in nearshore waters and the Gulf of Mexico. Aquatic Microbial Ecology,1996,11:229~238
    [151]Herndl G J, Muller-Niklas G, Frick J. Major role on ultraviolet-B in controlling bacterioplankton growth in the surface ocean. Nature,1993,361:717~719
    [152]De Bont J A M, Van Dijken J P, Harder W. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. Journal of General Micrology,1981,127:315~323
    [153]Suylen G M H, Kuenen J G. Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie van Leeuwenhoek,1986,52:281~293
    [154]Visscher P T, Taylor B F. A new mechanism for the aerobic catabolism of dimethyl sulfide. Applied and Environment Microbiology,1993,59:3784~3789
    [155]Hanlon S P, Holt R A, Moore G R, et al. Isolation and characterization of a strain of Rhodobacter sulfidophilus:a bacterium which grows autotrophically with dimethylsulphide as electron donor. Microbiology,1994,140:1953~1958
    [156]Kiene R P. Microbial sources and sinks for methylated sulfur compounds in the marine environment. In:Kelly D P, Murrell J C, eds. Microbial growth on C1 compounds. London: Intercept Limited,1993.15~33
    [157]Bentley R, Chasteen T G. Environmental VOSCs-formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere,2004,55:291~317
    [158]De zwart J M M, Kuenen J G. Aerobic conversion of dimethyl sulfide and hydrogen sulfide by Methylophaga sulfidovorans:implications for modeling DMS conversion in a microbial mat. FEMS Microbiology Ecology,1996,22:155~165
    [159]Hoeft S E, Rogers D R, Visscher P T. Metabolism of methyl bromide and dimethyl sulfide by marine bacteria isolated from coastal and open waters. Aquatic Microbial Ecology,2000, 21:221~230
    [160]Fuse H, Takimura O, Murakami K, et al. Utlization of Dimethyl Sulfide as a Sulfur Source with the Aid of Light by Marinobacterium sp. Strain DMS-S1. Applied and Environmental Microbiology,2000,66:5527~5532
    [161]Juliette L Y, Hyman M R, Arp D J. Inhibition of ammonia oxidation in Nitrosomas euopaea by sulfur compounds:thioethers are oxidized to sulfoxides by ammonia monooxygenase. Applied and Environment Microbiology,1993,59:3718~3727
    [162]Schafer H. Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Applied and Environmental Microbiology,2007,73:2580~2591
    [163]Vila-Costa M, Simo R, Harada H, et al. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science,2006,314:652~654
    [164]Fuse H, Ohta M, Takimura O, et al. Oxidation of trichloroethylene and dimehtyl sulfide by a marine Methylomicrobium strain containing a soluble methane monooxygenase. Bioscience Biotechnology and Biochemistry,1998,62:1925~1931
    [165]DeLong E F. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences USA,1992,89:5685~5689
    [166]Furhman J, Mccallum K, Davis A. Novel major archaeabacterial group from marine plankton. Nature,1992,356:148~149
    [167]Karner M, Delong E, Karl D. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature,2001,409:507~510
    [168]Wolfe G V. Kiene R P. Effects of methylated organic and inorganic substrates on microbial consumption of dimethylsulfide in eatuarine waters. Applied Environmental Microbiology, 1993,59:2723~2726
    [169]Simo R, Pedros-Alio C, Malin G, et al. Biological turnover of DMS, DMSP and DMSO in controlling open-sea waters. Marine Ecology-Progress Series,2000,203:1~11
    [170]Merzouk A, Levasseur M, Scarratt M, et al. Influence of dinoflagellate diurnal vertical migrations on dimethylsulfoniopropionate and dimethylsulfide distribution and dynamics (St. Lawrence Estuary. Canada). Canadian Journal of Fisheries and Aquatic Sciences,2004,61: 712~720
    [171]Yang G-P, Watanabe S, Tsunogai S. Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater. Marine Chemistry,2001,76:137~153
    [172]Vila-Costa M, Kiene R P, Simo R. Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site. Limnology and Oceanography, 2008.53:198~211
    [173]Yang G-P, Tsunogai S. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer of the western North Pacific. Deep-Sea Research I,2005,52 (4):553~567
