用户名: 密码: 验证码:
中国不同地理种群环棱螺遗传多样性和分类阶元的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环棱螺属(Bellamya)隶属于软体动物门(Mollusca),腹足纲(Gastropoda),中腹足目(Mesogastropoda),田螺科(Viviparidae)。是淡水生态系统中大型底栖动物之一,广泛分布于亚洲,非洲和北美湖泊,在水生态系统中具有重要的生态功能。由于湖泊环境的恶化,加之人类对环棱螺资源的过度开发利用,在一定程度上对环棱螺的种质资源造成了破坏,种类不断减少。中国环棱螺属的分类主要依据螺壳形态特征,由于螺壳形态的变异性,容易导致同种异名和分类混淆。本研究从分子水平研究环棱螺遗传多样性和分类阶元,结合形态学研究探讨中国环棱螺的分类系统。通过研究环棱螺不同地理种群的遗传结构,为其种质资源保护提供分子遗传学基础。主要获得的结果如下:
     1.利用线粒体基因(COI、16S rRNA)和核基因(H3、28SrRNA)序列比较分析了环棱螺属系统进化关系。以Viviparus ater和V. contectus2个种类为外群,以采集中国15种环棱螺和GenBank下载的环棱螺的相关基因为内群,基于贝叶斯法构建系统发育树。系统发育分析结果表明,世界分布的环棱螺属聚为3大支(中国环棱螺种聚为一支,印度种聚为一支,非洲种聚为一支)。三大分支中中国环棱螺种位于进化树的基部,印度种和非洲种亲缘关系较近。非洲环棱螺种主要按湖泊形成3-4个分支。而在中国种的大分支里,既没有形成同种环棱螺聚类,也没有形成同一湖泊种聚类,种间和地理种群间均没有明显分化,种内和种间的遗传距离没有明显差异。
     2.采用FIASCO法成功构建了铜锈环棱螺基因组微卫星富集文库,获得单一微卫星序列2566条(Genbank登录号:JN555759-JN556037,JX018213-JX020499)。采用Primer5.0软件共设计了391对特异性微卫星引物。选择其中100对引物合成后进行PCR扩增,筛选获得了33个多态性微卫星标记,多态性分析结果表明,多态信息含量(PIC)值在0.244-0.889之间变化,平均值0.617;每个位点有5-13个等位基因,平均值8.636;期望杂合度(HE)和观测杂合度(Ho)分别在0.347-0.950和0.071-0.913之间变化,平均值分别是0.780和0.543。
     3.采用7个微卫星标记研究5种环棱螺(铜锈环棱螺,梨形环棱螺,方形环棱螺,双旋环棱螺,角形环棱螺)的种群遗传结构。
     遗传多样性分析:5种环棱螺均具有较高观测杂合度和期望杂合度值,表现出较丰富的遗传多样性,杂合子缺失导致了各个种群显著偏离哈迪温伯格平衡(HWE),平均观测杂合度均小于期望杂合度,种群内近交现象比较严重,导致了杂合体缺失。
     遗传分化分析:5种环棱螺各个种群间没有表现出明显的遗传分化,但少部分种群间的遗传距离较大。遗传变异分析(AMOVA)表明各个种类环棱螺群体的遗传变异主要发生在种群内,地理种群间的遗传分化程度很低,种群间存在明显的基因流。
     遗传结构分析:将不同地理种群按3大地理区域(长江以南,长江以北,长江流域)结构划分时,(?)MOVA结果显示,地理区域间的遗传变异所占百分比很小,种群间没有形成明显的系统地理结构。主成分判别分析结果显示,铜锈环棱螺12个种群被分成5个族群,梨形环棱螺8个种群被分成4个族群,方形环棱螺7个种群形成了3个族群,但各族群中优势种群的聚类并没有形成明显的地理格局分布。对种间的遗传变异分析(AMOVA),结果显示种间的遗传分化程度很低。5种环棱螺共34个种群形成了13个族群,各个种群在13个族群中的分布没有按种类形成明显聚类。
     4.利用线粒体COI基因研究3种环棱螺(铜锈环棱螺,梨形环棱螺,方形环棱螺)的种群遗传结构。
     遗传多样性分析:铜锈环棱螺116条序列中共发现81个单倍型和167个核苷酸多态性位点,种群间单倍型和核苷酸多样性分别在0.8670-0.9780和0.0130-0.0449之间;梨形环棱螺77条序列中有66个单倍型和155个核苷酸多态性位点,种群间单倍型和核苷酸多样性分别在0.8890-1.0000和0.0067-0.0416之间;方形环棱螺63条序列中有51个单倍型和158个核苷酸多态性位点,种群间的单倍型和核苷酸多样性分别在0.8210-1.000和0.0313-0.0474之间。三种环棱螺种群间的单倍型多样性和核苷酸多样性均较高,表现出较丰富的遗传多样性。
     群体历史动态分析:将所有种群当成一个整体时,3种环棱螺中性检验的Fu's Fs值均为显著性负值,铜锈环棱螺Fs=-23.8828(P<0.001),梨形环棱螺Fs=-24.0457(P<0.001),方形环棱螺Fs=-12.9900(P=0.0110)。3种环棱螺的线粒体COI基因的核苷酸错配分布(mismatch distribution)均为单峰,表明这3种环棱螺均经历过明显的种群扩张。按照无脊椎动物分子变异率(μ=1.22%/MY)和环棱螺以1年为代时,计算的铜锈环棱螺种群扩张时间大约在2.197百万年(Ma),梨形环棱螺0.256Ma,方形环棱螺2.217Ma,三种环棱螺的扩张时间都发生在更新世。
     遗传结构分析:遗传变异分析(AMOVA)结果显示3种环棱螺各个种群的遗传分化不明显,主要的遗传变异来自种群内。三大地理区域间的遗传变异所占百分比小于0,说明种群间没有形成明显的地理格局分布,从单倍型网络图也可以看出,不同地理种群的单倍型相连,没有按着采样点形成谱系分支。种间的AMOVA结果显示,种间的遗传变异只占1.05%,并且种间的遗传距离值很小(0.004-0.030),说明3种环棱螺种间的遗传分化程度也很低。
     5.根据螺壳的6个形态性状对中国5种环棱螺32个种群的形态变异进行主成分分析和聚类分析,结果显示:环棱螺同种不同地理种群间形态具有一定的差异,但并没有形成明显的形态分化。判别分析结果表明,各个种群的判别函数的判别准确率均较低,说明种群间的形态变异不大。5种环棱螺32个种群的主成分分析和聚类分析,结果显示32个种群形成了3个形态类群,铜锈环棱螺所有种群单独为一个类群,角形环棱螺和梨形环棱螺种群聚成一个类群,方形环棱螺和双旋环棱螺种群聚成一个类群。
     6.对采自同一湖泊的5种环棱螺齿舌结构的电镜扫描观测比较发现,5种环棱螺。具有相同的齿式:2·1·1·1·2,由4个部分组成,中央齿,侧齿,内缘齿和外缘齿。齿舌各个部分的形态差异较小,但各部分的尖齿数和排列上存在较明显的差异,因此,齿舌可以作为环棱螺种类鉴定的良好材料。
     综合本研究结果,中国环棱螺种间和地理种群间没有形成明显的遗传分化,系统发育和种群遗传结构的研究结果均不支持中国环棱螺种的分类阶元。螺壳形态在种间具有一定的形态分化,并且齿舌结构在种间形成了明显的差异。因此,螺壳的形态特征和齿舌显微结构是重要的分类依据,但分子水平研究环棱螺的分类阶元有待进一步深入。
Bellamya is a member of Viviparidae, Mesogastropoda, Gastropoda, Mollusca. It is one of macrobenthos in freshwater ecosystem, and wildly distributed in various lakes of Asia, Africa and North America. As an important genus of freshwater gastropods, Bellamya plays a significant role in the ecosystem. Due to environmental deterioration in lakes and overexploitation of resource of Bellamya by human in the late years, germplasm resources of Bellamya was damaged to some extent and the number of species was in decline. The classification of Bellamya was mostly based on the shell characteristics. Because of the variability of shell morphology, synonyms and taxon confusion were often found in reports. In this study, the genetic diversity and taxonomy research were investigated on the basis of molecular genetics, combined with morphological study. It was essential to investigate the population genetic structure, which could provide molecular genetic basis for genetic resource conservation. The main results were as follows:
     1. The partial sequence of the mitochondrial (COI and16S rRNA) and nuclear (H3and28S rRNA) of Bellamya genus were compared to determine their phylogenetic relationships, including Bellamy species from India, Africa and China. The phylogenetic trees were reconstructed based on Bayesian Inference methods. Viviparus ater and V. contectus were used as outgroup, and the sampled8species(Bellamya aeruginosa, B. angularis, B. quadrata, B. dispiralis, B. purificata, B. turritus, B. lapillorum, B. lapided) and7species(Bellamya sp.) in China, and Bellamy species from India and Africa download from GeneBank were used as ingroup. The phylogenetic analysis revealed that the worldwide Bellamya species form into three major clades, Indian species-clade, African species-clade and Chinese species-clade. Chinese Bellamya was the basal among the three clades. The African species was close to Indian species. Most of the African Bellamya species formed into three or four major lake-clades. However, in China Bellamya species-clade, neither the same species formed a cluster, nor the species in the same lake formed a cluster, which indicated that there was no significant genetic differentiation among populations and species. There was no significant difference between intra and interspecific genetic distance, further illustrating that the interspecific genetic differentiation was very low.
