用户名: 密码: 验证码:
Harpin蛋白纳米药物药效研究及Pen-2 DNA纳米药物抗WSSV研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Harpin蛋白是植物病原菌通过Ⅲ型分泌途径(typeⅢsecretion system, TTS)向胞外分泌的重要致病因子,控制病原菌在敏感植物上的增殖和致病力。Harpin蛋白引起寄主或非寄主发生过敏性反应(hypersensitive response, HR),从而使植物产生系统获得性抗性(systemic acquired resistance, SAR),增强植物抗病能力并促进生长,已被开发成为新一代生物农药。但在农业实际应用中,其生物利用度较低,多次施药还会造成药效下降。近20年来纳米药物发展迅速,形式、尺寸不同的纳米药物能够产生透皮吸收、体内长循环、基因传导以及缓控释放等多种功效,是现代药学领域的研究热点之一。
     本研究中,为了获得良好的试验平行性,用发酵罐发酵、亲和层析纯化得到了高纯度的rHrpZ (recombinant HarpinZ)。并通过3种不同给药方式在烟草叶片上测定rHrpZ的生物学活性,发现至少需要喷洒5μg/mL rHrpZ才能使苯丙氨酸解氨酶(Phenylalanine ammonia lyase, PAL)活性升高一倍,而通过叶片穿刺小孔向叶肉组织内渗透,至少需要10μL 8mg/mL rHrpZ才能使穿刺孔周围产生可视的HR;而向叶柄中注射rHrpZ使其通过维管束传输,仅需rHrpZ就能使重约1g的叶片发生弥散性HR,全叶萎败。说明rHrpZ的生物学活性很高,但难以通过叶片表皮层渗透进入叶肉组织,即使通过伤口进入叶肉,rHrpZ也难以在叶肉组织中扩散。而进一步对多次施药后rHrpZ的药效研究发现,第二次施药rHrpZ对PAL和病程相关蛋白基因PR5-dB的转录水平促进作用均明显降低,其原因是由于PAL活性增强导致木质素加快积累,细胞壁渗透能力下降,导致rHrpZ的生物利用度(bioavailability)降低。
     利用具有高度生物安全性的合成高分子PLGA (poly d,l-lactide-co-glycolide),用乳化-溶剂挥发法(emulsification/solvent evaporation)制备了含有rHrpZ的纳米颗粒rHrpZ-PLGANP,通过动态光散射颗粒直径分布仪和扫描探针显微镜测定了其尺寸范围,结果显示其尺寸符合哺乳动物中透皮吸收和长循环的范围,并且在体外释放试验中体现了良好的药物释放速度。
     喷施同等剂量的rHrpZ-PLGA NP和rHrpZ后,测定了PAL活性和PR5-dB转录水平变化,结果显示,rHrpZ-PLGANP能明显延长rHrpZ作用时效,将药效时间从不足2天延长至超过2周。用PR5-dB转录水平评价药效,rHrpZ-PLGANP能使同等剂量的rHrpZ药效提高5倍,其原因可能是由于纳米颗粒能产生类似于哺乳动物中的透皮吸收效果,帮助rHrpZ通过植物气孔进入叶肉组织并进入细胞壁,在原位释放(in situ release)出rHrpZ,同时达到被动靶向和缓释功能。
     本研究证明了Harpin蛋白在农业应用时生物利用度低下,且多次施药后药效下降,并在国内外首次将纳米药物用于研究、开发新型蛋白质生物农药,增强了rHrpZ的生物利用度,提高了药效。本研究是纳米药物在生物农药中应用基础,为开发新型生物农药提供了新思路。
     对虾白斑综合症病毒(White spot syndrome virus,WSSV)是水产养殖业中危害最大的病毒之一,感染虾群在3-10天内死亡,死亡率可达100%,自上世纪发现以来,已造成世界范围内水产养殖业不可计量的损失,至今尚未有特效药问世。对虾抗菌肽penaeidins是一种既含有二硫键,又富含脯氨酸的新型抗菌肽,对于革兰氏阴性、阳性细菌、丝状真菌均有抑制作用,是对虾先天性免疫系统中的重要组成部分。
     本研究在大肠杆菌系统中表达了南美白对虾抗菌肽Pen-2融合蛋白,经过金属螯合亲和层析、肠激酶切得到了Pen-2成熟肽。将不同浓度的Pen-2成熟肽与WSSV提取液混合后感染克氏原鳌虾,结果显示,Pen-2能降低WSSV的感染能力,60μg/mL的Pen-2成熟肽能使WSSV致死率下降82.7%。用编码Pen-2的真核表达载体pcDNA3.1(-)-SP通过注射的方式给药后,发现注射质粒浓度超过20μg时,10%克氏原鳌虾发生蜕壳困难死亡现象,推测其原因可能是由于Pen-2蛋白参与调控虾蜕壳循环。用10μg质粒剂量注射克氏原鳌虾后,RT-PCR检测Pen-2基因在一周内持续转录,且对多酚氧化酶(prophenoloxidase,PPO)活性没有影响。注射后第3天用WSSV攻击,发现pcDNA3.1(-)-SP能抑制WSSV侵染,其相对保护率为48.3%。一个月后RT-PCR检测幸存虾的血淋巴中WSSV复制酶基因Swssvgp514转录水平发现,对照组用半数致死量WSSV攻击后的幸存虾血淋巴中全部检测到Swssvgp514转录,而质粒注射组有30%检测不到Swssvgp514基因转录。该试验结果说明pcDNA3.1(-)-SP对WSSV侵染具有抑制作用,但是注射给药方式每次仅能提供一周的保护效果,作用效果较弱。
     为延长Pen-2在虾体内的转录时间,加强药效,用来源于甲壳类动物甲壳的天然高分子壳聚糖与pcDNA3.1(-)-SP质粒以离子凝胶化方法制备了直径约80nm的纳米药物SP-CS NP(pcDNA3.1(-)-SP chitosan nanoparticle)。克氏原鳌虾分三次通过口服SP-CS NP,每次质粒剂量为10μg后,RT-PCR能在2个月内检测到Pen-2转录。最后一次口服SP-CS NP后第3天用WSSV攻击,结果显示SP-CS NP对WSSV攻击的相对保护率达到62.0%。且口服壳聚糖溶液对虾壳聚糖酶(chitosanase)、几丁质酶(chitinase)活性均没有明显影响,排除了壳聚糖对虾免疫机制的影响。一个月后RT-PCR检测克氏原鳌虾血淋巴,仅10%幸存虾中能检测Swssvgp514转录。说明SP-CS NP能长时间对WSSV起到抑制作用,并帮助虾清除体内病毒。
     由于白斑综合症是由WSSV感染引起虾免疫机能下降,从而多种病原物共同作用造成虾大量死亡。本研究还在病死南美白对虾中分离到一株溶藻弧菌(Vibrio alginolyticus)并命名为VA0712。用VA0712攻击注射pcDNA3.1(-)-SP和口服SP-CS NP的克氏原鳌虾,取血淋巴直接涂布TCBS平板,菌落计数结果显示给药方式均能加快虾对溶藻弧菌的清除速率,证明了Pen-2能从多角度抵抗对虾疾病。
     该研究首次证明体外表达的南美白对虾抗菌肽Pen-2具有对WSSV的抑制作用,并用真核表达载体pcDNA3.1(-)-SP在体内表达Pen-2抑制WSSV侵染,为开发利用对虾抗菌肽基因Pen-2防治抗对虾白斑综合症提供了基础。进而制备了pcDNA3.1(-)-SP-壳聚糖口服纳米颗粒,通过口服给药方式加强了Pen-2在体内的表达时效和对WSSV的抑制作用,初步找到了应用Pen-2抑制WSSV侵染的可行性方法,为开发抗WSSV药物提供了新的思路。
Harpin is a kind of important factors secreted by type III secretion system of plant pathogen, which is important for pathogens proliferation and pathogenicity. Harpins can cause hypersensitive response(HR) on both host and non-host plants, thereby generate systemic acquired resistance(SAR) on plants, enhance growth and pathogen-resistance ability. But in agriculture application, the bioavailability is poor and the drug effect decreases with the multi-application. In the past two decades, great advances have been made in the field of nanomedicine. Various forms of nanomedicines can bring different effects, such as transdermal absorption, in vivo long circulation, gene transfection and controlled release. So that nanomedicines have been one of the hotspots of pharmaceutics research.