    [174]Wolfe G V, Levasseur M, Cantin G, et al. Microbial consumption and production of dimethyl sulfide in the Labrador Sea. Aquatic Microbial Ecology,1999,18:197~205
    [175]DiTullio G R, Jones D R, Geesey M E. Dimethylsulfide dynamics in the Ross Sea during austral summer. In:Ditullio G R, Dunbar R G, eds. Biogeochemistry of the Ross Sea. Antarctic Research Series. Washington DC:American Geophysical Union,2003.279~294
    [176]Levasseur M, Scarratt M, Roy S, et al. Vertically resolved cycling of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) in the Northwest Atlantic in spring. Canadian Journal of Fisheries and Aquatic Sciences,2004,61 (5):744~757
    [177]Scarratt M G M, Levasseur S, Schultes S, et al. Production and consumption of dimethylsulfide(DMS) in North Atlantic waters. Marine Ecology-Progress Series,2000,204: 13~26
    [178]Yang G-P, Tsunogai S, Watanabe S. Biogenic sulfur distribution and cycling in the surface microlayer and subsurface water of Funka Bay and its adjacent area. Continental Shelf Research,2005,25:557~570
    [179]Toole D A, Slezak D, Kiene R P, et al. Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean. Deep-Sea Research Ⅰ,2006,53:136~153
    [180]Simo R, Grimalt J O, Albaiges J. Occurrence and transformation of dissolved dimethylsulfur species in stratified seawater (western Mediterranean Sea). Marine Ecology-Progress Series,1995,127:291~299
    [181]Kiene R P. Dynamics of dimethylsulfide and dimethylsulfoniopropionate in oceanic water samples. Marine Chemistry,1992,37:29~52
    [182]Toole D A, Kieber D J, Kiene R P, et al. High dimethylsulfide photolysis rates in nitrate-rich Antarctic waters. Geophysical Research Letters,2004,31:L11307, doi: 10.1029/2004GL019863
    [183]Zubkov M V, Fuchs B M, Archer S D, et al. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Research Ⅱ,2002,49:3017~3038
    [184]Zubkov M V, Linn L J, Amann R, et al. Temporal patterns of biological dimethylsulfide (DMS) consumption during laboratory-induced phytoplankton bloom cycles. Marine Ecology-Progress Series,2004,271:77~86
    [185]Visscher P, Van Gemerden H. Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Applied and Environmental Microbiology,1991,57:3237~3242
    [186]Simo R, Hatton A D, Malin G, et al. Particulate dimethylsulfoxide in seawater:Production by microplankton. Marine Ecology-Progress Series,1998,167:291~296
    [187]Brody S S, Chaney J E. Flame photometric detector with improved specificity to sulfur and phosphorus. Journal of Gas Chromatography,1966,4:42
    [188]Kim K H. Performance characterization of the GC/PFPD for H2S, CH3SH, DMS and DMDS in air. Atmospheric Environment,2005,39:2235~2242
    [189]Kim K K, Choi G H, Choi Y J, et al. The effects of sampling materials selection in the collection of reduced sulfur compounds in air. Talanta,2005,68 (5):1713~1719
    [190]Swan H B. Determination of existing and potential dimethyl sulphide in red wines by gas chromatography atomic emission spectroscopy. Journal of Food Composition and Analysis, 2000,13:207~217
    [191]Gerbersmann C, Ryszard L, Freddy C A. Determination of volatile sulfur compounds in water samples, beer and coffee with purge and trap gas chromatography-microwave-induced plasma atomic emission spectrometry. Analytica Chimica Acta,1995,316:93~104
    [192]Thornton D C, Bandy A R, Ridgeway R G, et al. Determination of part-per-trillion levels of atmospheric Dimethyl sulfide by isotope dilution gas chromatography/mass spectrometry. Journal of Atmospheric Chemistry,1990,11 (4):299~308
    [193]Blomquist B W, Bandy A R, Thornton D C, et al. Grab sampling for the determination of sulfur dioxide and dimethyl sulfide in air by isotope dilution gas chromatography/mass spectrometry. Journal of Atmospheric Chemistry,1993,16(1):23~30
    [194]Ridgeway J R G, Bandy A R, Thornton D C. Determination of aqueous dimethylsulfide using isotope dilution gas chromatography-mass spectrometry. Marine Chemistry,1991,33: 321~334