     2. A microsatellite-enriched genomic library of B. aeruginosa was successfully constructed by using the method of FIASCO (Fast Isolation by AFLP Sequences Containing Repeat), and2566microsatellite sequences were captured and deposited in GeneBank (Genbank assession No:JN555759-JN556037, JX018213-JX020499).391pairs of SSR-primers were designed by Primer v5.0, and100pairs of them were synthesized.33pairs of SSR-primers were successful amplified and had high polymorphic information content value (PIC), which ranged from0.244to0.889(average0.617). Allele number per locus ranged from5to13(average8.863). The expected heterozygosity (HE) and observed heterozygosity (Ho) varied from0.347to0.950and0.071to0.913with an average of0.780and0.543, respectively.
     3. The genetic structure of5Bellamy a species (B. aeruginosa, B. purificata, B. quadrata, B. angularis, B. dispiralis) were analyzed using7microsatellite locus.
     The genetic diversity analysis showed that all the5species had high observed heterozygosities and expected heterozygosities, indicating high genetic diversity among populations. Heterozygote deficiency was indicated with a significant deviation from the from Hardy-Weinberg equilibrium observed over all populations, while average HO value was consistently lower than HE value. Heterozygote deficiency had close relation with the high degree of inbreeding in population.
     There was no significant genetic differentiation among populations for each of the5Bellamya species, though high genetic distance was found between a very few populations. Analysis of molecular variance (AMOVA) indicated that the genetic variance mainly presented in individuals within populations, there were no significant genetic differences among populations. Based on the molecular analysis, the investigated populations showed obvious gene flow among populations.
     AMOVA from microsatellite data indicated that no significant genetic structure of Bellamya existed at various hierarchical levels (among regions, among populations within regions, and within population). The proportions of genetic variance among regions were very low, indicating that populations had not form a pattern of obvious geographical distribution. The discriminant analysis of principal components (DAPC) method revealed no clear separation of regional clusters,12populations of B. aeruginosa were divided into five clusters,8populations of B. purificata were divided into four clusters, and7population of B. quadrata were divided into three clusters. However, the dominant populations in each cluster also couldn't form obvious geographical distribution pattern. AMOVA revealed very low amount of genetic differentiation among the five species. The 34populations of the5species were divided into13clusters, and no species clade was found in these clusters.
     4. The genetic structure of B. aeruginosa, B. quadrat a and B. purificata were studied using mtDNA COI gene.
     The3Bellamya species showed high genetic diversity among populations.12populations of B. aeruginosa had116sequences, in which81haplotypes and167polymorphic sites were detected, and the haplotype and nucleotide diversity ranged from0.8670to0.9780and0.0130to0.0449, respectively.8populations of B. purificata had77sequences, in which66haplotypes and155polymorphic sites were detected, and the haplotype and nucleotide diversity ranged from0.8890to1.0000and0.0067to0.0416, respectively.7population of B. quadrata had63sequences, in which51haplotypes and158polymorphic sites were detected, and the haplotype and nucleotide diversity ranged from0.8210to1.0000and0.0313to0.0474, respectively.
     When all populations pooled in one group for each of the three species, All the Fu's Fs value of the three species were significant negative, for B. aeruginosa Fs=-23.8828(P<0.001), for B. purificata Fs=-24.0457(P<0.001), for B. quadrata Fs=-12.9900(P=0.011). Besides, Mismatch distribution of pairwise nucleotide differences of mtDNA COI showed unimodal pattern for each of the three species. The results supported that for B. aeruginosa, B. purificata and B. quadrata all had ever experienced demographic expansion. Based on1.22%±0.27%per million years (Myr), the demographic expansion time for B. aeruginosa, B. purificata and B. quadrata was about2.197Ma,0.256Ma and2.217Ma respectively, which were in Pleistocene.
