用户名: 密码: 验证码:
大亚湾放射生态学及沉积物的生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究(1)大亚湾的沉积速率和沉积通量;(2)大亚湾沉积物中微量元素、游离氨基酸和水解氨基酸的垂直分布特征;(3)大亚湾核电站低放废液中主要放射性核素在大亚湾表层沉积物上的吸附行为;(4)海洋双壳贝类和浮游微藻对这些放射性核素的吸收和累积行为。1 用过剩~(210)Pb法研究了大亚湾沉积物的沉积年代以及沉积速率和沉积通量随年代的变化。结果表明:(1)W0、W2、W6和W9站位60cm深的柱状沉积物的年龄分别为124、109、109和101 yr;(2)沉积通量和沉积速率总体上均呈逐年升高的趋势;(3)从1998年起的过去10、20、50和100年间,大亚湾的平均沉积速率依次为1.28、1.15、0.92、和0.74cm yr~(-1)。2 用BCR 4步连续提取法研究了大亚湾柱状沉积物样品中Fe、Mn、Zn、Sr、Cu、Pb、Cd、As、Cr和Co共10种元素4种形态(酸可提取态、可还原态、可氧化态和残渣态)的垂直分布特征。在沉积物年代学结果的基础上,研究了这10种元素的沉积通量随时间的变化。结果表明:(1)在总量构成中占次要地位的形态(次要形态)随深度的显著变化可能完全被在总量构成中占优势的形态(主要形态)所淹没,而次要形态可能具有比主要形态更为重要的环境学、生态学和生物地球化学意义;(2)沉积物在埋藏过程中会发生形态之间的转化;(3)大亚湾外源性微量元素输入通量自上个世纪80年代以来发生了显著的变化。3 研究了大亚湾沉积物中12种游离氨基酸(FAA)和12种水解氨基酸(HAA)的垂直分布特征以及FAA和HAA之间的关系。结果表明:(1)12种FAA和HAA的含量均随深度而下降。沉积物中FAA总量和HAA总量随深度的变化可以分别用指数方程c_z=1.60e~(-0.0122z)(R=-0.97)和c_z=16.3e~(-0.0047z)(R=-0.90)来描述;(2)FAA的摩尔分数(x_F)和HAA的摩尔分数(x_H)随深度的变化的特点是:天冬氨酸和甘氨酸的x_F和x_H均随深度而上升;苏氨酸、缬氨酸、异亮氨酸和亮氨酸的x_F和x_H均随深度而下降;谷氨酸的x_F随深度而下降,
    
     暨南大学博士论文 大亚湾放射生态学及沉积物的生物地球化学研究 牟德海
    XH随深度而上升;丝氨酸和丙氨酸的 XF随深度而上升,FH随深度而下降;(3)X。/X。与氨
    基酸的结构密切相关,结构相似的氨基酸具有相近的 Xr/X。。直链脂肪族氨基酸为 1.48;
    羟基氨基酸为1刀2;酸性氨基酸0.86;碱性氨基酸为0石7;支链脂肪族氨基酸0.50。国内
    外文献中未见相关研究和报道。
     4用多核素示踪法研究了具有重要生态和环境意义的 10种人工放射性核素在大亚湾’
    表层沉积物上的吸附行为,获得了约30 s~ll3 d的吸附分配系数随时间的变化曲线。结果 闰
    表明:()”‘Ru、”‘Ru、”Zr、”Nb在大亚湾沉积物上的分配系数随时间的变化曲线存在
    一个谷值;(2)经 113 d的吸附反应,”‘Ru、”‘Ru、”Zr、”Nb‘’Co‘’Z*”’mAg”vCs
    ”‘Sb和’、在大亚湾沉积物上的平均分配系数依次为 3.6X”、5.gX10’、1.SX旷、1.6x”、
    38X”、20X”、4.4X”、8.7X”、80和 70。
     5 用多核素示踪法研究了 14天时间内放射性核素在僧帽牡顿(Saccostrea cucullata)、
    翡翠贻贝(Pernavirde)和马氏珠母贝(Pinctadamartensl体内的浓集因子随时间的变化及
    其组织分布。结果表明:()”Zr、”*b、”‘Rl和‘’C。在三种贝类体内的分布主要集中在
    外壳和足丝上;Q)三种贝类的软组织对’‘hAg和‘kn均有很高的浓集能力;N)’刃Cs、
    ’油和l’‘Sb在外壳和软组织中的浓集因子都比较低;(4)三种贝类对l”Ru和”‘Ru的吸
    收和累积行为有很大的差异,”’Ru绝大部分在外壳上,而软组织对’吨ll的却具有很高的
    浓集能力。
     6用多核素示踪法研究了扁藻(plQmpOn—euiptiC口)、小球藻(ChO。llQffiihUtiSSim。)
    和简单角毛藻(Chaetoceros guilts)对上述放射性核素的浓集动力学。结果表明这 3种微
    藻对’仍Ru’肠Ru 的Zr ”Nb、m、6’Zn、”MAg的累积速率快、浓集能力强。扁藻、
    ’J’球藻和简单角毛藻对这 7种核素的累积在 48 h内即达到平衡,浓集因于为 10‘-10’。
     (
The paper studied on (1) Sedimentatary fluxes and rates of Daya Bay; (2) Vertical profiles of microelements and amino acids in sediment of Daya Bay; (3) Adsorption behaviors of artificial radionuclides on surface sediment of Daya Bay and (4) Uptake behaviors of the radionuclides by marine bivalves and phytoplankton algae.
