用户名: 密码: 验证码:
粘性海床管道冲刷、自埋和安全评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用双频侧扫声纳系统、浅地层剖面仪和相干声纳测深系统对东方1-1海底输气管道进行了综合调查,发现了百余个管下冲刷坑,这些冲坑已造成管道悬跨,严重威胁管道的安全。
     通过对东方1-1海底管道的实测资料分析,结合物理模型试验和数值计算方法,研究粘性海床管道周围冲刷机理,预测正常天气条件下平衡冲刷深度;研究管道自埋机理,讨论管道周围海底冲刷与管道自埋的关系;探讨管道周围底形演变过程对管道受力的影响;估算管道允许最大悬跨长度,评估管道的安全性;提出管道维护措施。
     依据实测管道周围海床的冲刷特征,将粘性海床管道周围冲刷分为管侧冲刷和管下冲刷两种,这两种冲刷现象分别是在常态水动力条件和台风条件下形成的。研究区潮流可导致管道两侧海底冲刷(管侧冲刷),最大冲刷深度与前人提出的砂质底床管道周围最大冲刷深度吻合。海底冲刷过程中泥沙运动形式主要为悬移质,而较粗的颗粒滞留海底,从而使管道周围底质不断粗化。管道下方存在许多大规模冲刷坑(管下冲刷),台风是管下冲坑的主要动力机制。
     虽然管道两侧冲刷与管下冲刷的机理不同,但二者之间是有联系的。管下冲刷坑的发展过程可分为四个阶段:泥沙起动阶段、水流隧道发育阶段、快速掏空阶段和掏空平衡阶段。管道两侧冲刷是管下冲刷的第一个阶段,为管下冲刷创造了条件,但常态水动力作用下管道周围海底冲刷只能停留在该阶段,只有在台风作用下,且管侧冲刷的累积作用达到管涌所需要的条件之后才会出现管下冲刷现象。
     DF1-1深水区(水深>37m)管道自埋机理主要有重力下沉和冲刷自埋两种,管道自埋深度为重力下沉深度和冲刷自埋深度之和,其中冲刷自埋深度与管侧冲刷深度具有相同的规律。常态水动力造成的管侧冲刷可导致管道自埋,从而可减小台风引起的管下冲坑长度和管道悬跨长度,可能对管道具有保护作用。
     管侧冲刷既可导致管道自埋抑制管下冲刷,又可为管涌创造条件促进管下冲刷,具体哪种作用占主导取决于管道自埋速率、台风发生频率及台风强度。在DF1-1管道铺设完成之后的早期阶段管侧冲刷以导致管道自埋抑制管下冲刷为主,后期阶段管侧冲刷以促进管下冲刷为主。
     物理模型试验结果表明,在不同水动力条件、底质条件和管道初始埋藏深度条件下,管道周围海床演变过程表现出不同规律,主要分为四种类型:(Ⅰ)无冲刷;(Ⅱ)无沙纹的冲刷;(Ⅲ)不受沙纹影响的冲刷;(Ⅳ)受沙纹影响的冲刷。若沙波规模相对管道暴露部分较小,管道周围水流足以破坏管道前方沙纹的结构,被破坏后的沙粒从管下通过,因此小沙纹或沙波的活动性对冲刷过程几乎无影响。如果沙波规模相对管道暴露部分较大,管道周围水流不能够破坏管道前方沙纹的结构,管道被活动沙纹周期性埋藏。
     不同的海床演变过程对管道所受波浪力的影响不同。在相同水动力作用下,类型Ⅰ中管道在冲刷过程中受力比较稳定;类型Ⅱ与Ⅲ中管道在冲刷启动(管涌)阶段受力较大,然后逐渐减小,并很快达到稳定值;类型Ⅳ中管道受力状态受沙纹活动性的影响很大。
     为减小管道所受波浪力,不同类型海床上的管道需要不同的埋设深度。粉砂底床上半埋管道比裸置管道受力小很多,但砂质底床上二者相差不大,而对于第四种冲刷类型来说,活动沙波对管道受力的影响很大,半埋管道所受波浪力甚至比裸置管道受力大(浮动性也大),故在砂质海床上铺设管道时应将管道埋至沙波活动层之下。
     分别从静态情况下管道弯曲变形和避免涡激共振的角度估算管道的极限悬跨长度。计算结果表明,静态条件下管道极限悬跨长度为56m,跨长超过该值时管道将会弯曲变形。为避免涡激振动,使用最高安全系数计算出常态水动力条件下的管道极限悬跨长度为30m;百年重现期台风条件下极限悬跨长度为20m,为保障管道安全建议消除长度大于20m的悬跨。小间距连续悬跨对管道的安全威胁很大,共发现8处连续悬跨点。安全隐患最大的管段主要集中在KP42-KP51之间。建议在CEP-KP42之间尝试“人工草”防护方法预防小间距连续悬跨的出现;KP42-KP51之间应该重新挖沟,将管道埋设,消除悬跨。
     本文研究成果的创新性主要体现在:
     1)依据实测管道周围海床的冲刷特征结合物理模拟试验,研究粘性海床管道周围冲刷机理和冲刷过程。研究表明,粘性海床管道周围冲刷分为管侧冲刷和管下冲刷两种类型,常态水动力造成的管侧冲刷为台风造成的管下冲刷所需要的管涌创造了条件,而台风对管侧冲刷又起到加强作用。将两种冲刷现象及其动力机制区别而又联系起来,更符合实际现场情况。
     2)研究常态水动力的双重作用,一方面可导致管道自埋阻碍管下冲刷,另一方面又可为管涌创造条件促进管下冲刷。管侧冲刷在DF1-1管道铺设完成之后的不同时期所起的作用不同:早期阶段管侧冲刷以导致管道自埋抑制管下冲刷为主,后期阶段管侧冲刷以促进管下冲刷为主。这对铺设于粘性海床上的管道维护具有重要参考价值。
     3)将管道周围海床演变类型分为四种类型,研究不同海床演变类型在冲刷过程中对管道受力的影响。管道周围海床演变类型有:(Ⅰ)无冲刷;(Ⅱ)无沙波的冲刷;(Ⅲ)不受沙波影响的冲刷;(Ⅳ)受沙波影响的冲刷。类型Ⅰ中管道受力在冲刷过程中比较稳定;类型Ⅱ与Ⅲ中管道受力在冲刷启动阶段较大,在冲刷初始阶段逐渐减小,并很快达到稳定值;类型Ⅳ管道受力受沙波活动性的影响很大。不同类型的冲刷过程及其对管道受力的影响不同,这对制定不同条件下的海底管道的具体维护方案具有参考价值。
     4)用不同方法计算管道在不同水动力条件下的极限悬跨长度,评估管道在不同重现期内的安全性,对海上油气资源丰富但经常遭受台风袭击的南海海域中的管道维护具有普遍意义。
DF1-1 submarine pipeline was investigated using an integrated surveying system, including a dual-frequency side-scan sonar, a high resolution sub-bottom profiler, and a swath sounder system. More than a hundred of scour pits under the pipeline were found during the pipeline route survey, most of which have caused the span of the pipeline and threaten the safety of the pipeline.
     Using methods of field investigations, physical simulations and numerical calculations, the mechanism of local scour around submarine pipelines in cohesive soils was studied, and the maximum scour depth under ordinary weather conditions was estimated; the mechanism of the self-bury of the pipeline was studied, and the relationship between the self-bury and the local scour was discussed; the influences of the local bedform evolution on the hydrodynamic forces experienced by the pipeline were discussed; the maximum allowable free span length (MAFSL) of the pipeline was calculated, and the safety of the pipeline was estimated; Methods for protecting the pipeline were proposed.