     AMOVA analysis indicated that there was no obvious genetic structure of the three species existed at various hierarchical levels (among regions, among populations within regions, and within population). The proportion of genetic variance among regions was negative, indicating that populations had not form a pattern of obvious geographical distribution. The network generated from haplotype data set showed that the haplotype of different populations linked together, and displayed no apparent lineage clades association with sampling locations. AMOVA also revealed very low amount of genetic differentiation among the three species,1.05%of the total variation was distributed among the three species, and genetic distance between the three species ranged from0.004to0.030.
     5. According to six morphological characters, principal component analysis and cluster analysis were used to investigate morphological variations of32populations of5Bellamya species (B. aeruginosa, B. purificata, B. quadrata, B. angularis, B. dispiralis). The result showed that there were different degrees of morphological variation among populations, but no obvious morphological differentiation was found in the same Bellamya species. Discriminant analysis also indicated that there were no significant differences among populations, with low disciminant accuracy in most populations. The disciminant accuracy was33.33%-66.67%for B. aeruginosa;45%-80%for B. purificata;33.33%-86.67%for B. quadrata;53.33%-93.33%for B. angularis,46.15%-76.19%for B. dispiralis. The results of principal component analysis and cluster analysis for32populations showed that the5species could be classified into three morphologically different groups. The first group just included B. aeruginosa, the second group included B. purificata and B. angularis, and the third group included B. quadrata and B. dispiralis.
     6. The radula of five Bellamya species (B. aeruginosa, B. purificata, B. angularis, B. quadrata and B. dispiralis) samping from the same lake was compared on the basis of scanning electron microscopic observation. Results showed that all of them have the same dentition formula2·1·1·1·2, consists of central teeth, lateral teeth, inner marginal teeth and outer marginal teeth. There was no remarkable interspecific morphological difference in the four parts of radula, but significant differences in the amount of the denticles on the central teeth, lateral teeth and inner marginal teeth among the five species.
     In conclusion, there was no obvious interpopulation and interspecific genetic differentiation for Bellamya in China. The phylogenetic inference and analysis of genetic structure could not support the taxonomic category of Bellamya in China. Morphological analysis indicated that there were differences among species, and the difference of radula structure was obvious. Consequently, the shell morphology characteristic and radula structure is still the most important basis for Bellamya classification, it is necessary to find better molecular marker to do research on the taxonomic category of Bellamya.
引文
1. 白洁.云南省血吸虫病流行区湖北钉螺CO1基因序列分析.[硕士学位论文].武汉:华中农业大学图书馆,2008
    2. 毕相东,侯林,刘晓慧,王雪,刘芳,阎晗,杨雷.核糖体RNA基因在海洋动物分子系统学中的应用.应用与环境生物学报,2005,1:779-783
    3. 毕晓欣.黑帽悬猴(Cebus apella)线粒体基因组全序列分析和菲律宾(Ruditapes philippinarum)群体遗传学研究.[硕士学位论文].武汉:华中农业大学图书馆,2012
    4. 蔡立哲,王雯.节织纹螺(Nassarius hepaticus)螺壳差异的CO1基因分析.海洋与湖沼,2010,41:47-53
    5. 蔡英亚,张英,魏若飞.贝类学概论.上海:上海科学技术出版社,1979.50-52
    6. 陈德牛,高家祥.略谈软体动物的齿舌.生物学通报,1983,6:25-26
    7. 陈广文,戴晓玲,朱命炜,李艳玲.褐带环口螺齿舌的光镜和扫描电镜观察.动物学杂志,2000,35:7-9
    8. 陈军,李琪,孔令锋,郑小东,于瑞海.基于CO1序列的DNA条形码在中国沿海缀锦蛤亚科贝类中的应用分析.动物学研究,2010,31:345-352
    9. 陈丽梅,孔晓瑜,喻子牛,于珊珊,徐晖.3种蛏类线粒体16S rRNA和COI基因片段的序列比较及其系统学初步研究.海洋科学,2005,29:27-32
    10.陈万光,张海艳.分子遗传标记在鱼类遗传研究中的应用.安徽农业科学,2006,34:4311-4312
    11.陈志云,尤仲杰.3种荔枝螺齿舌的扫描电镜观察.水产科学,2009,28:153-155
    12.程汉良,夏德全,吴婷婷,孟学平,吉红九,董志国,陈淑吟.6种帘蛤科贝类及4个地理种群文蛤线粒体CO1基因片段序列分析.海洋学报,2007,29:109-115
    13.程汉良,周曼纯,陈冬勤,彭永兴,董志国,易乐飞,孟学平,申欣.基于16S rRNA序列的帘蛤科贝类分子系统发育研究.水产科学,2012,31:657-662
    14.邓梦颖,吴志强,胡向萍,胡茂林.PCR-DNA分子标记在鱼类遗传多样性研究中的应用.科技经济市场,2009,8:10-11
    15.董长永,侯林,隋娜,张筠,王明昌,李研.中国沿海蛾螺科5属10种28S rRNA基因的系统学分析.动物学报,2008,54:814-821
    16.冯小波.长江流域发现的古人类化石.见:第九届中国古脊椎动物学学术年会论文集.董为主编.北京:海洋出版社,2004.129-152
    17.高国庆,He Guohao,李杨瑞.用磁珠富集法从AFLP片段中分离微卫星DNA标记.花生学报,2003,32(增刊):272-276
    18.高焕,孔杰.串联重复序列的物种差异及其生物功能.动物学研究,2005,26:555-564.