    1 Four sediment cores of Daya Bay, the South China Sea, were dated by excess 2l癙b geochronology, and the variations of sedimentatary fluxes and rates with time were investigated. Results showed that (1) The ages of the 60-cm-length cores at station WO, W2, W6 and W9 were 124, 109, 109 and lOlyears respectively. (2) The sedimentatary fluxes and rates increased continually with years during the past 100 years before 1998. (3) The average sedimentatary rates during past 10, 20 50 and 100 years before 1998 were 1.28, 1.15, 0.92 and 0.74 cm yr"1 respectively.
    2 Fe, Mn, Zn, Sr, Cu, Pb, Cd, As, Cr and Co in four cores were partitioned into four operationally defined geochemical fractions (acid extractable, reducible, oxidizable and residual) by BCR four-step sequential extraction procedure. Variations of sedimentatary fluxes of the elements with time were studied based on geochronology of the cores. Results demonstrated that (1) The remarkable variations of subordinate fractions of an element with depth, which may be more environmentally, ecologically and biogeochemically important than dominating fractions, could be submerged completely by insignificant variation of dominating fractions of the element. (2) Elements in sediment could change from one fraction to another during burying. (3) Sedimentary flux of heavy metals to Daya Bay contributed by external input sources varied remarkably since 1980's, the years of rapid industry developing of the area.
    3 Vertical profiles 12 free amino acids (FAA) and 12 hydrolysable amino acids (HAA) in the cores and the results showed that (1) Contents of FAA and HAA decreased with depth and the down-core
    
    
    trends of total FAA and total HAA can be described by exponential equation of cz = 1.60 e~l22z and cz = 16.3 e-0.00472, with the correlation coefficient of-0.97 and -0.90, respectively. (2) The down-core trends of mole fractions of free (xr) and hydrolysable (XH) amino acids were: both XF and XH of aspartic acid and glycine increased with depth; both XF and XH of threonine, valine, isoleucine and leucine decreased with depth; XF decreased and XH increased with depth for glutamic acid; XF increased and XH decreased with depth for serine and alanine. (3) The ratios of xFio XH of amino acid heavily dependent on its' structure and amino acids with similar structure had approximately the same ratio. The ratios of XF to XH for straight aliphatic, hydroxyl, acidic, basic and branched aliphatic amino acids were 1.48, 1.02, 0.86, 0.67 and 0.50 respectively. There were no relevant reports in literature.