     In this study, recombinant HarpinZ(rHrpZ) was expressed using a fermentor and then purified by affinity chromatography. To test the HR, various dosages of purified rHrpZ were administrated on tobacco by three methods, sprayed on leaves, infiltrated from micro pore on leaves and injected into petiole. Sprayed on leaves, at least 5μg/mL rHrpZ could double the activity of phenylalanine ammonia lyase(PAL). Infiltrated into tobacco leaves, no less than 80μg rHrpZ (10μL of 8mg/mL rHrpZ) elicited HR, local symptoms were observed 16 hours after administration. While injected into petiole, rHrpZ could be transported though vascular bundle, only 20ng of purified rHrpZ (2μL of 10μg/mL rHrpZ) elicited a diffusive HR, the whole piece of leaf damped off in 2 hours. These results indicate that rHrpZ has strong biological activity, but only few rHrpZ could pass epidermis without any wound on leaves. And even when rHrpZ entered mesophyll through wounds on leaves by infiltration, there were still difficulties on pervasion. Furthermore, we investigated the drug effect after multi-administration, the effects of rHrpZ on both the PAL activity and the PR-5dB transcription level were decreased in the second administration. PAL controls the rate of lignin synthesis. With lignin accumulated, plant cells osmosis decreased, and then fewer rHrpZ can pass cell wall to interact with acceptors. So the stimulation effect of the second administration of rHrpZ was slighter than the first time.
     We prepared poly d,l-lactide-co-glycolide nanoparticles containing rHrpZ (rHrpZ-PLGA NP) by emulsion/solvent evaporation technique. rHrpZ-PLGA NP were characterized for size distribution using both dynamic light scattering particle size analyzer and scanning probe microscope. The result showed that the mean diameter of rHrpZ-PLGA NP fitted the range of long-circulating and transdermal in mammalians. It also showed good drug release rate in in vitro release test.
     After spraying the same dose of rHrpZ-PLGA NP and rHrpZ protein, PAL activity and PR5-dB transcription had been tested to investigate the drug effect. The results showed that rHrpZ-PLGA NP extended the drug effect duration from about 2 days to more than 2 weeks. Evaluating the drug effect by PR5-dB transcription level, the drug effect of rHrpZ-PLGA NP was five folds more than that of rHrpZ protein. It probably due to nanoparticles could produce transdermal effect similar with that in mammalian organ. The rHrpZ-PLGA NP could help rHrpZ pervade through epidermis and cell wall mainly from stoma, and released rHrpZ in situ, achieved both passive targeting and sustained release functions.
     This study proved that the bioavailability of Harpin was quite low in agriculture applications, the drug effect even decrease after multi-administration. In home and abroad, for the first time, we applied the nanomedicine technology in studying and developing new protein biopesticide. The nanomedicine caused enhancement on bioavailability and drug effect of rHrpZ. This study is basic work of apply nanomedicine technology in biopesticides development, and provide a new idea for biopesticides development.
     White spot syndrome virus(WSSV) is considered to be one of the most critical virus of shrimp, which is responsible for 100% mortality within 3-10 days after onset of the infection and has caused incalculable loss to the shrimp culture industry worldwide since it first broke out last century. There is no specific medicine for the white spot syndrome so far. Penaeidins are a kind of new antimicrobial peptides (AMP) which contain both disulfide bonds and proline-rich domain. As an important immune factor of the penaeid's innate immune system, penaeidins exhibit a broad spectrum of activity against Gram-positive and Gram-negative bacteria, yeasts, fungi, parasites, enveloped viruses, and even tumor cells.
     In this study, Penaeus vannamei antimicrobial peptide Pen-2 fusion protein was expressed in E. coli system and purified with metal affinity chromatography. Then the fusion protein was digested by enterokinase to remove the fusion tag resulting the mature peptide Pen-2. In vitro anti-virus experiment was processed by mixing WSSV suspension together with various concentrations of mature peptide Pen-2, the mixture was injected into the second abdominal segment to infect cray fish,Procambarus clarkia. The result showed that Pen-2 could inactivate WSSV by membrane attack mechanism.60μg/mL of Pen-2 reduced 82.7% of the mortality by WSSV infection. Administrated by intramuscular injection, when the dose of pcDNA3.1(-)-SP up to 20μg,10% of the crayfish died due to molting difficulties. It suggested that Pen-2 probably involved into the molting cycle of the shellfish. Injected 10μg pcDNA3.1(-)-SP, Pen-2 transcription could be detected in the haemolymph for about a week and did not shown any effect on prophenloxidase activity. The crayfish was infected with WSSV 3 days post injection, the result shown that Pen-2 can inhibit WSSV infection in vivo. The relative protection ratio by injecting pcDNA3.1(-)-SP to WSSV was about 48.3%. A month after infection of WSSV, the core subunit gene of WSSV DNA replicase Swssvgp514 transcription was detected by RT-PCR. The result showed that 30% survivors of the pcDNA3.1(-)-SP injection group was negative in detection, while all the survivors of the group infected with half lethal dose of WSSV were positive in RT-PCR detection. The results showed that pcDNA3.1(-)-SP could inhibit WSSV infection, but the drug effect last too short to provide enough protection against WSSV.
     To extend the drug effect, nanoparticles with mean diameter about 80nm were formed with pcDNA3.1(-)-SP plasmid and natural macromolecule chitosan by ionic gelation technology. The SP-CS NP (pcDNA3.1(-)-SP chitosan nanoparticle) suspension was fed to crayfish directly for three times, each dose contained 10μg pcDNA3.1(-)-SP. The Pen-2 expressed in crayfish last about 2 month by oral administration of SP-CS NP contain 30μg pcDNA3.1(-)-SP, none of these crayfishes died without other process. WSSV infection was proceed 3days after the last administration. The final relative protection ratio of SP-CS NP was about 62.0%, and 70% of the survivors in WSSV attack was negative in Swssvgp514 transcription detection. In addition, oral administration of chitosan showed no effect on chitinase and chitosanase, so the effect of chitosan on shellfish immunity can be ignored. These result showed SP-CS NP could provide long term protection against WSSV, help shellfish clear virus in vivo.
