用户名: 密码: 验证码:
红树林纤维素降解菌和菌群及其相关酶类的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林(mangrove)是自然分布于热带和亚热带海岸潮间带、受周期性潮水浸淹、并以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本植物群落,它位于陆地和海洋交界的滩涂地带,是陆地向海洋过度的特殊生态系统。由于处于周期性遭受海水浸淹的潮间带环境,红树林土壤兼有海洋和陆地的性质却与二者不同,具有沼泽化、盐渍化、强酸性、有机质含量高和部分厌氧等特征。其独特的生境特征造就了丰富独特的微生物和相应的基因及酶资源。由于红树落叶等木质纤维素的存在,纤维素降解微生物也是该区域重要的生物组成部分。现今工业社会中,纤维素酶用途广泛,可用于食品、纺织、饲料、石油勘探、中药成分提取等众多领域,特别是在纺织、洗涤、造纸和生物能源等工业应用上具有重要价值。因此,探索红树林这一特殊生境中的纤维素酶产生菌和相应的酶基因资源具有重要的基础研究和工业应用价值。
     在本论文中,我们从厦门红树林泥样中筛选到一株纤维素酶产生菌G21,通过16S rRNA基因序列的同源性分析,确定该菌株为弧菌属一个潜在的新种,随后对其分类学地位进行了系统的分析鉴定。同时,克隆了菌株G21的纤维素酶基因,并在大肠杆菌中进行了重组表达和性质分析。此外,用采集于海南清澜港的红树林泥样经富集和传代培养,获得了一个高效稳定的厌氧纤维素降解菌群SQD-1.1,并通过PCR-DGGE、16S rRNA基因文库构建、宏基因组测序等方法对其进行了分析,对红树林厌氧条件下的纤维素降解菌群有了一定的认识。
     1.菌株G21的分离与鉴定
     菌株G21是以厦门白鹭洲红树林区的泥土为样品、以CMC-Na为底物筛选产纤维素酶菌株时获得的一个菌株。革兰氏染色为阴性,菌体呈弯曲的杆状,具极生鞭毛,其宽度为0.7-0.8μm,长度为1.4-1.55μm。37℃下,在2216E平板上培养24h后,菌落为圆形或梭形、白色、半透明。生长盐度范围为0.5-10% NaCl (w/v),生长温度范围为15-40℃。
     菌株在含10mM葡萄糖的厌氧条件下生长,不产生气体。氧化酶和触酶阳性,Voges Proskauer实验阴性,硝酸盐还原阳性。水解淀粉、CMC和吐温80,不水解明胶、酪蛋白、海藻糖和DNA。主要脂肪酸为sum in feature 3 (C16:1ω7c and/or iso-C15:0 2-OH), C16:0和C18:1ω7c。
     16S rRNA基因的系统发育树分析表明菌株G21属于弧菌属,并且与菌株V.furnissii ATCC 350116T和V.fluvialis LMG 7894T处于同一分枝,其16S rRNA基因与两个近缘菌株的同源性分别97.4%和97.1%。DNA-DNA杂交实验表明该菌株与两个近缘菌株的全基因组DNA杂交率分别为59.5%和58.6%,低于70%的判定标准,可以确认是新的菌种。对rpoA、recA、ftsZ、mreB和gapA等多位点序列进行分析,进一步确认菌株G21为新的菌种。其DNA G+C含量为46.0 mO1%。
     根据系统进化、表型特征、生理生化特征和DNA-DNA杂交分析,可以确定菌株G21为弧菌属一个新的菌种,命名为Vibrio xiamenensis sp. nov.,模式菌株为G21T (=DSM 22851T=CGMCC 1.10228T)。
     2.内切纤维素酶Cel5A的基因克隆、表达和性质分析
     截至目前,还没有来自弧菌属菌株的纤维素酶基因克隆表达的相关研究报道。本部分,我们克隆了菌株G21的纤维素酶基因,获得一个全长1362 bp、编码453个氨基酸的内切-p-1,4-葡聚糖酶基因,命名为cel5A。其蛋白由一个糖水解酶5家族(GH5)的催化结构域和2家族的纤维素结合结构域(CBM2)组成。该酶的催化结构域与菌株Teredinibacter turnerae T7902的双功能酶beta 1,4-endoglucanase/cellobiohydrolase同源性最高,为69%。
     将纤维素酶Cel5A在大肠杆菌中进行重组表达、纯化和性质分析。其最适反应pH值和温度分别为pH6.5-7.5和50℃。该酶具有很好的耐碱性,在pH 5.5-10.5的范围内处理1h,仍保持90%以上的活性。同时,分析发现碱溶液对该酶具有激活作用,经弱碱性溶液处理1h后,酶的活性提高了15%。Cel5A也具有很好的耐盐性,添加NaCl至0.5 M后,活性提高了60%,在4 M NaCl条件下,活性仍高于未添加NaCl时的酶活,进一步的研究表明Cel5A热稳定性在0.4 M NaCl下也有所升高。Cel5A特异性作用于木质纤维素的无定形区域,最终水解产物主要为纤维二糖。
     鉴于其耐盐、耐碱性质,Cel5A在工业应用上具有潜在的应用价值。另外,氯化钠提高酶的稳定性及碱液对该酶的激活作用等,也让该酶成为研究酶的性质和结构关系的理想材料。