    4 Adsorption behaviors of ten environmentally and ecologically important radionuclides on surface sediments of Daya Bay were studied and the results showed that (1) There was a valley in the kinetics curve of 103Ru, 106Ru, 95Zr and 95Nb. (2) Kds of 103Ru, I06Ru, 95Zr, 95Nb, 60Co, 65Zn, 110mAg) 137Cs, l24Sb and 85Sr were 3.6xl03,5.9xl03, 1.5*104, 1.6xl05, 3.8xl03, 2.0xl03, 4.4xl03, 8.7xl02, 80 and 70 respectively after 113 days adsorption.
    5 The behaviors of bioaccumulation and tissue distribution of the above radionuclides in marine bivalves (Saccostrea cucullata, Perna viridis, Pinctada martensi ) were investigated during an exposure time of 14 days. The results showed that (1 )The majority of 95Zr, 95Nb, 106Ru and60Co were distributed in the shells and byssl of bivalves. (2) Soft tissues of bivalves had high concentration factors for 110mAg and 65Zn. (3) Concentration factors of l37Cs, 85Sr and l24Sb in shell and soft tissue bivalves were low. (4) Uptake behaviors of 103Ru and 106Ru by bivalves were great differences: most of 103Ru uptake by the bivalves was in shells and 106Ru mainly distributed in soft tissues.
    6 The concentration biokinetics
引文
[1] 蔡福龙.海洋放射生态学[M].北京:原子能出版社,1998,57-60.
    [2] 陈毓蔚,桂训唐.南沙群岛海区同位素地球化学研究[M].北京:科学出版社.1998,1-29.
    [3] 程致远,梁卓成,林瑞芬,卫克勤,王道德.云南滇池现代沉积物(210)~Pb法的CF模式年龄研究[J].地球化学.1990,(4):327-332.
    [4] 韩舞鹰.大亚湾和珠江口的碳循环[M].北京:科学出版社,1991.
    [5] 黄乃明,宋海青,牛广秋,李灵娟.大亚湾海底泥中γ放射性核素比活度随深度的变化及底泥沉积速率的估算[J].辐射防护通讯.1999,19(2):9-12.
    [6] 李文权,李淑英.(137)~Cs法测定厦门西港和九龙江口现代沉积物的沉积速率[J].海洋通报.1991,10(3):63-68.
    [7] 李祥云,陈虹勋,李传荣等.大亚湾悬浮物和底质中主要矿物的分布特征[[J].热带海洋,1989,8(1):35-42.
    [8] 林志明.龙銮潭与小鬼湖沉积物之地球化学初探[D].国立中山大学海洋地质研究所硕士论文,1992.
    [9] 邱耀文,王肇鼎,王祥珍,彭云辉.大亚湾大鹏澳水域悬浮物的组成和沉积动态[A].大亚湾海洋生物资源的持续利用[C].北京:科学出版社,1996,117-120.
    [10] 苏琼,宋海青.校正(137)~Cs 在水体沉积物中纵向迁移的数学模型[R].中国核科技报告,CNIC-00826/LIHMPH-007.北京:原子能出版社,1994.
    [11] 苏贤泽,马文通,徐胜利,曾宪章,余光兴,程汉良海洋沉积物的铅-210 地质年代学方法[J].台湾海峡.1984,3(1):50-58.
    [12] 万国江.环境质量的地球化学原理[M].北京:中国环境科学出版社,1988,87-103.
    [13] 夏明,张承蕙,马志邦,梁卓成,周秀云.铅-210 年代学方法和珠江口、渤海锦州湾沉积速率的测定[J].科学通报.1983,(5):291-295.
    [14] 徐恭昭等.大亚湾资源和环境[M].安徽科学技术出版社,合肥:1989.
    [15] 曾文义,程汉良,姚建华,曾宪章,苏贤泽.海洋沉积物中(210)~Pb的测定及其在地质年代学上的应用[J].台湾海峡.1983,2(2):30-36.
    [16] 曾文义,尹明端,曾宪章,施纯坦,吴世炎,邹汉阳.世界大洋表层水中的(210)~Pb[J].海洋通报.2000,19(5):21-25.
    [17] 张维林,唐宗福,刘强池.大亚湾岸滩地貌类型和滩地沉积物分布特征[A].大亚湾海洋生态文集(Ⅱ)[C].北京:海洋出版社,1990.5-12.