     When shrimp infected by WSSV, the innate immune system was suppressed by virus genes, and then the shrimp died for co-infection by multiple pathogens. In this study, a strain of Vibrio alginolyticus called VA0712 was isolated and identified from Penaeus vannamei corpse. Crayfishes were infected by VA0712 after administration of pcDNA3.1(-)-SP and SP-CS NP respectively. The haemolymph was collected and spreaded on TCBS agar plate. After cultured for 12 hours, VA0712 colonies were counted to evaluate VA0712 clearance speed. In this experiment, both pcDNA3.1(-)-SP and SP-CS NP accelerated the clearance speed of VA0712 in vivo. This result indicated that Pen-2 could provide protection against white spot syndrome in multiple aspects.
     Our study here demonstrated that Pen-2 could eliminate the activity of WSSV, express Pen-2 in vivo using eukaryotic expression vector could provide protection against WSSV infection. It is the basal work to develop antimicrobial peptide Pen-2 for the medicine against WSSV. In addition, we prepared oral pcDNA3.1(-)-SP-chitosan nanoparticles preparation, it extended the drug effect of pcDNA3.1(-)-SP and enhanced antivirus effect. It provides a new way to apply AMP Pen-2 gene against WSSV.
引文
[1]Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A., S.V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science,.1992,257: 85-88;
    [2]Jones, J., HARPIN. Pest. Outlook,2001,4:134-135;
    [3]Nurnberger T, Brunner F, Innate immunity in plants and animals:emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biology,2002,5:318-324;
    [4]Nurnberger T, Lipka V., Non-host resistance in plants:new insights into an old phenomenon. Mol Plant Pathol.,2005,6:335-345;
    [5]Felix G, Duran JD, Volko S, Boiler, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J.,1999,18:265-276;
    [6]Ron M, Avni A., The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell,2004,16:1604-1615;
    [7]Zeidler D, Zahringer U, Gerber I, Dubery I, Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad SciUSA,2004,101:15811-15816;
    [8]Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boiler T., Bacterial disease resistance in Arabidopsis through flagellin perception.Nature,2004,428:764-767;
    [9]Narcin Palavan-Unsall, Damla Arisanl. Nitric Oxide Signalling In Plants, Bot. Rev.,2009, 75:203-229;
    [10]Gomez-Gomez L, Boiler T., FLS2:An LRR receptor like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell,2000,5:1003-1011;
    [11]Gomez-Gomez L, Bauer Z, Boller T, Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell, 2001,13:1155-1163;
    [12]Lee, J., Klessig, D.F., Nurnberger, T., A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell,2001,13:1079-1093;
    [13]Chinchilla D, Bauer Z, Regenass M, Boiler T, Felix G., The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell,2006,18:465-476;
    [14]Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke C.F.,Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+and hypersensitive responses in tobacco. Plant Physiol.,1990,92:215-221;
    [15]Amano M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T,Association between ion fluxes and defense responses in pea and cowpea tissues. Plant Cell Physiol,1997, 38:698-706;
    [16]Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D., Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA,1997,94:4800-4805;
    [17]Felle HH, Herrmann A, Hanstein S, Huckelhoven R, KogelK, Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei. Mol Plant-Microbe Interact.,2004,17:118-123;
    [18]Lecourieux D, Raneva R, Pugin A., Calcium in plant defence-signalling pathways. New Phytol., 2006,171:249-269;
    [19]Ludwig AA, Romeis T, Jones JDG, CDPK-mediated signalling pathways:specificity and cross-talk. J Exp.Bot.,2004,55:181-188;
    [20]Romeis T, Protein kinases in the plant defence response. Curr Opin Plant Biol,2001,4:407-414;
    [21]Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ,Involvement of specific calmodulin isoforms in salicylic acidindependent activation of plant disease resistance responses. Proc Natl Acad Sci USA,1999,96:766-771;
    [22]Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert, Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature,2002,416:447-450;
    [23]Pennell RI, Lamb C. Programmed cell death in plants. Plant Cell,1997,9:1157-1168;
    [24]Huckelhoven R, Kogel K, Reactive oxygen intermediates in plant-microbe interactions:who is who in powdery mildew resistance? Planta,2003,216:891-902;
    [25]Torres MA, Jones JDG, Dangl JL, Reactive oxygen species signaling in response to pathogens. Plant Physiol,2006,141:373-378;
    [26]Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT, Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot,2002,53:1237-1247;
    [27]Wendehenne D, Durner J, Klessig DF, Nitric oxide:a new player in plant signalling and defence responses. Curr Opin Plant Biol,2004,7:449-455;
    [28]Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588
    [29]Nimchuk Z, Eulgem T, Holt Iii BF, Dangl JL, Recognition and response in the plant immune system. Annu Rev Genet,2003,37:579-609;
    [30]Durner J, Klessig DF, Nitric oxide as a signal in plants. Curr Opin Plant Biol,1999,2:369-374;
    [31]Jonak C, Okresz L, Bogre L, Hirt H, Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol.2002,5:415-424;
    [32]Petersen M, Brodersen P, Naested H, Andreasson E, Arabidopsis MAP Kinase 4 negatively regulates systemic acquired resistance. Cell,2000,103:1111-1120;
    [33]Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ, Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol,2001,126:1579-1587;
    [34]Menke FLH, van Pelt JA, Pieterse CMJ, Klessig DF, Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis.Plant Cell,2004,16:897-907;
    [35]Glazebrook J, Chen WJ, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F,Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J,2003,34:217-228;
    [36]Nawrath C, Metraux JP,Salicylic acid induction deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell,1999,11:1393-1404;
    [37]Wildermuth MC, Dewdney J, Wu G, Ausubel FM, Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature,2001,414:562-565;
    [38]Nawrath C, Heck S, Parinthawong N, Metraux JP,EDS5, an essential component of salicylic aciddependent signaling for disease resistance in Arabidopsis is a member of the MATE transporter family. Plant Cell,2002,14:275-286;
    [39]Feys BJ, Moisan LJ, Newman MA, Parker JE, Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J.,2001,20:5400-5411;
    [40]Pieterse CMJ, van Loon LC, NPR1:the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol,2004,7:456-464;
    [41]Glazebrook J, Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol,2005,3:205-227;
    [42]Lorenzo O, Solano R, Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol,2005,8:532-540;
    [43]Beckers GJM, Spoel SH, Fine-tuning plant defence signalling:salicylate versus jasmonate. Plant Biol.,2006,8:1-10;
    [44]Broekaert WF, Delaure SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393-416
    [45]Devoto A, Turner JG, Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant, 2005,123:161-172;
    [46]Alonso JM, Stepanova AN, The ethylene signaling pathway, Science,2004,306:1513-1515;
    [47]Chen Y-F, Etheridge N, Schaller GE, Ethylene signal transduction. Ann Bot,2005,95:901-915;
    [48]Guo H, Ecker JR, The ethylene signaling pathway:new insights. Curr Opin Plant Biol,2004,7:40-49;
    [49]Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R, ETHYLENE RESPONSE FACTOR 1 integrates signals from ethylene and jasmonate pathways in plant defence. Plant Cell,2003,15:165-178;
    [50]Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R,Jasmonate-insensitive 1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell,2004,16:1938-1950;
    [51]Ferreira RB, Monteiro S, Freitas R, Santos CN, Fungal pathogens:the battle for plant infection. Crit Rev Plant Sci,2006,25:505-524;
    [52]V. Nicaise, M. Roux, C. Zipfel, Recent Advances in PAMP-Triggered Immunity against Bacteria: Pattern Recognition Receptors Watch over and Raise the Alarm Plant Physiol.2009,150: 1638-1647;