     By analyzing the pipeline field investigation data, the concepts of 'side scour' and 'down scour' were proposed for the local scours around submarine pipelines in cohesive beds, which probably result from tidal currents and hurricane-induced currents respectively. The tidal current in the study area can cause the seabed scours on both sides of the pipeline (side scours), the maximum scour depths of which agree well with the calculated results according to the equations proposed by different researches based on experimental studies with sand or silt beds. The finer sediments were transported mainly in the form of suspended load in the scour process, while the coarser sediments were detained on the seabed, which caused the local sediments becoming coarser. There exists lots of scour pits under the pipeline (down scours), which may be mainly caused by hurricanes.
     The side scours may be related to the down scours, although they may be caused by different hydrodynamic forces. Experimental studies showed that the down scour process can be divided into four stages: (i) seabed scour on both sides of the pipeline; (ii) piping; (iii) seabed scour under the pipeline; (iv) scour equilibrium. The side scour is the first stage of the down scour process. The study results indicated that the tidal currents in the study area can not make the scour process reach the second stage (piping), which occurs only when the accumulative effects of the side scour reach the critical conditions by hurricanes.
     The DF1-1 submarine pipeline in the deep water regime (with water depth > 37m) maybe buried itself due to effects of the gravity and the side scours. The maximum burial depth of the pipe was the total effects of that caused by gravity and the side scours respectively, while the burial depth caused by scours corresponds well with the maximum side scour depth. The self-bury may protect the pipeline by reducing the down scours and span height caused by hurricanes.
     The side scours can either inhibit the down scours by inducing the self-bury of the pipeline or accelerate the down scours by making conditions for piping, the majority effects of which depend on the rate of self-bury, the frequency and intensity of hurricanes. The side scours inhibited the down scours at the early stage after the pipeline was laid, while accelerating the down scours now.
     Experimental simulation results showed that, depending on wave conditions, soil grain size and initial burial depth of the pipeline, different near-field bed evolution behavior were recorded. The observed behaviors were classified into four different basic regimes, namely: (I) no scour, (II) scour without sand ripples, (III) scour with small sand ripples, (IV) scour with large sand ripples. As long as the heights of ripples are smaller than that of the unburied section of the pipeline, the flow nearby the pipeline is able to destroy the ripples and transport the sand through the gap between the pipe and the seabed, so the moving small sand ripples have very limited effects on the scour process. However, if the heights of ripples are comparable to or larger than the pipeline's unburied section, the flow nearby the pipeline is not strong enough to destroy the ripples. As a result, the scour process is significantly affected by the presence of the ripples with the pipeline being periodically buried either partly or completely by the moving ripples.
     The influence of scouring progress on wave forces was found to vary significantly in different aforementioned regimes. In regime I, the wave forces were quite stable; in regime II and III, the wave forces generally underwent a gradual reduction and reached their equilibrium force values at rather early stages of the scour process; in regime IV, the wave forces were significantly affected by the ripples activity and usually higher than that without the influence of ripples.