    [18] 张祖麟,陈宗团,徐立,洪华生.珠江口外伶仃洋的现代沉积速率及重金属污染[J].海洋通报.1998,17(3):53-57.
    [19] 邹汉阳,苏贤泽,余光兴,曾宪章,许丕安.(210)~Pb法测定东海大陆架现代沉积速率[J].台湾海峡.1982,1(2):30-40.
    [20] ASMUND G, NIELSEN S P. Mercury in dated Greenland marine sediments[J]. The Science of the Total Environment, 2000, 245: 61-72.
    [21] BEKS J P, EISMA D, VAN DER PLICIIT J. A record of atmospheric (210)~pb deposition in the Netherlands[J]. The Science of the Total Environment, 1998, 222: 35-44.
    
    
    [22] BENNINGER L K. 210Pb balance in Long Island sound. Geochemica et Cosmochimica Acta, 1978, 42: 1165-1174.
    [23] CANNIZZARO F, GRECO G, RANELI M, SPITAL M C, TOMARCHIO E. Determination of 210Pb concentration in the air at ground-level by gamma-ray spectrometry[J]. Applied Radiation and Isotopes, 1999,51:239-245.
    [24] CARPENTER R, BENNETT J T, PETERSON M L. 210Pb activities in and fluxes to sediments of the Washington continental slope and shelf[J]. Geochemica et Cosmochimica Acta, 1981,45: 1155-1172.
    [25] CARROLL J, LERCHE I, BARAHAM J D, CISAR D J. Model determined sediment ages from 210Pb profiles in un-mixed sediment[J]. Nuclear Geophysics. 1995,9(6) : 553-565.
    [26] CARROLL J, LERCHE I. A cautionary note on the use of 87Sr/86Sr sediment ages in stratigraphy studies[J]. Nuclear Geophysics. 1990, 4(4) : 461-466.
    [27] CARROLL J, WILLIAMSON M, LERCHE I, KARABANOV E, WILLIAMS D F. geochronology of lake Baikal from 210Pb and 137Cs radioisotopes[J], Applied Radiation and Isotopes, 1999,50: 1105-1119.
    [28] CHARMASSON S, BOUISSET P, RADAKOVITCH O, PRUCHON A-S, ARNAUD M. Long core profiles of 137Cs, 134Cs, 60Co and 210Pb in sediment near the Rhone River (northwestern Mediterranean Sea) [J]. Estuaries, 1998, 21(3) : 367-378.
    [29] CLULOW F V, DAVE N K, LIM T P, AVADHANULA R. Radionuclides (lead-210, polonium-210, thorium-230, and-232) and thorium and uranium in water, and fish from lakes near the city of Elliot Lake, Ontario, Canada[J]. Environmental Pollution, 1998, 99: 199-213.
    [30] COCHRAN J K, FRIGNANI M, SALAMANCA M, BELLUCCI L G, GUERZONI S. Lead-210 as a tracer of atmospheric input of heavy metals in the northern Venice Lagoon[J]. Marine Chemistry, 1998, 62: 15-29.
    [31] DAVIS R B, HESS C T, NORTON S A, HANSON D W, HOAGLAND K D, ANDERSON D S. 137Cs and 210Pb dating of sediments from soft-water lakes in New England (U.S.A.) and Scandinavia, a failure of I37Cs dating[J]. Chemical Geology, 1984, 44: 151-185.
    [32] FARRINGTON J W, HENRICHS S M, ANDERSON R. Fatty acids and Pb-210 geochronology of a sediment core from Buzzards, Massachusetts[J]. Geochimica et Cosmochimica, 1977, 41: 289-296.
    [33] FULLER C C, VAN GREEN A, BASKARAN A, ANIMA Q. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, l37Cs, and 239,240Pu[J]. Marine Chemistry, 1999, 64(1-2) : 7-27.
    [34] GOLDBERG E D, GAMBLE E, DRIFFIN J J, KOID M. Pollution history of Narragansett Bay as recorded in its sediments[J]. Estuarine and Coastal Marine Science, 1977, 5: 549-561.