    [53]Bostock RM, Signal crosstalk and induced resistance:straddling the line Between cost and benefit.Annu Rev Phytopathol,2005,43:545-580;
    [54]Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant CeIl,2003,15:760-770;
    [55]Takemoto D, Jones DA, Hardham AR, GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J,2003,33:775-792;
    [56]Koh S, Somerville S, Show and tell:cell biology of pathogen invasion. Curr Opin Plant Biol,2006,9:406-413;
    [57]Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S, Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J,2005,44:516-529;
    [58]Schmelzer E, Cell polarization, a crucial process in fungal defence. Trends Plant Sci,2002,7:411-415;
    [59]Takemoto D, Hardham AR, The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol,2004,136:3864-3876;
    [60]Shimada C, Lipka V, O'Connel R, Okuno T, Nonhost resistance in Arabidopsis Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact,2006,19:270-279;
    [61]Shan XC, Goodwin PH, Reorganization of filamentous actin in Nicotiana benthamiana leaf epidermal cells inoculated with Colletotrichum destructivum and Colletotrichum graminicola. Int J Plant Sci,2005,166:31-39;
    [62]Holub EB, Cooper A, Matrix, reinvention in plants:how genetics is unveiling secrets of non-host disease resistance. Trends Plant Sci,2004,9:211-214;
    [63]Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H, Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J,1997,11:525-537;
    [64]Yun BW, Atkinson HA, Gaborit C, Greenland A, Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J,2003,34:768-777;
    [65]Ulker B, Somssich IE, WRKY transcription factors:from DNA binding towards biological function. Curr Opin Plant Biol,2004,7:491-498;
    [66]Rushton PJ, Torres JT, Parniske M, Wernert P, Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes, EMBO J,1996,15: 5690-5700;
    [67]Eulgem T, Dissecting the WRKY web of plant defense regulators. Plos Pathogen,2006, 2:1028-1030;
    [68]Li J, Brader G, Palva ET, The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell,2004,16:319-331;
    [69]Li J, Brader G, Kariola T, Tapio Palva E, WRKY70 modulates the selection of signaling pathways in plant defense. Plant J,2006,46:477-491;
    [70]Ellis C, Karafyllidis I, Wasternack C, Turner JG, The Arabidopsis mutant cevl links cell wall signaling to jasmonate and ethylene responses. Plant Cell,2002,14:1557-1566;
    [71]Vorwerk S, Somerville SC, Somerville CR, The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci,2004,9:203-209;
    [72]Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503-2513
    [73]Nishimura MT, Stein M, Hou B-H, Loss of a callose synthase results in salicylic acid-dependent disease resistance,Science,2003,301:969-972;
    [74]Glazebrook J, Ausubel FM,Isolation of phytoalexin deficient mutants of Arabidopsis thaliana and characterization characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA,1994,91:8955-8959;
    [75]Glazebrook J, Zook M, Mert F, Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics,1997,146:381-392;
    [76]程水源,陈昆松,植物苯丙氨酸解氨酶的表达调控与研究展望。2003,20(5):351-357
    [77]Sharan M., Taguchi G., Gonda K., Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant science,1998,132(1):13-19;
    [78]H Gundlach, M J Miiller, T M Kutchan, Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. PNAS,1992,89(6):2389-2393;
    [79]van Loon LC, Rep M, Pieterse CMJ,Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol,2006,44:135-162;
    [80]Ferreira RB, Monteiro S, Freitas R, The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol,2007,8:677-700;
    [81]Peter B. Lindgren,The role of Hrp genes during plant-bacterial interactions Annu. Rev. Phytopathol.,1997,35:129-152;
    [82]Bauer D.W., Wei Z.M., Beer S.V., Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis.Mol Plant Microbe Interact,1995,8:484-491;
    [83]Mukherjee A., Cui Y., Liu Y., Chatterjee A.K., Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol Plant Microbe Interact,1997,10(4):462-471;
    [84]Charkowski A.O., Alfano J.R., Preston G., The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J.Bacteriol,1998,180:195-211;
    [85]He S Y, H.C. Huang, Han Collmer, Pseudomonas syringae pv. syringae harpinPss:a protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell,1993,73: 1255-126;
    [86]Preston G., Huang H.C., He S.Y., Collmer A., The HrpZ proteins of Pseudomonas syringae pv. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean.Mol Plant Microbe Interact,1995,8(5): 717-732;
    [87]Arlat A., Gijsegem F., Vail J.C., PopAl, a protein which induces a hypersensitivity-like response on specific petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum EMBOJ.1994,13:543-553;
    [88]Wengelink K. and Bonas U.1996,HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria J. Bacteriol.178: 3462-3469;
    [89]闻伟刚,王金生.水稻白叶枯病菌harpin基因的克隆与表达。植物病理学报,2001,31(4):295-300
    [90]Heesemann,J., Algermissen,B. and Laufs,R., Genetically manipulated virulence of Yersinia enterocolitica. Infect. Immun.,1984,46:105-110;
    [91]Hueck, C. J., Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev.,1998,62:379-433;
    [92]Arlat,M., Gough,C.L., Barber,C.E., Boucher,C., Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact,1991,4,593-601;
    [93]Bonas,U., Schulte,R., Fenselau,S., Isolation of a gene-cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact.,1991,4:81-88;
    [94]Hacker,J. and Kaper,J.B., Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol.,2000,54,641-679;
    [95]Basim,H., Stall,R., Minsavage,G. and Jones,J., Chromosomal gene transfer by conjugation in the plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology,1999,89:1044-1049;
    [96]Daniela Buttner,Ulla Bonas, Getting across-bacterial type Ⅲ effector proteins on their way to the plant cell. The EMBO Journal,2002,21 (20):5313-5322;
    [97]Lee, J., Klessig, D.F., Nurnberger, T., A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell,2001,13,1079-1093;
    [98]Zhuo Liang, Jin-Ping Xu, Xiao-Lin Meng, Wei Lu, Jian Wang, Han Xia, Improve bioavailability of Harpin protein on plant use PLGA based nanoparticle, Journal of Biotechnology,2009,143:296-301;
    [99]D. Vashishth, J.C. Behiri, W. Bonfield, Crack growth resistance in cortical bone:concept of microcrack toughening", Journal of Biomechanics,1997,30 (8):763-769;
    [100]M. Wang, R. Joseph, W. Bonfield, "Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology," Biomaterials,1998,19 (24):2357-2366;
    [101]Y. Shikinami,M. Okuno, Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA). Biomaterials,1999,20(9):859-877;
    [102]Q. Liu, J. R. de Wijn, C. A. van Blitterswijk, "Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix," Journal of Biomedical Materials Research,1998,40 (3):490-497;
    [103]Nabakumar Pramanik,l Debasish Mishra,2 Indranil Banerjee, Chemical Synthesis, Characterization, and Bioeompatibility Study of Hydroxyapatite Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications. International Journal of Biomaterials,2009,22 (2):101-109;
    [104]Tyagi, S., and Kramer, F. R., Molecular beacons:probes that fluoresce upon hybridization. Nat. Biotechnol.1996,14:303-308;
    [105]Michalet X, Pinaud F F, Bentolila L A, Quantum dots for live cells in vivo imagingand diagnostics,Science,2005,307 (5709):538-544;
    [106]Han M, Gao X, Nie S. Quantum dot tagged microbeads for multiplexed optical coding of biomolecules,Nature Biotechnology,2001,19(7):631-635;
    [107]J aiswal J K, Mattoussi H, Mauro J M, Simon S F. Longterm multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnolgy,2003,21:47-51;
    [108]Salem A K, Chao J, LeongKW, Searson P C. Receptor-Mediated Self-Assembly ofMulti-Component Magnetic Nanowires. Advanced Materials,2004,16 (3):268-271;
    [109]RosiN L, Giljohann D A, Thaxton S C, Oligonucleotide Modified Gold Nanoparticles for Intracellular Gene Regulation. Science,2006,312(5776):1027-1030;
    [110]Catarina Pinto Reis,Ronald J. Neufeld, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine:Nanotechnology, Biology, and Medicine,2006,2:8-21;
    [111]Ranade V. V., Hollinger M. A. (Eds.) Drug Delivery Systems., CRC Press, Boca Raton, Fl, 2nd edition.