     Pipelines should be buried to different depths to reduce the wave forces depending on different soil grain size of the seabed. In silt soil, the wave forces on initially half buried pipelines were much smaller than that on initially fully exposed pipelines, but that were not necessarily true in sandy bed. In scour regime IV of sand bed, where the ripples activity can significantly influence the scour process, wave forces (with high fluctuation) on initially half buried pipelines are even higher than those on initially unburied pipelines. These results strongly suggest that the submarine pipeline needs to be buried below the active layer of sand ripples in order to reduce wave forces.
     Both static and dynamic analyses were used to study the maximum allowable free span length (MAFSL) of the pipeline. The study results show that, the MAFSL under static conditions is 56m. However, the MAFSL is 30m and 20m under ordinary weather conditions and hurricane-induced currents in 100-year return period respectively to avoid Vortex Induced Vibration (VIV) calculated using the highest safety class factor. It is suggested that the spans longer than 20m should be disposed. Additionally eight successive spans which may also threaten the pipeline were proposed in the study. The most hazardous scour pits are in the pipeline section from KP42 to KP51.
     Methods for protecting free spanning pipelines were analyzed and compared. A so called "artificial grass" technique is suggested for protecting the pipeline section from CEP to KP42, while the re-trenching method is suggested for the section from KP42 to KP51.
引文
[4]徐继尚.海南东方岸外陆架沙脊的形态特征及成因探讨:[本科毕业论文].青岛:中国海洋大学,2004.
    [5]史经昊.海南东方岸外陆架沙波形态特征、成因分析及参数相关研究:[本科毕业论文].青岛:中国海洋大学,2004.
    [6] 各种土的承载力值是根据《建筑地基基础设计规范》的建议值给出的.
    [7] 中国海洋大学海洋工程勘察设计开发院,DF1-1海底管线后调查成果报告.青岛,2003.
    [9] Horrillo J.J. Subsea pipeline design (class manuscripts handouts). Texas A&M University, TX, USA, 2008.
    [1] 柏秀芳,龚德俊,李思忍,等.椐据流速剖面估计海底粗糙长度的研究.海洋学报,2008,30(4):77-81.
    [2] 曹立华,徐继尚,李广雪,等.海南岛西部岸外沙波的高分辨率形态特征.海洋地质与第四纪地质,2006,26(4):15-22.
    [3] 陈静,冯秀丽,林霖.波浪作用下粉土中的孔压相应及其在粉土海床稳定性评价中的 应用.海洋科学,2006,30(3):1-5.
    [4] 陈小玲.春晓气田群海底管道稳定性分析:[硕士学位论文].浙江大学,2004.
    [5] 董丽丽,徐慧,郭振邦.海底管道悬跨长度的计算.中国海上油气(工程),2003,15(6):16-18.
    [6] 董志华.台风对东方岸外沙波沙脊和海底地貌的影响:[硕士毕业论文].青岛:中国海洋大学,2004a.
    [7] 董志华.台风对北部湾南部海底地形地貌及海底管线的影响.海洋技术,2004b,23(2):24-28.
    [8] 冯文科,薛万俊,杨达源.南海北部晚第四纪地质环境.广州:广东科技出版社,1988.
    [9] 冯秀丽.海洋水动力条件下粉土响应模型:[博士学位论文].青岛:青岛海洋大学,2000.
    [10] 耿贺松,耿敬.管涌、流土渗流破坏的判别及实例.黑龙江水利科技,2004,3:14-15.
    [11] 胡日军.南海北部外陆架区海底沙波动态分析:[硕士毕业论文].青岛:中国海洋大学,2006.
    [12] 黄燕波、陈润珍.影响北部湾地区热带气旋特征统计和分类.广西气象,2005,26:25-27.
    [13] 金伟良,张恩勇,邵剑文,等.海底管道失效原因分析及其对策.科技通报,2004,20(6):529-533.
    [14] 鞠远江.流_十灾害的形成机理与治理.水土保持研究,2007,14(2):142-144.
    [15] 孔宁谦.热带气旋进入北部湾后强度突变的天气气候特征分析.海洋预报,1997,14(1):56-63.
    [16] 来向华,马建林,潘国富,等.多波束测深技术在海底管道检测中的应用.海洋工程,2006,24(3):68-73.
    [17] 李安龙,曹立华,李广雪,等.旁侧声呐在海底探测中的应用和工作船动态定位施工技术.中国海洋大学学报,2006,36(2):331-335.
    [18] 李广雪,刘贞飞,史经昊,等.海底管道掏空与波浪力变化关系试验.海洋地质与第四纪地质,2007,27(6):31-38.
    [19] 李俊杰.粉土海床海底管线冲刷机理及防护方法研究:[硕士学位论文].青岛:中国海洋大学,2008.
    [20] 李士清,拾兵,初新杰.海底石油管线防护技术研究.中国海洋平台,2005,20(3):49-52.
    [21] 李玉成.波浪对海上建筑物的作用.北京:海洋出版社,2002:251-256.
    [22] 李玉成,陈兵.波浪作用下海底管线的物理模型实验研究.海洋通报,1996,15(5):68-73.
    [23] 李玉成,陈兵.海底管线上波浪力的大涡模拟及三步有限元数值模拟.海洋学报,1999,21(6):87-93.
    [24] 刘乐军,李培英,杜军,等.莺歌海油气资源开发区工程地质和灾害地质特征.海洋科学进展,2004,22(4):455-464.