    [35] GOLDBERG E D, HODGE V, KOIDE M, GRIFFIN J GAMBLE E, et al A pollution history of Chesapeake Bay[J]. Geochimica et Cosmochimica Acta, 1978,42: 1413-1425.
    [36] GOLOSOV V N, WALLING D E, PANIN A V, STUKIN E D, KVASNIKOVA E V, IVANOVA N N. The spatial variability of Chernobyl-derived 137Cs inventories in a small agricultural drainage basin in central Russia[J]. Applied Radiation and Isotopes, 1999, 51: 341-352.
    [37] HE Q, WALLING D E. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils[J]. Applied Radiation and Isotopes, 1997, 48(5) : 677-690.
    [38] HONG G-H, PARK S-K, BASKARAN M, KIM S-H, CHUNG C-S, LEE S-H. Lead-210 and polonium-210 in the winter well-mixed turbid waters in the mouth of the Yellow Sea[J]. Continental Shelf
    
    Research, 1999,19: 1049-1064.
    [39] HUH C-A, CHEN H-Y. History of lead pollution recorded in East China Sea sediments[J]. Marine pollution Bulletin, 1999,38(7) : 545-549.
    [40] HUSSAIN N, KIM G, CHURCH T M, CAREY W. A simplified technique for gamma-spectrometric analysis of 210Pb in sediments samples[J], Applied Radiation and Isotopes, 1996, 47(4) : 473-477.
    [41] IMBODEN D M, STILLER M. The influence of radon diffusion on the 210Pb distribution in sediment[J]. Journal of Geophysical research, 1982,87(C1) : 557-565.
    [42] JHA S K, KRISHANAMOORTHY PANDIT G G, NAMBI K S V. History of accumulation of mercury and nickel in Thane Creek, Mumbai, using 210Pb dating technique[J]. The Science of the Total Environment, 1999, 236: 91-99.
    [43] KADLEC R H, ROBBINS J A. Sedimentation and sediment accretion in Michigan coastal wetlands (U.S.A.) [J]. Chemical Geology, 1984,44: 119-150.
    [44] KIM Y-J, KIM C-K, LEE J-I. Simultaneous determination of 226Ra and 210Pb in groundwater and soil samples by using the liquid scintillation counter-suspension gel method[J]. Applied Radiation and Isotopes, 2001,54: 275-281.
    [45] KUMAR U S, NAVADA S V, RAO S M, NACHIAPPEN B H, KUMAR B, KRISHNAMOORTHY T M, JHA S K, SHUKLA V K. Determination of recent sedimentation rates and pattern in Lake Naini, India by 210Pb and I37Cs dating techniques[J]. Applied Radiation and Isotopes, 1999, 51: 97-105.
    [46] LIU J, CARROLL J, LERCHE I. A technique for disentangling temporal source and sediment variations from radioactive isotope measurements with depth[J]. Nuclear Geophysics. 1991, 5(1/2) : 31-45.
    [47] LOCKHART W L, MACDONALD R W, OUTRIDGE P M, WILKINSON P, DELARONDE J B, RUDD J W M. Test of the fidelity of lake sediment core records of mercury deposition to known histories of mercury contamination[J]. The Science of the Total Environment, 2000, 260: 171-180.
    [48] MCCALL P L, ROBBIN J A, MATISOFF G. 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates[J], Chemical Geology, 1984,44: 33-65.
    [49] MUDER C, JANSSEN C R. Application of Chernobyl caesium-137 fallout and naturally occurring lead-210 for standardization of time in moss samples: recent pollen-flora relationships in the Allgauer Alpen, Germany[J]. Review of Palaeobotany and Palynology, 1998, 103: 23-40.
    [50] MULSOW S, BOUDREAU B P. Bioturbation and porosity gradients[J]. Limnology and Oceanography, 1988,43(1) : 1-9.
    [51] OLSEN C R, SIMPSON H J, PENG T-H, BOPP R F, TRIER R M. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson Estuary sediments[J]. Journal of Geophysical Research, 1981, 86(C11) : 11020-11028.