    [195]Martinez E, Lacorte S, Llobet I, et al. Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography-mass spectrometry. Journal of Chromatography A,2002,959:181~190
    [196]孙传经.气相色谱分析原理与技术.北京:化学工业出版社,1979.155~160
    [197]Nguyen B C, Gaudry A, Bonsang B, et al. Reevaluation of the role of dimethyl sulfide in the sulphur budget. Nature,1978,275:637~639
    [198]Rasmussen R A. Emission of biogenic hydrogen sulfide. Tellus,1974,1 (2):254~260
    [199]Andreae M O, Barnard W R. Determination of trace quantities of dimethylsulfide in aqueous solutions. Analytical Chemistry,1983,55:608~612
    [200]Steudler P A, Kijowski W. Determination of reduced sulfur gases in air by solid adsorbent preconcentration and gas chromatography. Analytical Chemistry,1984,56:1432~1433
    [201]陈猛,李和阳,袁东星,等.微波辅助-顶空固相微萃取-气相色谱-脉冲火焰光度法测定海水中的二甲基硫和藻体中的二甲基巯基丙酸.环境化学,2002(21):183~188
    [202]景伟文.海水微表层和次表层中DMS和DMSP的生物地球化学研究:[博士学位论文].青岛:中国海洋大学,2006
    [203]Bates T S, Cline J D. The role of the ocean in a regional sulfur cycle. Journal of Geophysical Research,1985,90:9168~9172
    [204]Leck C, Lars E, BAgander L E. Determination of reduced sulfur compounds in aqueous solutions using gas chromatography flame photometric detection. Analytical Chemistry,1988, 60(17):1680~1683
    [205]胡敏.二甲基硫测定方法及其海气通量的研究:[博士学位论文].北京:北京大学,1993
    [206]杨桂朋,康志强,景伟文,等.海水中痕量DMS和DMSP的分析方法研究.海洋与湖沼,2007,38:322~328
    [207]Yang G-P, Jing W-W, Li L, et al. Distribution of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring. Journal of Marine Systems,2006,62:22~34
    [208]Yang G-P, Jing W-W, Kang Z-Q, et al. Spatial variations of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and in the subsurface waters of the South China Sea during springtime. Marine Environmental Research,2008,65:85~97
    [209]Dacey J W H, Blough N V. Hydroxide decomposition of DMSP to form DMS. Geophysical Research Letters,1987,14:1246~1249
    [210]Simo R, Grimalt J O, Albaiges J. Sequential method for the field determination of nanomolar concentrations of dimethylsulsulfoxide in natural waters. Analytical Chemistry, 1996,68:1493~1496
    [211]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.1~503
    [212]邹景忠,董丽萍,秦保平.富营养化和赤潮问题的初步研究.海洋环境科学,1983,2(2):41~54
    [213]李宝华,傅克村,荒川久辛.南黄海叶绿素a与初级生产力之间的相关分析.黄渤海海洋,1998,16(2):48~52
    [214]Parsons T R, Maita Y, Lalli C M. A Manual for Chemical and Biological Methods for Seawater Analysis. Oxford:Pergamon Press,1984.23~58
    [215]张辉,石晓勇,张传松,等.北黄海营养盐结构及限制作用时空分布特征分析.中国海洋大学学报,2009,39(4):773~780
    [216]高爽,李正炎.北黄海夏、冬季叶绿素和初级生产力的空间分布和季节变化特征.中国海洋大学学报,2009,39(4):604~610
    [217]白洁,时瑶,宋亮,等.黄海西北部浮游细菌生物量分布特征及其与环境因子的关系.中国海洋大学学报,2009,39(4):592~596
    [218]臧璐.北黄海生源要素的季节特征及冷水团对其影响的研究:[硕士学位论文].青岛:中国海洋大学,2009
    [219]鲍献文,李娜,姚志刚,等.北黄海温盐分布季节变化特征分析.中国海洋大学学报,2009,39(4):553~562
    [220]温婷婷,张传松,王丽莎,等.春、秋季北黄海生源要素的平面分布特征.中国海洋大学学报,2009,39(4):789~798
    [221]李清雪,赵海萍,陶建华.渤海湾海域浮游细菌的生态研究.海洋技术,2005,24(4):50~56
    [222]杜秀宁,刘光兴.2006年冬季北黄海网采浮游植物群落结构.海洋学报,2009,31(5):132~147
    [223]van der Grinten E, Janssen A P H M, de Mutsert K, et al. Temperature-and Light-Dependent Performance of the Cyanobacterium Leptolyngbya Foveolarum and the Diatom Nitzschia Perminuta in Mixed Biofilms. Hydrobiologia,2005,548 (1):267~278
    [224]Fu F X, Warner M E, Zhang Y H, et al. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology,2007,43 (3):485~496, doi:10.1111/j.1529-8817.2007.00355.x
    [225]白晓歌.北黄海浮游病毒的丰度变化及与微微型浮游植物、异养细菌相关性研究:[硕士学位论文].青岛:中国海洋大学,2008
    [226]Vila-Costa M, Pinhassi J, Alonso C, et al. An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean. Environmental Microbiology,2007,9 (10),2451~2463, doi:10.1111/j.1462-2920.2007.01363.x
    [227]康志强.黄海、南海DMS生物生产与消费速率的研究:[硕士学位论文].青岛:中国海洋大学,2006
    [228]孙娟.海水中DMS生物生产与消费速率研究:[硕士学位论文].青岛:中国海洋大学,2007
    [229]张洪海.中国东海、黄海DMS和DMSP的生物地球化学研究:[博士学位论文].青岛:中国海洋大学,2009
    [230]宋亮.典型海域微生物生态特征及影响因素研究:[硕士学位论文].青岛:中国海洋大学,2007
    [231]时瑶.黄海西北部细菌和浮游病毒的生态分布特征及其影响因素研究:[硕士学位论文].青岛:中国海洋大学,2009
    [232]del Valle D A, Kieber D J, Toole D A, et al. Biological consumption of dimethylsulfide (DMS) and its importance in DMS dynamics in the Ross Sea, Antarctica. Limnology and Oceanography,2009,54 (3):785~798