    [25] 刘贞飞.海底管道冲刷及波浪力试验研究:[硕士学位论文].青岛:中国海洋大学,2007.
    [26] 刘振夏,夏东兴.中国近海潮流沉积沙体.海洋出版社,2004,46-53.
    [27] 马良.海底油气管道工程.海洋出版社,1987.
    [28] 马良,张日向.海底部分埋设管道在波流作用下水动力效应的实验研究.中国海上油气(工程),1998,10(4):33-37.
    [29] 孟凡生,徐爱民,李军.滩海海底管线悬空问题治理对策.中国海洋平台,2006,21(1):52-54.
    [30] 潘学光.海底管道悬空成因及防治.中国船检,2005,10:68-69.
    [31] 浦群,李坤.管线振荡绕流对砂床的冲蚀.力学学报,1999,31(6):677-681.
    [32] 浦群,李坤.圆柱振荡绕流对淤泥床的冲蚀.空气动力学学报,2000,18(增刊):27-31.
    [33] 钱宁,万兆惠.泥沙运动力学.北京:科学出版社,2003,:241pp.
    [34] 乔方利,于卫东,潘增弟.中国南海北部湾海区风浪极值参数的研究-LAGFD数值模式群的应用.水动力学研究与进展,1997,12(1):84-95.
    [35] 秦崇仁,彭亚.波浪作用下海底裸置管道周围的冲刷.港工技术,1995,3:7-12.
    [36] 桑运水,王希华.海底管道悬空隐患成因及防治.中国造船,2004,45:408-412.
    [37] 邵怀海,胡洪勤,徐政峰.滩海油田海底管道悬空治理.石油规划设计,2003,14(6):27-28.
    [38] 申仲翰,刘玉标.海底管道振动对砂基淘蚀影响的试验研究.中国海上油气,2000,12(2):22-25.
    [39] 施红伟,闫澍旺.海底管道的沉降量计算.中国海上油气(工程),2003,15(2):1-4.
    [40] 唐益群,施伟华,张先林.关于流土和管涌的试验研究和理论分析.上海地质,2003,1:25-31.
    [41] 王琳.乐东22-1/15-1油气管线路由区工程地质灾害研究:[硕士毕业论文].青岛:中国海洋大学,2007.
    [42] 王伟伟,范奉鑫,李成钢,等.海南岛西南海底沙波活动及底床冲淤变化.海洋地质与第四纪地质,2007,27(4):23-28.
    [43] 王学超,赵建平.阻流器对海底管道自埋效果的数值模拟分析.石油机械,2007,35(6):8-10.
    [44] 王志东.GeoSwatch条带测深仪原理探析及其应用.水运工程,2002,345(10):31-33.
    [45] 吴钰骅,金伟良,毛根海,等.海底输油管道底砂床冲刷机理研究.海洋工程,2006,24(4):43-48.
    [46] 夏东兴,吴桑云,刘振夏,等.海南东方岸外海底沙波活动性研究.黄渤海海洋,2001,19(1):1-8.
    [47] 夏华永,李树华,李武全,等.北部湾三维风暴潮模拟.广西科学,1999,6(1):28-34.
    [48] 夏令.波浪作用下的泥沙起动及海底管线周围局部冲刷:[硕士学位论文].浙江大学,2006.
    [49] 肖文功.海底管道悬空隐患治理技术研究及应用.中国海洋平台,2004,19(6):36-39.
    [50] 闰澍旺,王金英.往复荷载作用下软粘土中浅埋管道的稳定性的振动台模拟试验研究.海洋工程,1998,16(4):39-47.
    [51] 阎通,李萍,李广雪.埕北海域海底管线冲刷稳定性研究.青岛海洋大学学报,1999,29(4):721-726.
    [52] 杨琳,蒋学炼,李炎保.波浪引起的海床火稳机理及有关孔隙水压力的讨论.海洋技术,2004,23(4):75-80.
    [53] 姚铁.海底管跨极限跨长的确定及其振动中同向横向的耦合作用:[硕士学位论文].天 津:天津大学,2004.
    [54] 余建星,陈诚,赵冬岩,等.深水管道涡激振动控制方法.油气储运,2007,26(4):7-10.
    [551 于克俊,方国洪,王新怡,等.北部湾台风风海流三维数值后报.海洋科学集刊,1995,36:55-64.
    [56] 赵云福,张立楠.管涌和流土的工程防护措施及抢护办法.黑龙江水利科技,2004.2:170-172.
    [57] 仲德林,吴永亭,刘建立.埕岛海上石油平台周边海底管道与电缆的探测技术研究.海岸工程,2004,23(4):32-37.
    [58] 中国海湾志编纂委员会.中国海湾志(海南省海湾).海洋出版社,1999:190-193.
    [59] 中国台风网,http://www.typhoon.gov.cn/.
    [60] 周兴华,姜小俊,史永忠.侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用.海洋测绘,2007,27(4):64-67.
    [61] 庄振业,林振宏,周江等.陆架沙丘(波)形成发育的环境条件.海洋地质动态,2004,20(4):5-10.
    [62] 朱继伟,邱长林,闫澍旺.液化土中海底管线的运动与受力分析.石油工程建设,2000,2(1):11-14.
    [63] 左其华.水波相似与模拟.北京:海洋出版社,2006,1-2.