    19.龚志军,李艳玲,谢平.武汉东湖铜锈环棱螺的种群动态及次级生产力.湖泊科学,2009,21:401-407
    20.谷龙春,黄桂菊,何毛贤,喻达辉.大珠母贝两个野生群体遗传多样性的微卫星分析.渔业科学进展,2009,30:96-101
    21.关飞,牛安欧,李友松.中国不同种拟钉螺CO1基因序列差异分析及其系统学初探.人与动物共患病学报,2007,23:1002-2694
    22.官子和,蔡述明.洞庭湖的形成与演变.泥沙研究,1986,1:70-72
    23.侯建军,张清顺,熊邦喜,邹桂伟.二价镉对梨形环棱螺毒理效应的研究.中国农业大学学报,2009,14:54-62
    24.黄宝玉,朱祥根,蔡华伟,田名利.江苏省宜兴西溪、骆驼墩篮蚬与环棱螺研究.海洋科学,2007,31:54-61
    25.黄艳艳,欧阳珊,吴小平,刘焕章.中国蚌科线粒体16S rRNA序列变异及系统发育.水生生物学报,27:258-263
    26.孔晓喻,张留所,喻子牛,刘亚军,王清印.平洋牡蛎核糖体DNA转录间隔子和线粒体基因片断序列测定.中国水产科学,2002,9:304-308
    27.匡刚桥,刘臻,鲁双庆,刘红玉,张建社,唐建洲.FIASCO法筛选鳜鱼微卫星标记.中国水产科学,2007,14:608-614
    28.李慧娟,亓海刚,李莉,闫喜武,张国范.长牡蛎17个fosmid-SSR标记的开发与分析.水产学报,2011,35:1463-1468
    29.李进寿,周时强,柯才焕.福建沿海多板类齿舌形态的比较研究.厦门大学学报(自然科学版).2004,43:581-584
    30.刘彬.4种园田螺的分类指标研究.西南农业大学学报,1996,18:496-499
    31.刘达博,牛东红,冯冰冰,钟玉民,李家乐.乐清湾和三沙湾缢蛏群体遗传多样性的微卫星分析.上海海洋大学学报,2011,20:350-357
    32.刘名.太平洋鲱和大头鳕的群体遗传学研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    33.刘明,王继华,王同昌.DNA分子标记技术.东北林业大学学报,2003,31:65-67
    34.刘相全,包振民,胡景杰,何金霞,方建光,王如才.两种蛤仔群体遗传多样性的形态参数及AFLP分析.海洋与湖沼,2010,41:359-364
    35.刘月英.白洋淀及其附近地区的淡水螺类.动物学报,1961,13:123-132
    36.刘月英,张文珍,王耀先.中国经济动物志(淡水软体动物).北京:科学出版社,1979.18-19
    37.刘月英,张文珍,王耀先.中国田螺科的地理分布.见:中国贝类学会编辑,中国动物学会、中国海洋湖沼学会贝类学分会第四次代表大会暨第五次学术讨论会论文集.中国动物 学会、中国海洋湖沼学会贝类学分会第四次代表大会暨第五次学术讨论会,青岛,1991,青岛:青岛海洋大学出版社,1995.7-16
    38.路心平.青蟹属的系统进化及中国沿海拟穴青蟹的群体遗传结构研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    39.吕振明,李焕,吴常文,樊甄姣,张建设.中国沿海六个地理群体短蛸的遗传变异研究.海洋学报,2010,32,130-138
    40.马陶武,周科,朱程,刘佳,王子健.铜锈环棱螺对镉污染沉积物慢性胁迫的生物标志物响应.环境科学学报,2009,29:1750-1756
    41.马振兴,蒋玉珍,魏源,李均辉,李长安.鄱阳湖组(第四系)的修订及特征.地层学杂志,2003,27:212-215
    42.毛阳丽.贻贝属的系统发育及群体的形态学和遗传学研究. [硕士学位论文].武汉:华中农业大学图书馆,2011
    43.孟祥锋.基于微卫星标记和线粒体基因序列的中国二化螟Chilo suppressalis (Walker)种群遗传结构研究. [博士学位论文].武汉:华中农业大学图书馆,2008
    44.牛安欧,冯友仁,方正明.中国日本血吸虫D NA遗传变异及聚类分析.寄生虫与医学昆虫学报,2003,10:70:-73
    45.潘宝平,周友华,陈玉芬.淡水习见腹足类齿舌的研究.天津教育学院学报(自然科学版),1991,3:15-21
    46.任伟,牛安欧,李友松,向选森.RAPD技术研究6种拟钉螺的遗传变异.中国人兽共患病学报,2006,22:43-47
    47.沈玉帮,李家乐,牟月军.厚壳贻贝与贻贝遗传渐渗的分子生物学鉴定.海洋鱼类,2006,28:195-200
    48.石耀华,洪葵,郭希明,王爱民.马氏珠母贝EST微卫星的筛选.水产学报,32:174-181
    49.孙波,鲍毅新,赵庆洋,张龙龙,胡知渊.微卫星位点获取方法的研究进展,生态学杂志,2009,28:2130-2137
    50.王莹.腹足纲及其宝贝科各主要类群的分子系统学研究. [硕士学位论文].武汉:华中农业大学图书馆,2006
    51.王长忠.长江中下游地区克氏原螯虾群体遗传多样性分析. [硕士学位论文].武汉:华中农业大学图书馆,2009
    52.王少海,何立.钉螺齿舌的光学显微镜和扫描电镜结果分析.中国人兽共患病杂志,1994,10:26-29
    53.王帅.中国五个不同地理种群西施舌遗传多样性研究.[硕士学位论文].武汉:华中农业大学图书馆,2011
    54.王艺秀.湖北钉螺(Oncomelania hupensis)微卫星DNA文库的建立及多态性位点的筛选.[硕士学位论文].武汉:华中农业大学图书馆,2009
    55.王忠明,陈德牛,吴小平.腹足类螺壳特征的测量及分析方法.动物学杂志,2003,38:62-65
    56.魏开建,熊邦喜,赵小红,龙良启,王明学,王卫民,赵振山.五种蚌的形态变异与判别分析.水产学报,2003,27:13-18
    57.魏阳春,濮培民.太湖铜锈环棱螺对氮磷的降解作用.长江流域资源与环境,1999,8:89-93
    58.吴小平,欧阳珊,梁彦龄,王洪铸,余扬帆.三种环棱螺螺壳形态及齿舌的比较研究.南昌大学学报(理科版),2000,24:1-5
    59.吴跃东.巢湖的形成与演变.上海地质,2010,31:152-156
    60.徐建荣,韩晓磊,李宁,郁建锋,钱春花,包振民.福寿螺3个地理群体遗传多样性的AFLP分析.生态学报,2009,29:4119-4126
    61.许巧倩,谢骏,张书环,赵朝阳,袁汉文.三角帆蚌微卫星富集文库的构建、鉴定及多态性分析.中国水产科学,2010,17:1200-1207.
    62.尹绍武,廖经球,黄海,陈国华,张本,姚舒.海南近海点带石斑鱼野生和养殖群体微卫星多态分析.应用与环境生物学报,2008,14:215-219
    63.张爱菊,尤仲杰.分子生物技术在贝类鉴定和分类上的应用.宁波大学学报(理工版),2005,18:404-409
    64.张吉强,李清漪.梨形环棱螺凝集素的初步研究.生物化学与生物物理进展,1995,22:281-283
    65.张量,刘月英.田螺的形态、习性和我国常见的种类.生物学通报,1960,2:3-11
    66.张欧阳,熊文,丁洪亮.长江流域水系连通特征及其影响因素分析.人民长江,2010,41:1-5
    67.张雯,刘晓,张国范.利用AFLP技术研究海湾扇贝不同养殖群体的遗传结构及其分化.高技术通讯,2005,15:84-88
    68.张修桂.太湖演变的历史过程.中国历史地理论从,2009,24:5-12
    69.张亚平,施立明. 动物线粒体DNA多态研究概况.动物学研究,1992,13:280-298
    70.张永普,林志华,应雪萍.不同地理种群泥蚶的形态差异与判别分析.水产学报,2004,28:339-342
    71.郑文娟,朱世华,沈锡权,刘必谦,潘志崇,叶央芳.基于线粒体COI基因序列探讨泥蚶的遗传分化.动物学研究,2009,30:17-23
    72. Aktipis SW, Giribet G. A phylogeny of Vetigastropoda and other "archaeogastropods": re-organizing old gastropod clades. Invertebr Biol,2010,129:220-240
    73. Albrecht C, Wilke T, Kuhn K, Streit B, Convergent evolution of shell shape in freshwater limpets: the African genus Burnupia. Zool J Linn Soc-lond,2004,140:577-586
    74. Alderson GW, Gibbs HL, Sealy SG. Parentage and kinship studies in an obligate brood parasitic bide, the brown-headed cowbird(Molothrus ater), using microsatellite DNA markers. Heredity, 1999,90:182-190.