    [233]Bates T S, Kiene R P, Wolfe G V, et al. The cycling of sulfur in surface sea water of the Northeast Pacific. Journal of Geophysical Research-Oceans,1994,99:7835~7843
    [234]Toole D A, Siegel D A. Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: Closing the loop. Geophysical Research Letters,2004,31:L09308
    [235]Vallina S M, Simo R, Anderson T R, et al. A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea:Simulating the dimethylsulfide (DMS) summer-paradox. Journal of Geophysical Research,2008,113:G01009
    [236]Barnard W R, Andreae M O, Watkins W E, et al. The flux of dimethylsulfide from the oceans to the atmosphere. Journal of Geophysical Research,1982,87:8787~8793
    [237]Simo R, Grimalt J O, Albaigles J. Dissolved dimethylsulphide, dimethylsulphoniopropionate and dimethylsulfoxide in western Mediterranean waters. Deep-Sea Research Ⅱ,1997,44:929~950
    [238]Turner S M, Malin G, Liss P S, et al. The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnology and Oceanography,1988,33:364~375
    [239]Turner S M, Malin G, Liss P S. Dimethylsulfide and dimethylsulfoniopropionate in European coastal and shelf waters. In:Saltzman E, Cooper W J, eds. Biogenic Sulfur in the Environment. Washington DC:American Chemical Society,1989.183~200
    [240]王俊.黄海秋、冬季浮游植物的调查研究.海洋水产研究,2003,24(1):15~23
    [241]王俊.黄海春季浮游植物的调查研究.海洋水产研究,2001,22(1):56~61
    [242]Ditullio G R, Smith W O. Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep-Sea Research 1,1995,42 (6):873~892
    [243]Yoch D C. Dimethylsulfoniopropionate:its sources, role in the marine food web, and biological degradation to dimethylsulfide. Applied and Environmental Microbiology,2002, 68:5804~5815
    [244]Vallina S M, Simo R. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science,2007,315:506~508
    [245]田恬,魏皓,苏健,等.黄海氮磷营养盐的循环和收支研究.海洋科学进展,2003,21(1):1~11
    [246]周伟华,王汉奎,董俊德,等.三亚湾秋、冬季浮游植物和细菌的生物量分布特征及其与环境因子的关系.生态学报,2006,26(8):2633~2639
    [247]孙伟,王诗成.山东半岛海域赤潮灾害探究.齐鲁渔业,2008,25(4):58~60
    [248]Turner S M, Nightingale P D, Broadgate W, et al. The distribution of dimethylsulfide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep-Sea Research Ⅰ,1995,42: 1059~1080
    [249]Erickson D J, Ghan S J, Penner J E. Global ocean-to-atmosphere dimethyl sulfide flux. Journal of Geophysical Research,1990,95 (D6):7543~7552
    [250]马奇菊,胡敏,田旭东,等.青岛近岸海域二甲基硫排放和大气中二甲基硫浓度变化.环境科学,2004,25(1):21~24
    [251]万小芳.黄海冷水团水域水层底栖耦合生态系统建模研究:[硕士学位论文].青岛:中国海洋大学,2003
    [252]Jennifer C, James A A E, Ellen T M. Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Marine Ecology-Progress Series,1996,139:267~279
    [253]周玉航,潘建明,叶瑛,等.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用.台湾海峡,2001,20(3):340~345
    [254]胡敏,任久长,蒋林,等.前沟藻(Amphidiniumhoefleri)和角刺藻(Chaetocerosgracilis)二甲基硫生产的实验研究.环境科学,1998,7:6~9
    [255]李炜,焦念志.环境因子对三种常见微藻细胞中二甲基硫丙酸含量影响的初步研究.海域与湖沼,1999,30(6):635~639
    [256]林益明,李和阳,王大志,等.塔玛亚历山大藻生成二甲基硫和二甲基硫丙酸的实验研究.台湾海峡,2001,20(3):335~339
    [257]梁英,孙世春,魏建功.海水生物饵料培养技术.青岛:青岛海洋大学出版社,2001
    [258]洪爱华,尹平河,赵玲,等.新洁而灭对海洋原甲藻赤潮生物的灭杀与抑制.海洋环境科学,2003,22(2):64~67
    [259]齐雨藻,钱锋.大鹏湾几种甲藻的分类学研究.海洋与湖沼,1994,25(2):206~210
    [260]王正方,张庆吕,海燕.温度、盐度、光照强度和对pH海洋原甲藻增长的效应.海洋与湖沼,2001,32(1):15~18
    [261]许建平.浙江沿岸的赤潮灾害及防治对策.东海海洋,1992,10(3):30~37
    [262]Zhang Q, Wang Z F. The preliminary study on the Red Tide around the Beiji Island in China. In:Hopley D, Wang Y, eds. Pacific Congress on Marine Science and Technology. Australia: James Cook University of North Queensland,1993.421~429
    [263]郑重,李少莆,许振祖.海洋浮游生物学.北京:海洋出版社,1984.70~97
    [264]齐雨藻,张家平,吴坤东,等.中国沿海的赤潮—深圳湾富营养化与赤潮的研究.暨南大学学报(赤潮研究专刊),1989,10~21
    [265]Park J S, Kim H G, Lee S G. Studies on red tide phenomena in Korean coastal waters. In: Okaichi T, Anderson D M, Nemoto T, eds. Red tides:biology, environmental science, and toxicology. New York:Elsevier,1989.37~40
    [266]Guillard R R L, Ryther J H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology,1962,8: 229~239