    [52] PECK G A, SMITH J D. Determination of 210Po and 210Pb in rainwater using measurement of 210Po and 210Bi[J]. Analytica Chimica Acta. 2000, 422: 113-120.
    [53] POURCHET M, RICHON P, SABROUX J C. Lead-210 and radon-222 anomalies in Mont Blanc snow, French Alps[J]. Journal of Environmental Radioactivity, 2000, 48: 349-357.
    [54] REINIKAINEN P, MERILAINEN J J, VIRTANSEN A, VEIJOLA H, AYSTO J. Accuracy of 210Pb dating in two annually laminated lake sediments with high Cs background[J]. Applied Radiation and Isotopes, 1997,48(7) : 1009-1019.
    
    
    [55] ROBBINS J A, EDGINGTON A D. Determination of recent sedimentation rates in Lake Michigen using Pb-210 and Cs-137[J]. Geochimica et Cosmochimica Acta, 1975, 39: 285-304.
    [56] ROULET M, LUCOTTE M, CANUEL R, FARELLA N, COURCELLES M, GUIMARAES J-R D, MERGLER D, AMORIM M. Increase in mercury contamination recorded in lacustrine sediments following deforestation in the central Amazon[J]. Chemical Geology, 2000, 165: 243-266.
    [57] SAN MIGUEL EG, BOLiVAR J P, GARCf A-TENORIO R, MARTIN J E. 230Th /232Th activity ratios as a chronological marker complementing 210Pb dating in an estuarine system affected by industrial releases[J]. Environmental pollution, 2001,112: 361-368.
    [58] SANCHEZ-CABEZA J A, ANI-RAGOLTA I, MANSQUE R. Some considerations of the 210Pb constant rate of supply (CRS) dating model[J]. Limnology and oceanography, 2000,45(4) : 990-995.
    [59] SARAVANA KUMAR U, NAVADA S V, RAO S M , NACHIAPPAN Rm P, BHISHM KUMAR, KRISHNAMOORTHY T M, JHA S K, SHUKLA V K. Determination of recent sediment rate and pattern in Lake Naini, India by 210Pb and l37Cs dating techniques[J]. Applied Radiation and Isotopes, 1999, 51: 97-105.
    [60] SATO S, DOI T, SATO J. A temporal increase in the atmospheric 210Pb concentration possibly due to the 1991 eruption of Pinatubo volcano-an observation at Seoul, the Republic of Korea[J]. Radioisotopes, 1999,48: 522-529.
    [61] SMITH J N, WALTON A. Sediment accumulation rates and geochronologies measured in the Saguenay Fjord using the Pb-210 dating method[J]. Geochimica et Cosmochimica Acta, 1980, 44: 225-240.
    [62] SWARZENSKI P W, MCKEE B A, SORENSEN KAI, TODD J F. 210Pb and 210Po, Manganese and iron cycling across the O2/H2S interface of a permanently anoxic fjord: Framvaren, Norway[J]. Marine Chemistry, 1999, 67: 199-217.
    [63] TUREKIAN K K, BENNINGER L K, DION E P. 7Be and 210Pb total fluxes at new haven, Connecticut and at Bermuda[J]. Journal of Geophysical Research, 1983, 88(C9) : 5411-5415.
    [64] WAN G J, SANTSCHI P H, STURM M, FARRENKOTHEN K, LUECK A, WERTH E, SCHULER Ch. Natural(210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclidcs as geochemical tracers of sedimentation in Greifensee, Switzerland[J], Chemical Geology, 1987, 63: 181-196.
    [65] WINKLE R, ROSNER G. Seasonal and long-term variation of 210Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany [J]. The Science of the Total Environment, 2000, 263: 57-68.
    [66] WONG H K T, NRIAGU J O, COKER R D. Atmospheric input of heavy metals chronicled in lake sediments of the Algonquin Provincial Park, Ontario, Canada(J). Chemical Geology, 1984, 44: 187-201.
    [67] ZIELINSKI R A, OTTON J K, BUDAHN J R. Use of radium isotopes to determine the age and origin of radioactive barite at oil-field production sites[J]. Environmental Pollution, 2001, 113: 299-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700