    75. Andersen LW, Fog K, Damgaard C. Habitat Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc Biol Sci,2004,271:1293-1302.
    76. Anderson FE. Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol Phylogenet Evol,2000,15: 191-214
    77. Armour JA, Neumann R, Gobert S, Jeffreys AJ. Isolation of human simple repeat loci by hybridization selection. Human Mol Genet,1994,3:599-605
    78. Azuma N, Yamazaki T, Chiba S. Mitochondrial and nuclear DNA analysis revealed a cryptic species and genetic introgression in Littorina sitkana (Mollusca, Gastropoda). Genetica,2011, 139:1399-1408
    79. Beaumont AR. Genetics and Evolution of Aquatic Organisms. London:Chapman and Hall, 1994:249-262
    80. Beerli P, Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA, 2001,98:4563-4568
    81. Bensch S, Akesson M. Ten years of AFLP in ecology and evolution:why so few animals? Mol Ecol,2005,14:2899-2914
    82. Bessert M, Orti G Microsatellite loci for paternity analysis in the fatheadminnow, Pimephales promelas (Teleostei:Cyprinidae). Mol Ecol Notes,2003,3:532-534
    83. Bohonak AJ. IBD (isolation by distance):a program for analyses of isolation by distance. J. Hered.,2002,93,153-154
    84. Boulding EG, Hay TK. Quantitative genetics of shell form of an intertidal snail:constraints on short-term response to selection. Evolution,1993,47:576-592
    85. Bousset L, Henry PY, Sourrouille P, Jarne P. Population biology ofthe invasive freshwater snail Physa acuta approachedthrough genetic markers, ecological characterization anddemography. Mol Ecol,2004,13:2023-2036
    86. Brown BL, Franklin DE., Gaffney PM, Hong M, Dendanto D, Kornfield I. Characterization of microsatellite loci in the eastern oyster, Crassostrea virginica. Mol Ecol 2000,9:2117-2119
    87. Brown DS. Freshwater Snails of Africa and their Medical Importance, seconded. Taylor & Francis, London,1994
    88. Brownlow RJ, Dawson DA, Horsburgh GJ, Bell JJ, Fish JD. A methodfor genotype validation and primer assessment in heterozygote-deficient species, as demonstrated in the prosobranch mollusc Hydrobia ulvae. BMC Genet,2008,9:55
    89. Caldeira RL, Carvalho OS, Lage RCG, Cardoso PCM, Oliveira GC. Sequencing of simple sequence reapeat anchored polymerase chain reaction amplification products of Biomphalaria glabrata. Mem Inst Oswaldo Cruz,2002,97 (Suppl 1):23-26
    90. Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR. Incidence and origin of null alleles in the (AC)n microsatellite markers. Am JHum Gen,1993,22: 1-10
    91. Campbell G, Noble LR, Rollinson D, Southgate VR, Webster JP, Jones CS. Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass,1848) and schistosomiasis transmission in the Senegal River Basin. Mol Ecol,2010,19 (2):241-256
    92. Carleton KL, Streelman JT, Lee BY. Rapid isolation of CA microsatellites from the tilapia genome. Anim Genet,2002,33:140-144
    93. Carlinid B, Young RE, Vecchione M. A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of Morphological evidence. Mol Phylogenet Evol,2001,21: 388-397
    94. Carlos AO, Helena MC. Relations between shell size and radula size in marine prosobranchs (Mollusca:Gastropoda). Thalassas,2003,19:45-53
    95. Carreras-Carbonell J, Macpherson E, Pascual M. Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. Mol Ecol,2006,15:3527-3539
    96. Castric V, Bernatchez L, Belkhir K, Bonhomme F. Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae):a test of alternative hypotheses. Heredity,2002,89:27-35
    97. Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet,2003,33:266-275
    98. Charbonnel N, Angers B, Rasatavonjizay R, BremondP, Jarne P. Evolutionary aspects of the metapopulation dynamics of Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni. J Evol Biol,2002,15:248-261
    99. Chayeh G, Henry PY, Sourrouille P, Delay B, Khallaayoune K, Jarne P. Population genetics and dynamics at short spatial scale in Bulinus truncatus, the intermediate host of Schistosoma haematobium, in Morocco. Parasitology,2002,125:349-357
    100. Chen J, Xie P, Guo LQ Zheng L, Ni LY. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and-RR in a freshwater snail (Bellamya aeruginosd) from a large shallow, eutrophic lake of the subtropical China. Environ Pollut,2005,134:423-430
    101. Chen KF, Knorr C, Bornemann-Kolatzki K, Ren J, Huang L, Rohre GA, Brenig B. Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones. BMC Genet,2005,6:54
    102. Clement M, Posada D, Crandall KA. TCS:a computer program to estimate gene genealogies. Mol Ecol,2000,9:1657-1660
    103. Colgan DJ, Ponder WF, Eggler PE. Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. Zool Scr,1999,29:29-63.
    104. Cowie RH. Catalog and bibliography of the nonindigenous nonmarine snails and slugs of the Hawaiian Islands. Bishop Museum Occasional Papers,1997,50:1-66
    105. Dailianis T, Tsigenopoulos S, Dounas C, Voultsiadou E. Genetic diversity of the imperilled bath sponge Spongia officinalis Linnaeus,1759 across the Mediterranean Sea:patterns of population differentiation and implications for taxonomy and conservation. Mol Ecol,2011,20:3757-3772
    106. Dalziel B, Boulding EG. Water-borne cues from a shellcrushing predator induce a more massive shell in experimental populations of an intertidal snail. JExp Mar Biol Ecol,2005,317:25-35.