    [267]Guillard R R L. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanle M H, eds. Culture of Marine Invertebrate Animals. New York:Plenum Press,1975. 26~60
    [268]金伟.盐和铬对单细胞藻生理生化的影响.河北大学学报,2002,22(1):44~50
    [269]张前前.东海典型赤潮藻检测的荧光光谱特征研究:[博士学位论文].青岛:中国海洋大学,2005
    [270]任永霞,徐宁,段舜山.微藻叶绿素荧光值与传统生长指标的关联性研究.生态科学,2006,25(2):128~130
    [271]陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术.上海:上海科学技术文献出版社,1995.337~381
    [272]周德庆.我国渔用饲料生产、质量现状与对策.海洋水产研究,2002,23(1):79~83
    [273]Taylor B F. Bacterial transformations of organic sulfur compounds in marine environments. In:Oremland R, ed. Biogeochemistry of Global Change—Radiatively Active Trace Gases. New York:Chapman & Hall,1993.745~781
    [274]石岩峻,胡晗华,马润宇,等.不同氮磷水平下微小原甲藻对营养盐的吸收及光合特 性.过程工程学报,2004,4(6):554~559
    [275]胡晗华,石岩峻,丛威,等.不同氮磷水平下中肋骨条藻对营养盐的吸收及光合特性.应用与环境生物学报,2004,10(6):735~739
    [276]沈立光,等.海洋原甲藻的生理生态研究.海洋信息,1991,10:29
    [277]张青田,张朝琪,董双林.氮、磷对金藻的增殖效应.海洋湖沼通报,2002(2):45~51
    [278]Kolber Z S, Zehr J, Falkowski P G. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem Ⅱ. Plant Physiology,1988 (88):923~929
    [279]Sunda W G, Hardison R, Kiene R P, et al. The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton:climate feedback implications. Aquatic Sciences,2007,69:341~351
    [280]Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnology and Oceanography,1998,43:129~135
    [281]Logan B A, Demmig-Adams B, Rosenstiel T N, et al. Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta,1999,209:213~220
    [282]Litchman E, Neale P J, Banaszak A T. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates:photoprotection and repair. Limnology and Oceanography, 2002,47:86~94
    [283]Grzebyk D, Berland B. Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. Journal of Plankton Research,1996,18:1837~1849
    [284]Dickson D M J, Kirst G O. The role of b-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta,1986,167:536~543
    [285]Dickson D M J, Kirst G O. Osmotic adjustment in marine eukaryotic algae:the role of inorganic ions, quaternary ammonium, tertiary sulphonium and carbohydrate solutes. I. Diatoms and a Rhodophyte. New Phytologist,1987,106:645~655
    [286]Stefels J, Steinke M, Turner S, et al. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry,2007,83:245~275
    [287]Blunden G, Gordon S M. Betaines and their sulphonio analogues in marine algae. In:Round F E, Chapman D J, eds. Progress in Phycological Research. Bristol:Biopress Limited,1986. 39~80
    [288]Bisson M A, Kirst G O. Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften,1995,82:461~471
    [289]Van Diggelen J, Rozema J, Dickson D M J, et al. P-3-dimethylsulphoniopropionate, proline and quaternary ammonium compounds in Spartina anglica in relation to sodium chloride, nitrogen and sulphur. New Phytologist,1986,103:573~586
    [290]Edwards D M, Reed R H, Chudek J A, et al. Organic solute accumulation in osmoticallystressed Enteromorpha intestinalis. Marine Biology,1987,95:583~592
    [291]Colmer T D, Fan T W M, Lauchli A, et al. Interactive effects of salinity, nitrogen and sulphur on the organic solutes in Spartina alterniflora leaf blades. Journal of Experimental Botany,1996,47:369~375
    [292]Reed R H. Use and abuse of osmo-terminology. Plant Cell and Environment,1984,7: 165~170
    [293]Bauman M E M, Brandini F P, Staubes R. The influence of light and temperature on carbon-special DMS release by cultures of Phaeocystis Antarctica and three Antarctic diatoms. Marine Chemistry,1994,45:129-136
    [294]Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystem of he equatorial pacific ocean. Nature,1994,371:123~129
    [295]Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean. Nature,1996, 383:495~501
    [296]Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton boom in the polar southern ocean stimulated by iron fertilization. Nature,2000,407:695~702
    [297]朱明远,牟学延,李瑞香,等.铁对三角褐指藻生长、光合作用及生化组成的影响.海洋学报,2000,22(1):110~116
    [298]蒋汉明,张凤珍,孙凌云,等.Fe3+对三角褐指藻生长和脂肪酸组成的影响.食品科学,2005,26(6):43~46
    [299]Lewin J, Chen C H. Available Iron:A Limiting Factor for. Marine Phytoplankton. Limnology and Oceanography,1971,16:670~675