    [64] Aberle J, Nikora V, Waiters R. Effects of bed material properties on cohesive sediment erosion. Marine Geology, 2004, 207: 83-93.
    [65] ABS. Guide for building and classing subsea pipeline systems and riser. American Bureau of Shipping, USA, 2001.
    [66] Anandkumar G, Sundar V, Graw K U, et al. Pressures and forces on inclined cylinders due to regular waves. Ocean Engineering, 1995, 22 (7): 747-759.
    [67] Andersen T J. Seasonal variation in erodibility of two temperate, microtidal mudflats. Estuarine, Coastal and Shelf Science, 2001, 53 (1): 1-12.
    [68] Arnold K E. Soil movements and their effects on pipelines in the Mississippi delta region: [M.S. Thesis]. Tulane U New Orleans, 1967.
    [69] ASME. Gas Transmission and Distribution Piping Systems. B31.8-1995 Edition. The American Society of Mechanical Engineers, 97pp.
    [70] Austen I, Andersen T J, Edelvang K. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuarine, Coastal and Shelf Science, 1999,49:99-111.
    [71] Bai Y. Pipelines and risers. Elsevier Ocean Engineering Book Series, 2001, 495pp.
    [72] Bai Y, Bai Q. Subsea pipelines and risers, Part Ⅱ: Pipeline design (ISBN: 0-080-4456-67). Elsevier Ocean Engineering Book Series. 2005: 83-88.
    [73] Bakhtiary A Y, Ghaheri A, Valipour R. Analysis of offshore pipeline allowable free span length. International Journal of Civil Engineering, 2007, 5(1): 84-91.
    [74] Bale A J, Widdows J, Harris C B, et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Continental Shelf Research, 2006, 26: 1206-1216.
    [75] Bijker E W, Leeuwestein W. Interaction between pipelines and the seabed under influence of waves and currents. Proc. Symp. on Int. Union of Theoretical Appl. Mech./Int. Union of Geology and Geophys, England, 1984: 235-242.
    [76] Black K S, Tolhurst T J, Paterson D M, et al. Working with natural sediments. Journal of Hydraulic Engineering, 2002,128: 2-8.
    [77] Bohling B. Measurements of threshold values for incipient motion of sediment particles with two different erosion devices. Journal of Marine Systems, 2009, 75: 330-335.
    [78] Bryndum M B. Application of the generalized force model for VIV in pipeline span design. Proceedings of OMAE' 98,1998.
    [79] Buresti G, Lanciotti A. Mean and fluctuating forces on a circular cylinder in cross-flow near a plane surface. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1): 639-650.
    [80] Catan(?)o-Lopera Y A, Garci(?)a M H. Burial of short cylinders induced by scour under combined waves and currents. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006,132(6): 439-448.
    [81] Catan(?)o-Lopera Y A, Garci(?)a M H. Geometry of scour hole around, and the influence of the angle of attack on the burial of finite cylinders under combined flows. Ocean Engineering, 2007, 34(5): 856-869.
    [82] C(??)evik E, Yu(?)ksel Y. Scour under submarine pipelines in waves. Journal of waterway, Port, Coastal and Ocean Engineering, 1999, 25(1): 9-18.
    [83] Chao X B, Jia Y F, Shields F D, et al.Three-dimensional numerical modeling of cohesive sediment transport and wind wave impact in a shallow oxbow lake. Advances in Water Resources, 2008, 31: 1004-1014.
    [84] Chen Z, Liu Y. Liu P, et al. An integrated approach to pipeline design through sandwave fields: Dongfang pipeline. Proceedings of OMAE 2001: 20th International Conference of Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 2001: 1-7.
    [85] Chen J, Wang D X, Shi P, et al. A survey of baroclinic tides in the Beibu Gulf in the South China Sea. Acta Oceanologica Sinica, 2007, 26 (4): 7-19.
    [86] Cheng N S. Analysis of bedload transport in laminar flows. Adv. Water Resour., 2004, 27:937-942.
    [87] Cheng L, Chew L W. Modeling of flow around a near-bed pipeline with a spoiler. Ocean Engineering, 2003, 30: 1595-1611.
    [88] Chien N, Wan Z H. Mechanics of Sediment Movement. Science Publications, Beijing,1983.
    [89] Chiew Y M. Mechanics of local scour around submarine pipelines. Journal of Hydraulic Engineering, 1990,116(4): 515-529.
    [90] Chiew Y M. Prediction of maximum scour depth at submarine pipelines. Journal of Hydraulic Engineering, 1991,117(4): 452-466.
    [91] Chiew Y M. Effect of spoilers on scour at submarine pipelines. J. Hydraul. Eng. ASCE,1992,118 (9): 1311-1317.
    [92] Chiew Y M. Effect of spoilers on wave-induced scour at submarine pipelines. J. Waterw.Port, Coast. Ocean Eng. ASCE, 1993,119 (4): 417-428.
    [93] Choi H S. Free spanning analysis of offshore pipelines. Journal of ocean engineering, 2000,28(10): 1325-1338.
    [94] Clarke H. Shallow water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Marine Geophysical Researches,1996,18: 607-629.
    [95] Cokgor S. Hydrodynamic forces on a partly buried cylinder exposed to combined waves and current. Ocean Engineering, 2002: 29(7): 753-768.
    [96] Crossley. Generalized force model for VIV of pipeline spans. Proceedings of OMAE' 98, 1998.