    107. Danley PD, Husemann M, Ding BQ, DiPietro LM, Beverly EJ, Peppe DJ. The impact of the Geologic History and Paleoclimate on the Diversification of East African Cichlids. International Journal of Evolutionary Biology,2012, doi:10.1155/2012/574851
    108. Delghandi M, Mortensen A, Westgaard JI. Simultaneous analysis of six microsatellite markers in Atlantic cod (Gadus morhua):a novel multiplex assay system for use in selective breeding studies. Mar Biotechnol,2003,5:141-148
    109. Dieringer D, Schlotterer C. MICROSATELLITE ANALYZER (MSA):a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes,2003,3,167-169
    110. Dubois MP, Nicot A, Jarne P, Patrice D. Characterization of 15 polymorphic microsatellite markers in the freshwater snail Aplexa marmorata (Mollusca, Gastropoda). Mol Ecol Resour, 2008,8:1062-1064
    111. Dupuy V, Nicot A, Jarne P, David P. Development of 10 microsatellite loci in the pulmonate snail Biomphalaria kuhniana (Mollusca, Gastropoda). Mol Ecol Resour,2009,9:255-257
    112. Emery AM, Loxton NJ, StothardJR, Jonest CS, Spinks J, Liewellyn-Hughes J, Noble LR, Rollinson D. Microsatellites in the freshwater snail Bulinus globosus (Gastropoda:Planorbidae) from Zanzibar. Mol Ecol Notes,2003,3:108-110
    113. Excoffier L, Laval G, Schneider S. Arlequin ver.3.0:an integrated software package for population genetics data analysis. Evol Bioinform Online,2005,1:47-50
    114. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes-application to human mitochondrial DNA restriction data. Genetics,1992,131:479-491
    115. Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol,1994,3: 294-299.
    116. Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics. Cambridge: Cambridge University Press,2002,29-62
    117. Friar EA, Ladoux T, Roalson EH, Robichaux RH. Microsatellite analysis of a population crash and bottleneck in the Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense (Asteraceae), and its implications for reintroduction. Mol Ecol,2000,9:2027-2034
    118. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,1997,147:915-925
    119. Geist J, Kuehn R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations:implications for conservation and management. Mol Ecol,2005,14:425-439
    120. Geller JB, Carlton JT, Powers DA. Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp. (Bivalvia:Mollusca). Mol Mar Biol Biotechnol, 1993,2:44-50
    121. Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P. Calculations of population differentiation based on G(ST) and D:forget G(ST) but not all of statistics! Mol Ecol,2010,19: 3845-3852
    122. Glaubrecht M, von Rintelen T. The species flocks of lacustrine gastropods:Tylomelania on Sulawesi as models in speciation and adaptive radiation. Hydrobiologia,2008,615,181-199
    123. Goffredi SK, Hurtado LA, Hallam S, Vrijenhoek RC. Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca:Vesicomyidae) of the "pacifica/lepta" species complex. Mar Biol,2003,142:311-320
    124. Gong L, Stift G, Kofler R, Pachner M, Lelley T. Microsatellites for the genus Cucurbita and SSR-basedgenetic linkage map of Cucurbita pepo L. Theor & Appl Genet,2008,117:37-48
    125. Goodman SJ. RST CALC:a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol Ecol, 1997,6:881-885
    126. Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3),2001. Updated from Goudet J. FSTAT (version 1.2):a computer program to calculate F-statistics. JHered.,1995,86:485-486
    127. Gow JL, Noble LR, Rollinson D, Jones CS. A high incidence of clustered microsatellite mutations revealed by parent-offspring analysis in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata). Genetica,2005,124:77-83
    128. Gow JL, Noble LR, Rollinson D, Jones CS. Polymorphic microsatellites in the African freshwater snail Bulinus forskalii (Gastropoda, Pulmonata). Mol Ecol Notes,2001,1:237-240
    129. Gu QH, Xiong BX, Zhu YT, Wang Q, Shi PS. Development of 18 microsatellite loci for the freshwater snail Bellamya aeruginosa (Mollusca, Gastropoda). Genet Mol Res,2012a,11: 1449-1453
    130. Gu QH, Xiong BX, Zhu YT, Wang Q, Shi PS. Isolation and characterization of polymorphic microsatellites loci in the freshwater snail Bellamya aeruginosa (Mollusca, Gastropoda). Conserv Genet Resour,2012b,4:387-390
    131. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol.2003,52,696-704
    132. Han S, Yan S, Chen K, Zhang Z, Zed R, Zhang J, Song W, Liu H.15N isotope fractionation in an aquatic food chain:Bellamya aeruginosa (Reeve) as an algal control agent. J. Environ. Sci.2010, 22:242-247
    133. Huelsenbeck JP, Ronquist F. MrBayes:Bayesian inference of phylogeny. Bioinformatics,2001, 17:754-755
    134. Johnson RN, Starks PT. A surprising level ofgenetic diversity in an invasive wasp:Polistes dominulus in the northeasterm UnitedStates. Ann Entomol Soc Am,2004,97:732-737
    135. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components:a new method for the analysis of genetically structured populations. BMC Genetics,2010,11:94
    136. Jombart T. adegenet:a R package for the multivariate analysis of genetic markers. Bioinformatics, 2008,24:1403-1405
    137. Jones CS, Lockyer AE, Rollinson D, Piertney SB, Noble LR. Isolation andcharacterization ofmicrosatellite loci in the freshwater gastropod, Biomphalaria glabrata, an intermediate host for Schistosoma mansoni. Mol Ecol,1999,8:2149-2151
    138. Jost L. GST and its relatives do not measure differentiation. Mol Ecol,2008,17:4015-4026
    139. Kano Y, Chiba S, Kase T. Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records. Proc R Soc Lond B,2002,269:2457-2465
    140. Kantety RV, Rota LM, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol,2002,48: 501-510
    141. Karatayev AY, Burlakova LE, Karatayev VA, Padilla DK. Introduction, distribution, spread, and impacts of exotic freshwater gastropods in Texas. Hydrobiologia,2009,619:181-194
    142. Kat PW. Biogeography and evolution of African freshwater molluscs:implications of a Miocene assemblage from Rusinga Island, Kenya. Palaeontology,1987,30:733-742
    143. Kemp P, Bertness MD. Snail shape and growth rates:evidence of plastic shell allometry in Littorina littorea. Proc Natl Acad Sci USA,1984,81:811-813
    144. Kemppainen P, Panova M, Hollander J, Johannesson K. Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods.J Evol Biol,2009, 22:2000-2011
    145. Kennington WJ, Lukehurst SS, Johnson MS. Characterization of microsatellite loci for the littorine snail Bembicium vittatum. Mol Ecol Resour.2008,8:1463-1465
    146. Kim BJ, Kim S, Seo HS, Oh J. Identification of Albula sp. (Albulidae:Albuliformes) Leptocephalus collected from the Southern Coastal Waters of Korea using cytochrome b DNA sequences. Ocean Sci J,2008,43:101-106
    147. Lamberti GA, Gregory SV, Ashkenas LR, Steinman AD, McIntire CD. Productive capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecol Soc Am,1989,70: 1840-1856
    148. Li Q, Xu KF, Yu RH. Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture,2007,269:211-219
    149. Li XY, Li Y, Zhou SQ and Yan BL. Analysis and evaluation of nutritional composition in two freshwater fingersnails. Food Sci.2010,31:276-279
    150. Li ZC, An LH, Fu Q, Liu Y, Zhang L, Chen H, Zhao XR, Wang LJ, Zheng BH, Zhang LB. Construction and characterization of a normalized cDNA library from the river snail Bellamya aeruginosa after exposure to copper. Ecotoxicology,2012,21:260-267