    [300]Menzel D W, Ryther J H. Annual variations in primary production of the Sargasso Sea off Bermuda. Deep Sea Research,1960,7:282~288
    [301]Davies A G. Iron, chelation and the growth of marine phytoplankton 1. Growth kinetics and chlorophyll production in cultures of the euryaline flagellate Dunaliella tertiolecta under iron-limiting conditions. Journal of the Marine Biological Association of the United Kingdom, 1970,50:65~86
    [302]Glover H E. Effects of iron deficiency on the physiology and biochemistry of Isochrysis galbana (Chrysophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology,1977,13:208~212
    [303]Brand L E, Sunda W G. Guillard R R L. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnology and Oceanography,1983,28:1182~1198
    [304]Kim Y S, Martin D F. Interrelationship of Peace River parameters as a basis of the iron index:A predictive guide to the Florida red tide. Water Research,1974,8:607~616
    [305]Glover H E. Iron in marine coastal waters:seasonal variation and its apparent correlation with a dinoflagellate bloom. Limnology and Oceanography,3:534~537
    [306]Oquist G. Changes in plant composition and photosynthesis induced by iron-deficiency in the blue-green alga Anacystis nidulans. Plant Physiology,1971,25:188~191
    [307]Muellar B. Some aspects of iron limitation in a marine diatom:[Master thesis]. Vancouver B C:University of British Columbia,1985
    [308]Flynn K J, Hipkin C R. Interaction between iron, light, ammonium and nitrate:insights from the construction of a dynamic model of algal physiology. Journal of Phycology,1999, 35:1171~1190
    [309]Gelder R J. Complex lessons of iron uptake. Nature,1999,400:815~816
    [310]Rueter J G. The effect of iron nutrition on photosynthesis and nitrogen fixation in cultures of Trichodesmium. Journal of Phycology,1990,26:30~35
    [311]Davey M, Geider R J. Impact of iron limitation on the photosynthetic apparatus of the diatom Chaetoceros muelleri (Bacillariophyceae). Journal of Phycology,2001,37:987~1000
    [312]Rueter J G, Ades D R. The role of iron nutrition in photo synthesis and nitrogen assimilation of scenedesmus quadricauda (Chlorophyceae). Journal of Phycology,1987,23:452~457
    [313]邢雪荣,张蕾.植物的硅素营养研究综述.植物学通报,1998,15(2):33~40
    [314]朱艺峰,郭小强.不同氮、磷硅含量和接种密度对三角褐指藻生长的影响.中国水产科学,2001,7(4):47~51
    [315]宫海军,陈坤明,王琐民,等.植物硅营养的研究进展.西北植物学报,2004,24(2):2385~2392
    [316]Zhang H H, Yang G-P, Zhu T. Distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer of the Yellow Sea, China, in spring. Continental Shelf Research,2008 (28):2417~2427
    [317]Rellinger A N, Kiene R P, Slezak D, et al. Occurrence and turnover of DMSP and DMS in the deep waters of the Ross Sea, Antarctica. Deep-Sea Research I,2009,56:686~702
    [318]Steinke M, Kirst G O. Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev. (Ulvales, Chlorophyta). Journal of Experimental Marine Biology and Ecology,1996,201 (1-2):73~85
    [319]Dacey J W H, Howse F A, Michaels A F, et al. Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Research I,1998,45:2085~2104
    [320]Simo R, Archer S D, Pedros-Alio C, et al. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnology and Oceanography,2002,47:53~61
    [321]Zubkov M V, Fuchs B M, Archer S D, et al. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environmental Microbiology,2001,3:304~311
    [322]Malmstrom R, Kiene R P, Kirchman D L. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnology and Oceanography,2004,49:597~606
    [323]Malmstrom R R, Kiene R P, Cottrell M T, et al. Contribution of SAR11 Bacteria to Dissolved Dimethylsulfoniopropionate and Amino Acid Uptake in the North Atlantic Ocean. Applied and Environmental Microbiology,2004,70:4129~4135
    [324]Malmstrom R R, Cottrell M T, Elifantz H. et al. Biomass Production and Assimilation of Dissolved Organic Matter by SAR11 Bacteria in the Northwest Atlantic Ocean. Applied and Environmental Microbiology,2005,71:2979~2986