    [112]Moghimi, S. M., Hunter, A. C., Murray, J. C., Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.,2001,53,283-318;
    [113]Sahoo, S. K., Labhasetwar, V., Nanotech approaches to drug delivery and imaging. Drug Discov. Today,2003,8:1112-1120;
    [114]Panyam,J., Labhasetwar, V.,Biodegradable nanoparticles for drug and gene delivery to cells and tissues,Adv.Drug Deliv. Rev.2004,55,329-347;
    [115]Oh, K. T., Bronich, T. K., Kabanov, A. V., Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J. Control Release,2004,94, 411-422;
    [116]Adams, M. L., Lavasanifar, A., Kwon, G. S., Amphiphilic block copolymers for drug delivery. J. Pharm. Sci.,2003,92:1343-1355;
    [117]Gao, Z. G., Lukyanov, A. N., Singhal, A., Diacyllipid polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett.,2002,2:979-982;
    [118]Yunfeng Lu, Yi Yang, Alan Sellinger, Self-assembly of mesoscopically ordered chromatic polydiacetylene silica nanocomposites,. Nature,2001,410:913-917;
    [119]Prashant Satturwar, Mohamad Nasser Eddine, Francois Ravenelle, J pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl meth acrylate-co-methacrylic acid):Influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. European Journal of Pharmaceutics and Biopharmaceutics,2007,65(3):379-387;
    [120]Lev Bromberg. Polymeric micelles in oral chemotherapy. Journal of Controlled Release,2008,128 (2):99-112;
    [121]Torchilin, V. P., Weissig, V. (Eds.) (2003) Liposomes (Practical Approach). Oxford University Press.
    [122]Ning Li, Chunyang Zhuang, Mi Wang, Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery.International Journal of Pharmaceutics,2009,379 (1): 131-138;
    [123]Tomalia, D. A., Frechet, J. M. J., Discovery of dendrimers and dendritic polymers:a brief historical perspective. J. Polym. Sci. Part A:Polym. Chem.,2002,40:2719-2728;
    [124]Tomalia, D. A., Frechet, J. M. J. (Eds.) Dendrimers and Other Dendritic Polymers. John Wiley & Sons Ltd.,2001;
    [125]Morgan, M. T., Carnahan, M. A., Immoos, C. E., Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc.,2003,125:15485-15489;
    [126]Kramer M., Stumbe J. F., Grimm G., Dendritic polyamines:simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chem. Bio. Chem,2004,5: 1081-1087;
    [127]Haag, R., Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew. Chem. Int. Ed. Engl.2004,43,278-282;
    [128]Tarek M. Fahmy, Peter M. Fong, Amit Goyal, Targeted for drug delivery. Materials today,2005, 8(8):18-26;
    [129]Shekunov, B.Y., Chattopadhyay, P., Tong, H.Y., Particle size analysis in pharmaceutics:principles, methods and applications. Pharm. Res.,2007,24 (2):203-227;
    [130]Andrew R. Hilgenbrink, Philip S. Low, Folate receptor-mediated drug targeting:From therapeutics to diagnostics. Journal of Pharmaceutical Sciences,2005,94 (10):2135-2146;
    [131]Moghimi, S.M., Hunter, A.C., Murray, J.C., Nanomedicine:current status and future prospects. FASEB J.,2005,19:311-330;
    [132]Shigeru Tomita, Katsuhiko Sato, Jun-ichi Anzai. Layer-by-layer assembled thin films composed of carboxyl-terminated poly(amidoamine) dendrimer as a pH-sensitive nano-device. Journal of Colloid and Interface Science,2008,326,1 (1):35-40;
    [133]http://nihroadmap.nih.gov/initiatives.asp
    [134]Laura Mazzola, Commercializing nanotechnology, Nature Biotechnology,2003,21(10): 1137-1143;
    [135]Andi S., Taguchi F., Toyoda K.,Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol.,2001,42 (4):446-449;
    [136]Taiz, L., Zeiger, E.,1998. Plant Physiology, third ed. Sinauer Associates Inc., MA.