    151. Librado P, Rozas J. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data Bioinformatics,2009,25:1451-1452.
    152. Liu HP, Hershler R. Microsatellite markers for the threatened Bliss Rapids snail (Taylorconcha serpenticold) and cross-amplification in its congener, T. insperata. Mol Ecol Resour,2008,8: 418-420
    153. Liu X Q, Bao ZM, Hu JJ, Wang S, Zhan AB, Liu H, Fang JG, Wang RC. AFLP analysis revealed differences in genetic diversity of four natural populations of Manila clam (Ruditapes philippinanm) in China. Acta Oceanol Sin,2007,26:150-158
    154. Liu Y Y. Studies on the Family Viviparidae in China (Mollusca, Gastropoda). Proc Tenth Intern. Malacol Congr (Tubengen),1991
    155. Luttikhuizen PC, Drent J, Baker AJ. Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol,2003,12:2215-2229
    156. Lydeard C, Mulvey M, Davis GM. Molecular systematics and evolution of reproductive traits of North American freshwater unionacean mussels (Mollusca:Bivalvia) as inferred from 16S rRNA gene sequences. Phil Trans R Soc London,1996,351:1593-1603
    157. Mandahl-Barth G. The freshwater mollusks of Uganda and adjacent territories. Ann Mus Congo Beige Tervuren (Ser.8) Sci Zool,1954,32:1-206
    158. Maneeruttanarungroj C, Pongsomboon S, Wuthisuthimethavee S, Klinbunga S, Wilson KJ, Swan J, Li Y, Whan V, Chu KH, Li CP, Tong J, Glenn K, Rothschild M, Jerry D, Tassanakajon A. Development of polymorphic expressed sequence tagderived microsatellites for the extension of the genetic linkage map of the black tiger shrimp (Penaeus monodon). Anim Genet,2006.37: 363-368
    159. Mavarez J, Amarista M, Pointier JP, Jarne P. Microsatellite variation in the freshwater schistosome-transmitting snail. Biomphalaria glabrata. Mol Ecol,2000,9:1009-1011
    160. Mavarez J, Pointier JP, David P, Delay B, Jarne P. Genetic differentiation, dispersal andmating system in the schistosome-transmitting freshwater snail Biomphalaria glabrata. Heredity,2002b, 89:258-265
    161. Meirmans PG, Hedrick PW. Assessing population structure:FST and related measures. Mol Ecol Resour,2011,11:5-18
    162. Mejia O, Zuniga G. Phylogeny of the three brown banded land snail genus Humboldtiana (Pulmonata:Humboldtianidae). Mol Phylogenet Evol,2007,45:587-595
    163. Michalski SG, Durka W. High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol,2007,16:4715-4727
    164. Minton R L, Lydeard C. Phylogeny, taxonomy, genetics and glob al heritage ranks of an imperiled freshwater snail genus Lithasia (pleuroceridae). Mol Ecol,2003,12:75-87
    165. Moore SS, Sargeant LL, King TL, Mattick JS, Georges M, Hetzel JS. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pars in closely relatedspecies. Genomics,1991,10:654-670
    166. Mueller UG, Wolfenbarger LL. AFLP genotyping and fingerprinting. Trends Ecol Evol,1999, 14:389-394
    167. Muli JR, Mavuti KM. The benthic macrofauna community of Kenyan waters of Lake Victoria. Hydrobiologia,2001,458:83-90
    168. Nagashima K, Sato M, Kawamata K, Nakamura A, Ohta T. Genetic Structure of Japanese Scallop Population in Hokkaido, Analyzed by Mitochondrial Haplotype Distribution. Mar Biotechnol, 2005,7:1-10
    169. Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH. Genetic diversity in Switchgrass collections assessed by EST-SSR markers. Bioenergy Res,2008,1:136-146
    170. Nei M. Molecular Evolutionary Genetics. New York:Columbia University Press,1987
    171. Pace GL. Freshwater of Formosa. Malac Rev,1973 (supplement 1):30-31
    172. Packer C, Pusey RE, Rowley H, Gilbert DA, Martenson J, Obrien SJ. Case study of a population bottleneck:lions of the Ngrongoro Crater. Conserv Biol,1990,5:219-230
    173. Palumbi S, Martin A, Romano S, Mcmillian WO, Stice L, Grabowski G. The simple fool's guide to PCR. Honolulu:University of Hawaii,1991
    174. Pernet B, Deconinck A, Haney L. Molecular and morphological markers for distinguishing the sympatric intertidal ghost shrimp Neotrypaea californiensis and N.gigas in the Eastern Pacific. J Crustacean Biol,2010,30:323-331
    175. Piry S, Luikart G, Cornuet JM. BOTTLENECK:a computer program for detecting recent reductions in the effective population size using allele frequency data. JHered,1999,90:502-503
    176. Pollak E. On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics,1987, 117:353-360
    177. Posada D. J ModelTest:phylogenetic model averaging. Mol Biol Evol,2008,25,1253-1256
    178. Prabhakar AK, Roy SP. Ethno-medicinal uses of some shell fishes by people of Kosi river basin of North-Bihar, India. Ethno-Med,2009,3:1-4
    179. Prevot V, Jordaens K, Sonet G, Backeljau T. Exploring Species Level Taxonomy and Species Delimitation Methods in the Facultatively Self-Fertilizing Land Snail Genus Rumina (Gastropoda:Pulmonata). PLoS ONE,2013,8:e60736. doi:10.1371/journal.pone.0060736
    180. Puillandre N, Koua D, Favreau P, Olivera BM, Stocklin R. Molecular Phylogeny, Classification and Evolution of Conopeptides. J Mol Evol,2012,74:297-309
    181. R Development Core Team. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,2009
    182. Rambabu PJ, Rao BM. Effect of an Organochlorine and Three Organophosphate Pesticides on Glucose, Glycogen, Lipid, and Protein Contents in Tissues of the Freshwater Snail Bellamya Dissimilis (Muiler). Bull Environ Contam Toxicol,1994,53:142-148
    183. Rawson PD, Agrawal V, Hilbish TJ. Hybridization between the blue mussels Mytilus galloprovincialis and M. trossulus along the Pacific coast of North America:evidence for limited introgression. Mar biol,1999,134:201-211
    184. Raymond M, Rousset F. An exact test for population differentiation. Evolution,1995a,49: 1280-1283
    185. Reed KM, Beanie CW. Isolation of 105 microsatellite loci from an ovine genomic library enrichedfor microsatellites. Anim Biotechnol,2001,12:77-86
    186. Renard E, Bachmann V, Cariou ML, Moreteau JC. Morphological and Molecular differentiation of invasive freshwater species of the genus Corbicula (Bivalvia, Corbiculided) suggest the presence of three taxa in French rivers. Mol Ecol,2000,9:2009-2016