    [325]Pinhassi J, Simo R, Gonzalez J M, et al. Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom. Applied and Environmental Microbiology,2005,71:7650~7660
    [326]Vila-Costa M, del Valle D A, Gonzalez J M, et al. Phylogenetic identification and metabolism of marine DMS-consuming bacteria. Environmental Microbiology,2006,8: 2189~2200
    [327]Tripp H J, Kitner J B, Schwalbach M S, et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature,2008,452:741~744
    [328]Merzouk A M L, Scarratt M G, Michaud S, et al. DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific. Part Ⅱ. Bacterial cycling. Deep-Sea Research Ⅱ,2006,53:2370~2383
    [329]White R H. Analysis of dimethyl sulfonium compounds in marine algae. Journal of Marine Research,1982,40:529~535
    [330]Kiene R P, Hoffmann Williams L P, Walker J E. Seawater microorganisms have a high affinity glycine betaine uptake system which also recognizes dimethylsulfoniopropionate. Aquatic Microbial Ecology,1998,15:39~51
    [331]Lee S H, Kang Y C, Fuhrman J A. Imperfect retention of natural bacterioplankton cells by glass fiber filters. Marine Ecology-Progress Series,1995,119:285~290
    [332]Lee S H, Fuhrman J A. Species composition shift of confined bacterioplankton studied at the level of community DNA. Marine Ecology-Progress Series,1991,79:195~201
    [333]McManus G B, Griffin P M, Pennock J R. Bacterioplankton abundance and growth in a river-dominated estuary:relationships with temperature and resources. Aquatic Microbial Ecology,2004,37:23~32
    [334]Matrai P A, Vernet M, Hood R, et al. Light dependence of carbon and sulfur production by polar clones of the genus Phaeocystis. Marine Biology,1995,124:157~167
    [335]Wolfe G V. Accumulation of dissolved DMSP by marine bacteria and its degradation via bactivory. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum,1996.277~291
    [336]Kiene R P, Linn L J. Filter type and sampling handling affect determination of organic substrate uptake by bacterioplankton. Aquatic Microbial Ecology,1999,17:311~321
    [337]Vila M, Simo R, Kiene R P, et al. Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa. Applied and Environmental Microbiology,2004,70:4648~4657
    [338]Wolfe G V, Sherr E B, Sherr B F. Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Marine Ecology-Progress Series,1994,111: 111~119
    [339]Laroche D, Vezina A F, Levasseur M, et al. DMSP synthesis and exudation in phytoplankton: a modeling approach. Marine Ecology-Progress Series,1999,180:37~49
    [340]Cabet A, Landry M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceangraphy,2004,49:51~57
    [341]Salo V, Simo R, Vila-Costa M, et al. Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labeled prey. Environmental Microbiology,2009,11:3063~3072
    [342]Keil R G, Montlucon D B, Prahl F G, et al. Sorptive preservation of labile organic matter in marine sediments. Nature,1994,370:549~552
    [343]Mayer L. Surface Area Control of Organic Carbon Accumulated in Continental Shelf Sediments. Geochimica et Cosmochimica acta,1994,58:1271~1284
    [344]Hedges J I, Baldock J A, Gelinas Y, et al. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature,2001,409:801~804
    [345]Kiene R P. Microbial cycling of organosulfur gases in marine and freshwater environments. In:Adams D, Seitzinger S, Crill P, eds. Cycling of reduced gases in the hydrosphere. Stuttgart: E. Schweitzerbart'sche Verlagsbuchhandlung (Naglele u. Obermiller),1996.137~151
    [346]Schuster S, Arrieta J M, Herndl G J. Adsorption of dissolved free amino acids on colloidal DOM enhances colloidal DOM utilization but reduces amino acid uptake by orders of magnitude in marine bacterioplankton. Marine Ecology-Progress Series,1998,166:99~108
    [347]Le Rudulier D, Gloux K, Riou N. Identification of an osmotically induced periplasmic glycine betaine-binding protein from Rhizobium meliloti. Biochimica et Biophysica Acta, 1991,1061:197~205
    [348]Le Rudulier D, Pocard J A, Boncompagni E, et al. Osmoregulation in bacteria and transport of onium compounds. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum Press,1996.253~263