    [97] Demars K R, Nacci V A, Wang W D. Pipeline failure. A need for improved analyses and site surveys. Proc. Offshore Tech. Conf. OTC 2966. Houston, 1977: 63-70.
    [98] Demir S T, Garci(?)a M H. Experimental studies on burial of finite-length cylinders under oscillatory flow. Journal of Waterway, Port, Coastal, and Ocean Engineering. 2007, 133(2): 117-124.
    [99] Dey S, Singh N P. Clear-water scour depth below underwater pipelines. Journal of Hydro-Environment Research, 2007, 1(2): 157-162.
    [100] DNV. Environmental conditions and environmental loads. Classification Notes 30.5. Det Norske Veritas, Norway, 1991: 23pp.
    [101] DNV. Free spanning pipelines. Guidelines No.14. Det Norske Veritas, Norway, 1998.
    [102] DNV. Free spanning pipelines. Recommended practice DNV-RP-F 105. Det Norske Veritas, Norway, 2002, 13pp.
    [103] DNV. On-Bottom stability design of submarine pipelines. DNV-RP-F109. Det Norske Veritas, Norway, 2007.
    [104] Dufois F, Garreau P, Le Hir P, et al. Wave- and Current-induced bottom shear stress distribution in the Gulf of Lions. Continental Shelf Research, 2008, 28:1920-1934.
    [105] Endler R. Sediment physical properties of the DYNAS study area. Journal of Marine Systems, 2008, 75: 317-329.
    [106] Fredso(?)e J, Sumer B M, Arnskov M M. Time scale for wave/current scour below pipelines. Int. J. Offshore and Polar Engrg., 1992,2(1): 13-17.
    [107] Ganaoui O E, Schaaff E, Boyer P, et al. The deposition and erosion of cohesive sediments determined by a multi-class model. Estuarine, Coastal and Shelf Science, 2004, 60: 457-475.
    [108] Gao F P, Gu X Y, Jeng D S. Physical modeling of untrenched submarine pipeline instability. Ocean Engineering, 2003,30: 1283-1304.
    [109] Gao F P, Yang B, Wu Y X, et al. Steady current induced seabed scour around a vibrating pipeline. Applied Ocean Research, 2006,28(5): 291-298.
    [110] Hager W H, Oliveto G Shields' entrainment criterion in bridge hydraulics. J. Hydraul. Eng., 2002,128 (5): 538-542.
    [111] Hansen E A, Staub C, Freds0(?)e J, et al. Time development of scour induced free spans of pipelines. Proc., 10th Offshore Mechanics and Arctic Engineering Conf., ASME, Stavanger, Norway, 1991, Vol. 5: 25-31.
    [112] Hayter E J, Mehta A J. Modelling cohesive sediment transport in estuarial waters. Applied Mathematical Modelling, 1986, 10: 294-303.
    [113] Houwing E J. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden sea coast. Estuarine, Coastal and Shelf Science, 1999, 49: 545-555.
    [114] Hulsbergen C H. Stimulated self-burial of submarine pipelines. OTC 4467, 1984, 171-178.
    [115] Hulsbergen C H. Spoilers for stimulated self-burial of submarine pipelines. OTC 5339, 1986,441-444.
    [116] Ibrahim A, Nalluri C. Scour prediction around marine pipelines. In: Proc 5th Int Symp on Offshore Mech and Arctic Eng., Tokyo, Japan, 1986: 679-684.
    [117] Jarno-Druaux A, Sakout A, Lambert E. Interference between a circular cylinder and a plane wall under waves. Journal of Fluids and Structures, 1995, 9(2): 215-230.
    [118] Jensen B L, Sumer B M, Jensen H R, et al. Flow around and forces on a pipeline near a scoured bed in steady current. Journal of Offshore Mechanics and Arctic Engineering, 1990, 112:206-213.
    [119] Jothi-Shankar N, Cheong H F, Subbiah K. Root mean square force coefficients for submarine pipelines. Ocean Engineering, 1988,15(1): 55-69.
    [120] Jothi-Shankar N, Raman H, Sundar V. Wave forces on large offshore pipelines. Ocean Engineering, 1985,12 (2): 99-115.
    [121] Kjeldsen S P, Gjo(?)rsvik O, Bringaker K G, et al. Local scour near offshore pipelines. In: Proc. 2nd Int. Conf. on Port and Ocean Eng. under Arctic Conditions, University of Iceland, Iceland, 1973: 308-331.
    [122] KPCL (Keith Philpott Consulting Limited), ACSL (Acres Consulting Services Limited). Scour around seafloor structures. Environmental Studies Revolving Funds Report 017, Ottawa, 1986:249p.
    [123] Krone R B. Flume Studies of the Transport of Sediment in Estuarine Shoaling Processes. Final Report to San Francisco District US Army Corps of Engineers, Washington DC. University of California, Berkeley, 1962.
    [124] Lavelle J W, Mofjeld H O. Do critical stresses for incipient motion and erosion really exist? ASCE Journal of Hydraulic Engineering, 1987, 113: 370-393.
    [125] Lei C, Cheng L, Armfield S W, et al. Vortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Engineering, 2000. 27(10): 1109-1127.
    [126] Lei C, Cheng L, Kavanagh K. Re-examination of effect of a plane boundary on force and vortex shedding of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(3): 263-286.