    [1]Nakano H, Koube H, Umezawa S, Mass mortalities of cultured KDA aruma Shrimp penaeus japonicus in Japan in 1993:Epizootiological survey and infection trials. Fish pathol.1994.29: 135-139;
    [2]Chou H.Y., Huang C.Y., Wang C.H., Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Diseases of Aquatic Organisms.1995.23: 165-173;
    [3]Zhan W.B., Wang Y.H., Fryer J.L., White spot syndrome virus infection of cultured shrimp in China. Journal of Aquatic Animal Health.1998.10:405-410;
    [4]Inouye K., Miwa S., Oseko N., Mass mortalities of cultured kuruma shrimp, Penaeus japonicus, in Japan in 1993:electron microscopic evidence of the causative virus. Fish Pathology.1994.29: 149-158:
    [5]黄倢,宋晓玲,于佳,等,杆状病毒性的皮下及造血组织坏死-对虾暴发性流行病的病原和病理学.海洋水产研究,1995,16(1):1-10;
    [6]Wongteersupaya C, Vickers J E, Sriurairatana S, A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and cause high mortality in the black tiger prawn Penaeus monodon. Dis Aquat Org.1995.21:69-77;
    [7]Inouye K, Yamano K, Ikeda N, The panaeidrod shaped DNA virus(RPAD), which causes penaeid acute viremia (PAV). Fish pathology.1996.31(1):39-45;
    [8]Wang C H, Lo CF, Leu J H, Purification and genomic analysis of baculovirus associated with white syndrome (WSBV) of Penaeus monodon. Dis Aquat Org,1995.23:239-242;
    [9]Van Hulten M. C. The white spot syndrome virus DNA genome sequence. Virology,2001.286: 7-22;
    [10]Chang P.S., Lo C.F., Wang Y.C., Kou G.H., Identification of white spot syndrome virus associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Diseases of Aquatic Organisms.1996.27:131-139;
    [11]Durand S., Lightner D.V., Nunan L.M., Application of gene probes as diagnostic tools for white spot baculovirus (WSBV) of penaeid shrimp. Diseases of Aquatic Organisms.1996.27:59-66;
    [12]Flegel T.W., Alday-Sanz V, The crisis in Asian shrimp aquaculture:current status and future needs. Journal of Applied Ichthyology.1998.14:269-273;
    [13]Durand S., Lightner D.V., Redman R.M. Ultrastructure and morphogenesis of white spot syndrome baculovirus. Diseases of Aquatic Organisms,1997.29:205-211;
    [14]Nadala E.C.B., Tapay L.M., Loh P.C., Characterization of a non-occluded baculovirus-like agent pathogenic to penaeid shrimp. Diseases of Aquatic Organisms.1998.33:221-229;
    [15]Kasornchandra J., Boonyaratpalin S., Itami T., Detection of white spot syndrome in cultured penaeid shrimp in Asia:microscopic observation and polymerase chain reaction. Aquaculture. 1998.164:243-251;
    [16]Sahul-Hameed A.S., Anilkumar M., Raj M.L.S., Studies on the pathogenicity of systemic ectodermal and mesodermal baculovirus and its detection in shrimp by immunological methods. Aquaculture.1998.160:31-45;
    [17]Liu Y., Wu J., Song J., Sivaraman J., Identification of a novel nonstructural protein, VP9, from white spot syndrome virus:its structure reveals a ferredoxin fold with specific metal binding sites. Journal of Virology.2006.80:10419-10427;
    [18]Tsai J.M., Wang H.C., Leu J.H., Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. Journal of Virology,2004.78:11360-11370;
    [19]van Hulten M.C.W., Reijns M., Vermeesch A.M.G., Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. Journal of General Virology,2002.83:257-265;
    [20]Zhu Y., Ding Q., Yang F., Characterization of a homologous-region binding protein from white spot syndrome virus by phage display. Virus Research.2007.125:145-152;
    [21]Li L., Xie X., Yang F., Identification and characterization of a prawn white spot syndrome virus gene that encodes an envelope protein VP31. Virology.2005.340: 125-132;
    [22]Li H., Zhu Y., Xie X., Identification of a novel envelope protein (VP187) gene from shrimp white spot syndrome virus. Virus Research.2006.115:76-84;
    [23]Li L.J., Yuan J.F., Cai C.A., Multiple envelope proteins are involved in white spot syndrome virus (WSSV) infection in crayfish. Archives of Virology.2006.151:1309-1317;
    [24]Tsai J.M., Wang H.C., Leu J.H., Identification of the nucleocapsid, tegument and envelope proteins of the shrimp white spot syndrome virus virion. Journal of Virology.2006.80:3021-3029;
    [25]van Hulten M.C.W., Goldbach R.W., Vlak J.M., Three functionally diverged major structural proteins of white spot syndrome virus evolved by gene duplication. Journal of General Virology. 2000.81:2525-2529;
    [26]van Hulten M.C.W., Witteveldt J., Snippe M., White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology.2001.285:228-233;
    [27]Zhang X., Huang C., Tang X., Indentification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins:Structure, Function and Bioinformatics.2004.55: 229-235;
    [28]Xie X., Xu L., Yang F., Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. Journal of Virology.2006.80:10615-10623;
    [29]Huang R., Xie Y., Zhang J., A novel envelope protein involved in white spot syndrome virus infection. Journal of General Virology.2005.86:1357-1361;
    [30]Wu C., Yang F., Localization studies of two white spot syndrome virus structural proteins VP51 and VP76. Virology.2006.3:76-83;
    [31]Han F., Xu J., Zhang X., Characterization of an early gene (wsv477) from white spot syndrome virus (WSSV). Virus Genes.2007.37:193-198;
    [32]Liu X.& Yang F., Identification and function of a shrimp white spot syndrome virus (WSSV) gene that encodes a dUTPase. Virus Research.2005.110,21-30;
    [33]Liu W.J., Chang Y.S., Wang C.H., Kou G.H.& Lo C.F., Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology. 2005.334:327-341;
    [34]van Hulten M.C.W., Reijns M., Vermeesch A.M.G., Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. Journal of General Virology.2002.83:257-265;
    [35]Witteveldt J, Vlak JM, van Hulten MC. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish & Shellfish Immunology.2004.16(5): 571-579;
    [36]Witteveldt J, Cifuentes CC, Vlak JM, van Hulten MC., Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol.2004.78 (4):2057-2061;
    [37]张家松,董双林,董云伟等,虾池中桡足类及其休眠卵携带对虾白斑综合症病毒的初步调查研究.中国海洋大学学报。2007,37(3):405-408;
    [38]邓灯,刘萍,孔杰.卤虫在WSSV病毒病传播中的媒介作用.海洋水产研究2004;25(5):35-43;
    [39]张家松,董双林,田相利,董云伟.浮游微藻携带和传播WSSV的研究.海洋环境科学。2007,26(3);
    [40]Lo C.F., Ho C.H., Chen C.H., Detection of tissue tropism of white spot syndrome baculovirus (WSSV) in peneid brooders of Penaeus monodon with a special emphasis on reproductive organs. Diseases of Aquatic Organisms.1997.30:53-72;
    [41]Mushiake K, Shimizu K, Satoh J, Control of penaeid acute viremia (PAV) in Penaeus japonicus: selection of eggs based on the PCR detection of the causative virus (PRDV) from receptaculum, seminis of spawned broodstock. Fish. Pathol.1999.34:203-207;
    [42]Smith V.J., Brown J.H., Hauton C. Immunostimulation in crustaceans:does it really protect against infection? Fish Shellfish Immunol.2003.15:71-90;
    [43]Moret Y., Siva-Jothy M.T., Adaptive innate immunity?Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. Roy. Soc. Lond. B.2003.270:2775-2780;
    [44]Huang C.C., Song Y.-L., Maternal transmission of immunity to white spot syndrome associated virus (WSSD) in shrimp (Penaeus monodon). Dev. Comp. Immunol.1999.23,545-552;
    [45]Moret Y, Schmid-Hempel P., Immune defence in bumble-bee offspring. Nature.2001.414, 506-506;
    [46]Rahman M.M., Roberts H.L.S., Sarjan M., Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA.2004.101:2696-2699;
    [47]Rosengaus R.B., Traniello J.F.A., Chen T., Immunity in a social insect. Naturwissenschaften. 1999.86:588-591;
    [48]Vaseeharan B, Anand T.P., Murugan T, Shrimp vaccination trials with the VP292 protein of white spot syndrome virus. Lett Appl Microbiol.2006,43(2):137-142;
    [49]Namikoshi A, Wu J.L., Yamashita T., Nishizawa T, Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome. Aquaculture.2004,229(1-4):25-35;
    [50]Singh I.S.B., Manjusha M.,Pai S.S., Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus. Dis Aquat Organ.2005,66(3): 265-270;
    [51]Xu Z.R., Du H.H., Xu Y.X., Crayfish Procambarus clarkii protected against white spot syndrome virus by oral administration of viral proteins expressed in silkworms. Aquaculture.2006,253(1-4): 179-83;
    [52]贾启军,孟小林,徐进平,对虾白斑综合症病毒囊膜蛋白VP19的融合表达及其抗病毒感染作用,中国病毒学.2006,21(6):585-588;
    [53]Jha RK, Xu ZR, Shen J, The efficacy of recombinant vaccines against white spot syndrome virus in Procambarus clarkii. Immunol Lett.2006,105(1):68-76;
    [54]Jha RK, Xu ZR, Bai SJ, Protection of Procambarus clarkia against white spot syndrome virus using recombinant oral vaccine expressed in Pichia pastoris. Fish Shellfish Immunol.2007,22(4): 295-307;
    [55]Du H.H., Xu ZR, Wu XF, Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus. Aquaculture.2006, 260(1-4):39-43.