    [349]Kempf B, Gade J, Bremer E. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis:purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. Journal of Bacteriology,1997,179: 6213~6220
    [350]Koike 1, Hara S, Terauchi K, et al. The role of sumicrometer particles in the ocean. Nature, 1990,345:242~244
    [351]Nagata T, Kirchman D L. Release of macromolecular organic complexes by heterotrophic marine flagellates. Marine Ecology-Progress Series,1992,83:233~240
    [352]Tranvik L. Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacterivory and autotrophy. Applied and Environmental Microbiology,1994,60: 1884~1888
    [353]Fuhrman J A. Marine viruses and their biogeochemical and ecological effects. Nature,1999, 399:541~548
    [354]Nagata T. Bacteria-Organic matter interactions in seawater. In:Kirchman D L, Mitchell R, eds. Microbial Ecology of the Oceans. Hoboken:John Wiley and Sons incorporation,2008. 207~241
    [355]Nakamura H, Ohtoshi M, Sampei O, et al. Synthesis and absolute configuration of (+)-Gonyauline:A modulating substance of bioluminescent circadian rhythm in the unicellular alga Gonyaulax polyedra. Tetrahedron Letters,1992,32:2821~2822
    [356]Anderson R, Kates M, Volcani B E. Sulphonium analogue of lecithin in diatoms. Nature, 1976,263:51~53
    [357]Kates M, Volcani B E. Biosynthetic pathways for phosphatidylsulfocholine, the sulfonium analogue of phophatidylcholine, in diatoms. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum Press,1996.109~119
    [358]Bisseret P, Ito S, Tremblay P A, et al. Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine in some diatoms and algae. Biochimica et Biophysica Acta,1984,796:320~327
    [359]Gage D A, Hanson A D. Characterization of 3-dimethylsulfoniopropionate (DMSP) and its analogs with Mass spectrometry. In:Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental chemistry of DMSP and related sulfonium compounds. New York:Plenum Press,1996.75~86
    [360]Colmer T D, Corradini F, Cawthray G R, et al. Analysis of dimethylsulphoniopropionate (DMSP), betaines, and other organic solutes in plant tissue extracts using HPLC. Phytochemical Analysis,2000,11:163~168
    [361]Wiesemeier T, Pohnert G. Direct quantification of dimethylsulfoniopropionate (DMSP) in marine micro-and macroalgae using HPLC or UPLC/MS. Journal of Chromatography B, 2007,850:493~498
    [362]Guo L, Santschi P H, Bianchi T S. Dissolved organic matter in estuaries of the Gulf of Mexico. In:Bianchi T S, Pennock J R, Twilley R R, eds. Biogeochemistry of Gulf Coast Estuaries. New York:John Wiley and Sons Incorporation,1999.269~299
    [363]Bianchi T S, Pennock J R, Twilley R R. Biogeochemistry of Gulf Coast Estuaries. New York:John Wiley and Sons Incorporation,1999
    [364]Bianchi T S. Biogeochemistry of Estuariesedn. New York:Oxford University Press,2007
    [365]Merzouk A, Levasseur M, Scarratt M, et al. Bacterial DMSP metabolism during the senescence of the spring diatom bloom in the Northwest Atlantic. Marine Ecology-Progress Series.2008,369:1~11
    [366]Andreae M O, Crutzen P J. Atmospheric aerosols:biogeochemical sources and role in atmospheric chemistry. Science,1997,276:1052~1058
    [367]Bailey K E, Toole D A, Blomquist B, et al. Estimation of dimethylsulfide production in Sargasso Sea Eddies. Deep-Sea Research Ⅱ,2008,55:1491~1504
    [368]Millero F. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Marine Chemistry,1986,18:121~147
    [369]Ellman G L. A colorimetric method for determining low concentrations of mercaptans. Archives of Biochemistry and Biophysics,1958,74:443~450
    [370]Riddles P W, Blakeley R L, Zerner B. Reassessment of EllmanKs reagent. Methods in Enzymology,1983,91:49~60
    [371]Kirchman D L, K'nees E, Hodson R. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology,1985,49:599~607
    [372]Slezak D, Kiene R P, Toole D A, et al. Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater. Aquatic Sciences,2007,69:377~393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700