    [127] Li M Z, Amos C L. Sedtrans96: the upgraded and better calibrated sediment-transport model for continental shelves. Computer & Geosciences, 2001, 27: 619-645.
    [128] Li F J, Cheng L. Prediction of lee-wake scouring of pipelines in currents. Journal of Water, Port, Coastal and Ocean Engineering, 2001,127 (2): 106-112.
    [129] Lumborg U. Modelling the deposition, erosion, and flux of cohesive sediment through Fresund. Journal of Marine Systems, 2005, 56:179-193.
    [130] Lundkvist M, Grue M, Friend P L, et al. The relative contributions of physical and microbiological factors to cohesive sediment stability. Continental Shelf Research, 2007, 27: 1143-1152.
    [131] Madhu Sudhan C, Sundar V, Narasimha Rao S. Wave induced forces around buried pipelines. Ocean Engineering, 2002, 29(5): 533-544.
    [132] Mao Y. Seabed scour under pipelines. Proc. 7th Int. Conf. on Offshore Mech. and Arctic Engineering, ASME, New York, 1988, Vol. 5: 33-38.
    [133] Mathiesen M, Hansen E A, Andersen O J, et al. The MULT1SPAN project: Near seabed flow in macro-roughness areas. Proceedings from the 16th international conference on offshore mechanics and Arctic Engineering, ASME, Yokahama, Japan, 1997, 20pp.
    [134] Maull D J, Milliner M G Sinusoidal flow past a circular cylinder. Coastal Engineering, 1978, 2:149-168.
    [135] Mehta A J, Partheniades E. An investigation of the depositional properties of flocculated fine sediments. Journal of Hydraulic Research, 1975,12: 361-381.
    [136] Mitchener H, Torfs H. Erosion of mud/sand mixtures. Coastal Engineering, 1996, 29: 1-25.
    [137] MMS. Analysis and assessment of unsupported subsea pipeline spans. Minerals Management Service, USA, 1997:1-42
    [138] MMS. Assessment of performance of deepwater floating production facilities during hurricane Lili. Minerals Management Service, USA, 2004a: 1-37.
    [139] MMS. Post mortem failure assessment of MODUs during hurricane Ivan. Minerals Management Service, USA, 2004b: 1-87.
    [140] MMS. Pipeline damage assessment from hurricane Ivan in Gulf of Mexico. Minerals Management Service, USA, 2006a: 1-64.
    [141] MMS. Hindcast data on winds, waves and currents in northern Gulf of Mexico in hurricanes Katrina and Rita. Minerals Management Service, USA, 2006b: 1-26.
    [142] Moncada-M A T, Aguirre-Pe J. Scour below pipeline in river crossings. J Hydraul Eng, 1999, 125 (9): 953-958.
    [143] Morelissen R, Hulscher S J M H, Knaapen M A F, et al. Mathematical modeling of sand wave migration and the interaction with pipelines. Coastal Engineering, 2003, 48: 197-209.
    [144] Morison J R, O'Brien M P, Jhonson J W, et al. The forces exerted by surface waves on piles. Trans. Am. Inst. Min. metal. Petrol. Engrs, 1950,189: 149-154,
    [145] Mork K J, Vitali L. An approach to design against cross-flow VIV for submarine pipelines. Dynamics of Structures, Aalborg University, Denmark, 1996:1-5.
    [146] Mouselli A H. Offshore pipeline design analysis and methods. PennWell Publishing Company, 1981: 50-64.
    [147] Myrhaug D, Holmedal L E, Rue H. Erosion and deposition of mud beneath random waves. Coastal Engineering, 2006,53: 793-797.
    [148] Myrhaug D, Ong M C, Gjengedal C. Scour below marine pipelines in shoaling conditions for random waves. Coastal Engineering, doi:10.1016/j.coastaleng.2008.03.006.
    [149] Narayanan R, Aminzadeh A. Erosion of sediments beneath an oscillating cylinder. Maritime Engineering, 2008,161: 33-42.
    [150] Nielsen R, Gravesen H, edited by de la Mare R F. Advances in offshore oil and gas pipeline technology. Gulf publishing company, Houston TX, USA, 1985: 326pp.
    [151] Palmer A C, King R A. Subsea pipeline engineering. PennWell Corporation, Tulsa, Oklahoma, 2004: 320-348.
    [152] Panagiotopoulos I, Voulgaris G, Collins M B. The influence of clay on the threshold of movement of fine sandy beds. Coastal Engineering, 1997, 32: 19-43.
    [153] Pantazopoulos M S. Fourier methodology for pipeline span vortex-induced vibration analysis in combined flow. Proceedings of OMAE' 95, 1995.
    [154] Paphitis D. Sediment movement under unidirectional flows: an assessment of empirical threshold curves. Coastal Engineering, 2001, 43: 227-245.
    [155] Parchure T M, Mehta A J. Erosion of soft cohesive sediment deposits. Journal of Hydraulic Engineering, 1985, 111 (10): 1308-1326.
    [156] Pu Q, Li Q, Gao F P. Scour of the seabed under a pipeline in oscillating flow. China Ocean Engineering, 2001, 15(1): 129-137.
    [157] Rambabu M, Rao S N, Sundar V. Current-induced scour around a vertical pile in cohesive soil. Ocean Engineering, 2003, 30: 893-920.
    [158] Rao S S. Mechanical vibrations, Second Edition. Addison-Wesley Publishing Company, 1990: 25-89.