    [56]Rout N, Kumar S, Jaganmohan S, DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine.2007,25(15):2778-2786;
    [57]Venegas CA, Nonaka L, Mushiake K, Quasi-immune response of Penaeus japonicus to penaeid rod shaped DNA virus (PRDV). Dis.Aquat.Organ.2000,42(2):83-89;
    [58]Namikoshi A, Wu JL, Yamashita T, Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture.2004,229:25-35;
    [59]Bright Singh IS, Manjusha M, Pai SS, Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus. Dis. Aquat. Organ.2005,66(3): 265-270;
    [60]Fei Zhu, Huahua Du, Zhi-Guo Miao, Protection of Procambarus clarkii against white spot syndrome virus using inactivated WSSV. Fish & Shellfish Immunology.2009,26:685-690;
    [61]Ling-Lin Fu, Jiang-Bing Shuai, Zi-Rong Xu, Immune responses of Fenneropenaeus chinensis against white spot syndrome virus after oral delivery of VP28 using Bacillus subtilis as vehicles Fish & Shellfish Immunology.2010,28 (1):49-55;
    [62]Christopher Marlowe A. Caipang, Noel Verjan, Ei Lin Ooi, Enhanced survival of shrimp, Penaeus (Marsupenaeus) japonicus from white spot syndrome disease after oral administration of recombinant VP28 expressed in Brevibacillus brevis, Fish & Shellfish Immunology.2008,25 (3): 315-320;
    [63]Rajeev Kumar Jha, Zi Rong Xu, Shi Juan Bai, Protection of Procambarus clarkii against white spot syndrome virus using recombinant oral vaccine expressed in Pichia pastoris, Fish & Shellfish Immunology.2007,22 (4):295-307;
    [64]Rajesh Kumar S, Ishaq Ahamed VP, Sarathi M, Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV).Fish Shellfish Immunol.2008,24(4):467-78;
    [65]S. Rajeshkumar, C. Venkatesan, M. Sarathi, Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunology.2009,26:429-437;
    [66]宋晓玲,王秀华,陈国福,肽聚糖制剂提高凡纳滨对虾抗白斑综合征病毒感染力的研究。高技术通讯.2005,15(1):74-78;
    [67]Sung H.H., Yang YL., Song YL, Enhancement of microbiocidal activity in the tiger shrimp Penaeus monodon via immunostimulation. Journal of Crustacean Biology.1996,16(2):278-284;
    [68]Neumann NF, Fagan D, Belosevic M.,1995. Macrophage activating factor(s) secreted by mitogen stimulated goldfish kidney leukocytes synergize with bacterial lipopolysaccharide to induce nitricoxide production in teleost macrophages. Dev. Comp. Immunol.19(6):473-482,
    [69]陈国福,宋晓玲,黄倢,α肽聚糖对凡纳滨对虾幼体生长及抗病毒感染力的影响。中国水产科学.2004,11(5):448-455;
    [70]Song YL, Liu JJ, Chan LC, Glucan-induced disease resistance in tiger shrimp (Penaeus monodon). Dev. Biol Stand.1997,90:413-421;
    [71]Huang CC, Song YL., Maternal transmission of immunity to white spot syndrome associated virus (WSSV) in shrimp (Penaeus monodon). Dev. Comp. Immunol.1999,23(728):545-552;
    [72]Jianyang Xu, Fang Han, Xiaobo Zhang, Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA.Antiviral Research.2007,73:126-131;
    [73]Chun Soo Kim, Zenke Kosuke, Yoon Kwon Nam, Protection of shrimp(Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA.Fish & Shellfish Immunology.2007,23:242-246;
    [74]P. Krishnan, P. Gireesh Babu, S. Saravanan, DNA constructs expressing long-hairpin RNA (1hRNA) protect Penaeus monodon against White Spot Syndrome Virus.Vaccine.2009,27:3849-3855
    [75]Andrew F. Rowley, Adam Powell, Invertebrate Immune Systems-Specific, Quasi-Specific, or Nonspecific? The Journal of Immunology.2007,7209-7214
    [76]Ratcliffe N. A., A. F. Rowley, S. W. Fitzgerald, Invertebrate immunity:Basic concepts and recent advances. Int. Rev. Cytol.1985,97:183-350;
    [77]Matova N., K. V. Anderson., Rel/NF-κ B double mutants reveal the cellular immunity is central to Drosophila host defense. Proc. Natl. Acad. Sci. USA.2006,103:16424-16429;
    [78]Lage Cerenius, Bok Luel Lee, The proPO-system:pros and cons for its role in invertebrate immunity. Trends in Immunology.2008,29 (6) 263-271
    [79]Leclerc V., N. Pelte, L. El Chamy, Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep.2006,7:231-235.
    [80]Wei Wang, Xiaobo Zhang, Comparison of antiviral efficiency of immune responses in shrimp. Fish & Shellfish Immunology.2008,25:522-527;
    [81]Tracy Hoi-Tung Maa, John A.H. Benzie b, Jian-Guo He c, A C-type Iectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon.Journal of Invertebrate Pathology.2008,99:332-341;
    [82]Yun-Dong Sun, Li-Dong Fu, Yu-Ping Jia, A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Molecular Immunology.2008, 45:348-361;
    [83]Kaiyu Lei, Fang Li, Mingchang Zhang, Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense.Developmental and Comparative Immunology.2008,32: 808-813;
    [84]Tracy Hoi Tung Ma, Shirley Hiu Kwan Tiu, Jian-Guo He, Siu-Ming Chan, Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei:Early gene down-regulation after WSSV infection, Virology.2005,332:578-583;
    [85]Zhao ZY, Yin ZX, Weng SP, Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish & Shellfish Immunol.2007,22:520-34.