    187. Rice WR, Analyzing tables of statistical tests. Evolution,1989,43:223-225
    188. Rousset F. GENEPOP'007:a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour,2008,8:103-106
    189. Salinger M, Pfenninger M. Highly polymorphic microsatellite markers for Radix balthica (Linnaeus,1758). Mol Ecol Resour,2009,9:1152-1155
    190. Schultheiβ R, Wilke T, J(?)rgensen A, Albrecht C. The birth of an endemic species flock: demographic history of the Bellamya group (Gastropoda, Viviparidae) in Lake Malawi. BiologicalJLinn Soc,2011,102:130-143
    191. Sengupta ME, Kristensen TK, Madsen H, J(?)rgensen A. Molecular phylogenetic investigations of the Viviparidae (Gastropoda:Caenogastropoda) in the lakes of the Rift Valley area of Africa. Mol Phylogenet Evol,52:797-805
    192. Sha ZX, Luo XH, Liao XL, Wang SL, Wang QL, Chen SL. Development and characterization of 60 novel EST-SSR markers in half-smooth tongue sole Cynoglossus semilaevis. JFish Biol,2011, 78:322-331
    193. Shimizu Y, Ueshima R. Historical biogeography and interspecific mtDNA introgression in Euhadra peliomphala (the Japanese land snail). Heredity,2000,85:84-96
    194. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics,1995,139:457-462
    195. Slatkin M. Gene flow and the geographic structure of natural populations. Science,1987,236: 787-792
    196. Smulders MJM, Bredemeijer G, Ruskortekaas W.1997. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet,1997:264-272
    197. Soes DM, Majoor GD, Keulen SMA. Bellamya chinensis (Gray,1834) (Gastropoda:Viviparidae), a new alien snail species for the European fauna. Aquatic Invasions,2011,6:97-102
    198. Solomon CT, Olden JD, Johnson PTJ, Dillon RT Jr, Vander Zanden MJ. Distribution and community-level effects of the Chinese mystery snail(Bellamya chinensis) in northern Wisconsin lakes. Biol Invasions,2010,12:1591-1605
    199. Sourrouille P, Debain C, Jarne P. Microsatellite variation in the freshwater snail Physa acuta. Mol Ecol Notes,2003,3:21-23
    200. Spicer GB. Phylogenetic utility of the mitochondrial cytochrome oxidase gene:molecular evolution of the Drosophila buzzatii species complex. JMol Evol,1995,41:749-759
    201. Stine OC. Cepaea nemoralis from Lexington, Virginia:the isolation and characterization of their mitochondrial DNA, the implications for their origin and climatic selection. Malacologia, 1989,30:305-315
    202. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,1989,585-595
    203. Tamura K, Nei M. Estimation of the number of nucleotide substitution in the control region of mitochrondrial DNA in humans and chimpanzees. Mol Phylogenet Evol,1993 10:512-526
    204. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol,2011,28:2731-2739
    205. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface:flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    206. Donald KM, Kennedy M, Spencer HG. The phylogeny and taxonomy of austral monodontine topshells (Mollusca:Gastropoda:Trochidae), inferred from DNA sequences. Mol Phylogenet Evol,2005,37:474-483
    207. Toro JE. PCR-based nuclear and mt DNA markers and shell morphology as an approach to study the taxonomic status of the Chilean blue mussel, Mytilus chilensis (Bivalvia). Aquat Living Resour,1998,11:345-353
    208. Trussell GC, Nicklin MO. Cue sensitivity, inducible defense, and trade-offs in a marine snail. Ecology,2002,83:1635-1647
    209. Trussell GC. Predator-induced plasticity and morphological trade-offs in latitudinally separated populations of Littorina obtusata. Evol Ecol,2000,2:803-822
    210. Tsutsui ND, Suarez AV, Grosberg RK. Genetic diversity asymmet rical aggression and recognition in a widespread invasive species. P Natl Acad Sci USA,2003,100:1078-1083
    211. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER:software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes,2004,4: 535-538
    212. Viard F, Bremond P, Labbo R, Justy F, Delay B, Jarne P. Microsatellites and the genetics of highly selfing populations in the freshwater snail Bulinus truncatus. Genetics,1996,142:1237-1247
    213. Vidigal TH, Kissinger JC, Caldeira RL, Pires EC, Monteiro E, Simpson AJ, Carvalho OS. Phylogenetic relationships among Brazilian Biomphalaria species (Mollusca:Planorbidae) based upon analysis of ribosomal ITS2 sequences. Parasitology,2000,121:611-620
    214. Vos P, Hogers R, Bleeker M, Reijans M, van deLee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,23: 4407-4411
    215. Wang D, Liao X L, Cheng L, et al. Development of novel EST-SSR markers in common carp by data mining from public EST sequences. Aquacilture,2007,271:558-574
    216. Wang HX, Li FH, Xiang JH. Polymorphic EST-SSR markers and their mode of inheritance in Fenneropenaeus chinensis. Aquaculture,2005,249:107-114
    217. Weber JL. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms. Genomics,1990,7: 524-530
    218. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution,1984,38:1358-1370
    219. Whitlock MC. G'ST and D do not replace FST. Mol Ecol,2011,20:1083-1091
    220. Wilmer JW, Hughes JM, Ma J, Wilcox C. Characterization of microsatellite loci in the endemic mound spring snail Fonscochlea accepta and cross species amplification in four other hydrobiid snails. Mol Ecol Notes,2005,5 (2):205-207
    221.Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham, J. Identification, characterisation and mapping of simple sequence repeat (SSR) makers from raspberry root and bud ESTs. Mol Breed,2008,22:555-563
    222. Wright S. Isolation by distance. Genetics.1943,28:114-138
    223. Xia SH, Wang Z, Xu SY. Characteristics of Bellamya purificata snail foot protein and enzymatic hydrolysates. Food Chem,2007,101:1188-1196
    224. Yen TC. A Review of Chinese Gastropods in the British Museum. Proc Malac Soc London,1942, 24:190-247
    225. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:A review. Mol Ecol, 2002,11:1-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700