    [159] Roopsekhar K A, Sundar V. Regular wave pressures and forces on submerged pipelines near a sloping boundary. Ocean Engineering, 2004, 31(17), 2295-2317.
    [160] Sabag S R, Edge B L, Soedigdo I R. Wake Ⅱ Model for hydrodynamic forces on marine pipelines including waves and currents. Ocean Engineering, 2000, 27: 1295-1319.
    [161] Schaaff E, Grenz C, Pinazo C, et al. Field and laboratory measurements of sediment erodibility: A comparison. Journal of Sea Research, 2006,55: 30-42.
    [162] Shah B C, White C N, Rippon I J. Design and operational considerations for unsupported offshore pipeline spans. Proceedings from the 18th Annual Offshore Technology Conference, Houston, TX, USA, 1986: 5pp.
    [163] Shields A. Application of Similarity Principles and Turbulence Research to Bedload Movement (English Translation of the original German Manuscript), Hydrodynamics Laboratory, California Institute of Technology, Publication No. 167,1936.
    [164] Soedigdo I R. Wake Ⅱ Model for hydrodynamic forces on marine pipelines: [PhD dissertation]. College Station, TX, USA: Texas A&M University, 1997.
    [165] Soedigdo I R, Lambrakos K F, Edge B L. Prediction of hydrodynamic forces on submarine pipelines using an improved Wake Ⅱ Model. Ocean Engineering, 1999, 26: 431-462.
    [166] Soulsby R. Dynamics of marine sands: A manual for practical applications. Thomas Telford, London, 1997.
    [167] Stansby P K, Starr P. On a horizontal cylinder resting on a sand bed under waves and currents. International Journal of Offshore and Polar Engineering, 1992, 2(4): 262-266.
    [168] Sumer B M, Freds0(?)e J. Scour below pipeline in waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 1990, 116 (3): 307-323.
    [169] Sumer B M, Freds0(?)e J, Christensen S, et al. Sinking/floatation of pipelines and other objects in liquefied soil under waves. Coastal Engineering, 1999, 38: 53-90.
    [170] Sumer B M, Jensen B L, Freds0(?)e J. Effect of a plane boundary on oscillatory flow around a circular cylinder. Journal of Fluid Mechanics, 1991, 225: 271-300.
    [171] Sumer B M, Truelsen C, Sichmann T, et al. Onset of scour below pipelines and self-burial. Coastal Engineering, 2001,42(4): 313-335.
    [172] Tan G M, Wang J, Shu C W, et al. Effects of consolidation time and particle size on scour rates of cohesive sediment. Journal of Hydrodynamics, 2007, 19(2): 160-164.
    [173] Teh T C, Palmer A C, Bolton M D, et al. Stability of submarine pipelines on liquefied seabeds. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006,132(4): 244-251.
    [174] Teh T C, Palmer A C, Damgaard J S. Experimental study of marine pipelines on unstable and liquefied seabed. Coastal Engineering, 2003, 50: 1-17.
    [175] Tian W M. Integrated method for the detection and location of underwater pipelines. Applied Acoustics, 2008,69: 387-398.
    [176] Tolhurst T J, Black K S, Paterson D M, et al. A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments. Continental Shelf Research, 2000, 20:1397-1418.
    [177] Tolhurst T J, Defew E C, de Brouwer J F C, et al. Small-scale temporal and spatial variability in the erosion threshold and properties of cohesive intertidal sediments. Continental Shelf Research, 2006, 26: 351-362.
    [178] Truelsen C, Sumer B M, Freds0(?)e J. Scour around spherical bodies and self-burial. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005,131(1): 1-12.
    [179] Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam, 1993.
    [180] Verley R, Lund K M. A soil resistance model for pipelines placed on clay soil. Proceedings of OMAE'95,1995.
    [181] Vijaya Kumar A, Neelamani S, Narasimha Rao S. Wave pressures and uplift forces on and scour around submarine pipeline in clayey soil. Ocean Engineering, 2003, 30(2): 271-295.
    [182] Vitali L, Mork K J, Verley R, et al. The MULTISPAN project: response models for vortex induced vibration of submarine pipelines. Proceedings from the 16th international conference on offshore mechanics and Arctic Engineering, ASME, Yokahama, Japan, 1997: 1-5.
    [183] Voropayev S I, Testik F Y, Fernando H J S, et al. Burial and scour around short cylinder under progressive shoaling waves. Ocean Engineering, 2003, 30:1647-1667.
    [184] Wang Y H. The intertidal erosion rate of cohesive sediment: a case study from Long Island Sound. Estuarine, Coastal and Shelf Science, 2003, 26: 891-896.
    [185] Wiberg P L, Smith J D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research, 1987, 23:1471-1480.
    [186] Xu T, Lauridsen B, Bai Y. Wave-induced fatigue of multi-span pipelines. Journal of Marine Structure, 1999,12: 83-106.
    [187] Yalin M S. Mechanics of Sediment Transport. Pergamon, New York, 1972.
    [188] Yu(?)ksel Y, Atli V, r(?)ievik E. Flow field along a flat surface with a parallel placed cylinder. Proc., 5th Int. Offshore and Polar Engineering. Conf., International Society of Offshore and Polar Engineering, Golden, Colo., 1995:157-161.
    [189] Zdravkovich M M. Forces on a circular cylinder near a plane wall. Applied Ocean Research, 1985, 7(4): 197-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700