    [86]Suseela Mathew, K. Ashok Kumar, R. Anandan, Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon.Comparative Biochemistry and Physiology, Part C.2007,145:315-320;
    [87]Mohankumar K, Ramasamy P. White spot syndrome virus infection decreases the activity of antioxidant enzymes in Fenneropenaeus indicus. Virus Res.2006,115:69-75;
    [88]Wang B, Li F, Dong B,2006. Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol (NY).8: 491-500;
    [89]Wu W, Zhang X., Characterization of a Rab GTPase up-regulated in the shrimp Peneaus japonicus by virus infection. Fish Shellfish Immunol.2007,23:438-445;
    [90]Hua-Shui Ai, Ji-Xiang Liao, Xian-De Huang, A novel prophenoloxidase 2 exists in shrimp hemocytes, Developmental and Comparative Immunology.2009,33:59-68;
    [91]Dong Bo, LIU Fengsong, Expression profiles of penaeidin from Fenneropenaeus chinensis in response to WSSV and vibrio infection by real-time PCR. ACTA OCEANOLOGICA SINICA. 2005,24(2):131-140;
    [92]Hao-Ching Wang, Han-Ching Wang, Jiann-Horng Leu, Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Developmental & Comparative Immunology.2007,31 (7):672-686;
    [93]Lei Wang, Bin Zhi, Wenlin Wu, Xiaobo Zhang,2005.Requirement for shrimp caspase in apoptosis against virus infection. Developmental & Comparative Immunology,29 (2):103-112;
    [94]Jiann-Horng Leu, Hao-Ching Wang, Guang-Hsiung Kou, Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental & Comparative Immunology,2008,32 (5):476-486;
    [95]Nanhai He, Qiwei Qin, Xun Xu, Differential profile of genes expressed in hemocytes of White Spot Syndrome Virus-resistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Research,2005,66 (1):39-45;
    [96]Luana W, Li F, Wang B, Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis. Comp Biochem Physiol B Biochem Mol Biol,2007,147: 482-491;
    [97]Boman H.G., S. Streiner, Hemoral immunity in cecropia pupae. Curr. Top Microbiol. Imuniol., 1981,94-95:75-91
    [98]Wang, Z. and Wang, G., APD:the Antimicrobial Peptide Database. Nucleic Acids Research, 2004,32:590-592;
    [99]M. Zasloff, Innate immunity, antimicrobial peptides, and protection of the oral cavity. The Lancet, 2002,360(9340):1116-1117;
    [100]Destoumieux D, Bulet P, Loew D, Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J. Biol. Chem.1997,272(28):398-406;
    [101]Yang D, Chertov O, Oppenheim J., The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci.2001,58 (7): 978-989;
    [102]Park Y, Lee DG, Jang S.H, A Leu-Lys rich antimicrobial peptide:activity and mechanism. Biochim Biophys Acta,.2003,1645 (2):172-182;
    [103]Bechinger B., Structure and functions of channel forming peptides:magainins, cecropins, melittin and alamethicin. J Membr Biol.,1997,56 (3):197-211;
    [104]Bobek LA, Situ H. MUC7:Investigation of AntimicrobialActivity, Secondary Structure, and Possible Mechanism of Antifungal Action. Antimicrob Agents Chemother.2003,47 (2):643-652;
    [105]P Fehlbaum, Philippe Bulet, Serguey Chernysh, Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA.1996,93:1221-1225;
    [106]Mai JC, Mi Z, Kim SH, A proapoptotic Peptide for the treatment of solid tumors[J]. Cancer Res.,2001,61 (21):7709-7712;
    [107]Chen Y, Xu X, Hong S, RGD-Tachyplesin inhibits tumor growth. Cancer Res.2001,61 (6): 2434-2438;
    [108]Hariton Gazal E, Feder R, Mor A, Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry.2002,41 (29):9208-9214;
    [109]Chen HM, Leung KW, Thakur NN., Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur J Biochem.2003,270 (5):911-920;
    [110]Destoumieux D, Munoz M, Cosseau C, Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell. Sci.,2000,113:461-469;
    [111]Destoumieux D, Bulet P, Strub JM, Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur. J. Biochem.,1999,266:335-346;
    [112]Gueguen Y., J. Gamier, L. Robert, PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Dev Comp Immunol.2006,30 (3): 283-288;
    [113]付百玲、徐进平、孟小林等,对虾肽Penaeidin-2在大肠杆菌中的融合表达及其抗细菌活性。《武汉大学学报(理学版)》,2006,52(6):739-744;
    [114]C M Escobedo-Bonilla, V Alday-Sanz, M Wille, A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome Virus. Journal of Fish Diseases,2008,31:1-18;
    [115]刘淇,李海燕,王群,溶藻弧菌致病性研究进展.海洋水产研究,2007,28(4):9-13;
    [116]Shekunov B.Y., Chattopadhyay P., Tong H.Y., Particle size analysis in pharmaceutics:principles, methods and applications. Pharm. Res.2007,24 (2):203-227.
    [117]Drach P, Mue et cycle d'intermue chez les crustaces decapodes. Ann Inst Oceanogr Monaco. 1939,19:103-391;
    [118]Ching-Yu Li, Hong-Young Yan, Yen-Ling Song, Tiger shrimp (Penaeus monodon) penaeidin possesses cytokine features to promote integrin-mediated granulocyte and semi-granulocyte adhesion.Fish & Shellfish Immunology,2010,28:1-9;
    [119]Anna V Kuballa, David J Merritt, Abigail Elizur,Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus. BMC Biology,2007,5:45;
    [120]Anna V Kuballa, Abigail Elizur,Differential expression profiling of components associated with exoskeletal hardening in crustaceans. BMC Genomics,2008,9:575;
    [121]Brannon-Peppas L., Blanchette, J.O., Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev,2004,56,1649-1659;
    [122]Moghimi S.M., Hunter A.C., Murray J.C., Nanomedicine:current status and future prospects. FASEB J.,2005,19:311-330;
    [123]Marijeta Kralj & Kresimir Pavelic, Medicine on a small scale-How molecular medicine can benefit from self-assembled and nanostructured materials. EMBO reports.2003,4 (11):1008-1012;
    [124]Zhengrong Cui, Russell J. Mumper, Chitosan-based nanoparticles for topical genetic immunization. Journal of Controlled Release,2001,75:409-419;
    [125]Radi Hejazi, Mansoor Amiji, Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release,2003,89:151-165;
    [126]Sunil A. Agnihotri, Nadagouda N. Mallikarjuna, Tejraj M. Aminabhavi., Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release,2004,100: 5-28;
    [127]Hai-Quan Mao, Krishnendu Roy, Vu L. Troung-Le., Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release,2001,70: 399-421;
    [128]Kristine Rom(?)ren, Beate J. Thu., Immersion delivery of plasmid DNA II. A study of the potentials of a chitosan based delivery system in rainbow trout (Oncorhynchus mykiss) fry. Journal of Controlled Release.2002,85:215-225;
    [129]鲁伟,徐进平,王健.天然吸附剂对大肠杆菌破碎液中蛋白质的吸附性能研究。氨基酸和生物资源.,2009,31(3):36-39
    [130]M. Sarathi, A. Nazeer Basha, M. Ravi, C. Venkatesan, Clearance of white spot syndrome virus (WSSV) and immunological changes in experimentally WSSV-injected Macrobrachium rosenbergii. Fish & Shellfish Immunology,2008,25:222-230;
    [131]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册.科学出版社,1984,474-481;
    [132]Tzu-Ting Chioua, Jenn-Kan Lua, Jen-Leih Wub, Thomas T. Chen, Expression and characterisation of tiger shrimp Penaeus monodon penaeidin (mo-penaeidin) in various tissues, during early embryonic development and moulting stages. Developmental and Comparative Immunology,2007, 31:132-142.
    [133]王华丽,史贤明,杨官品,海产品中副溶血弧菌PCR检测方法的建立与评价,农业生物技术学报2006,14(4):627-628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700