     3.红树林厌氧纤维素降解菌群的富集传代培养及鉴定
     自然界中,木质纤维素在很大程度上是被厌氧环境下的微生物菌群降解掉的,这些菌群在自然条件下保持稳定,并表现出高效的纤维素降解效率,研究这种状态下的纤维素降解特点和机制,将有助于纤维素的开发利用。在本研究中,我们以采集于海南红树林的泥样为材料,富集厌氧纤维素降解菌群。通过27代的连续传代培养,共有8个菌群样品可以保持高效稳定的纤维素降解效率。
     菌群SQD-1.1可以在三天中有效地降解滤纸底物,并且能以滤纸为唯一碳源生长,另外还可有效降解木聚糖底物,因此我们对该菌群做了进一步的研究分析。PCR-DGGE分析表明,菌群SQD-1.1在10天的连续培养过程中,其结构保持稳定,不同转接代数之间的菌群结构也基本稳定;16S文库测序分析发现,该菌群有27个OUT序列,分布于7个细菌门中的21个属,包括一个可能的纤维素降解菌M117;通过平板分离获得了12个不同的菌株,其中包括5个可能的新种,对其进行酶活性检测,发现菌株P2具有纤维素酶活性,推断在菌群降解纤维素过程中发挥重要作用。
     菌群SQD-1.1的研究分析为探索自然环境下厌氧纤维素降解机制提供了很好的材料,为进一步在工业上高效利用木质纤维素生产乙醇提供了参考。
     4.SQD-1.1宏基因组测序
     为了从整体上了解菌群结构,获得相关的酶基因序列,我们对菌群SQD-1.1进行了宏基因组测序。共获得1.2 Gbp的DNA序列,拼接组装1 kbp以上的contig1240个。根据EGTs序列分析结果,该菌群主要的微生物类群为变形菌门、螺旋菌门、拟杆菌门和厚壁菌门,其中,与纤维素降解相关的厚壁菌门梭菌属的微生物是主要的组成部分。根据宏基因组注释的结果,找到了包括外切纤维素酶、内切纤维素酶、β-葡萄糖苷酶在内的丰富的纤维素酶基因序列。另外通过blastall比对找到了纤维小体相关的dockerin和cohesin结构域序列片段,证明有纤维小体类似结构的复合物存在。
     从菌群中预测的纤维素酶基因序列许多都与已知蛋白同源性较低,为新的纤维素酶基因,对这些基因的异源表达和深入研究可以增加纤维素酶资源,也可能揭示新的纤维素降解机制。我们的研究表明,红树林中仍有许多新的纤维素降解微生物和酶资源有待于开发。
Mangrove ecosystems are diverse intertidal wetlands commonly situated in tropical, sub-tropical and temperate coastal systems. The degree of bacterial diversity in these systems is expected to be high due to the combination of the mixing of seawater and freshwater and the resuspension of sediments and particles from many sources. The unique swampy, saline and partially anaerobic environment makes it a special source for obtaining microorganisms as well as enzyme and gene resource. Some reports have shown that a large number of bacteria and fungi participate in the cellulolytic processing of the abundant mangrove lignocellulose. In modern industries, cellulases are widely used in textile industry, laundry detergents, pulp and paper industry, and pharmaceutical applications. Cellulase is also used in the fermentation of biomass into biofuels, although this process is relatively experimental now. Thus, exploration of the cellulase-producing bacteria and relative enzymes in the specific mangrove ecosystem is important for further research and industrial applications.
     In this study, we isolated a cellulase-producing bacterium G21 from the mangrove soil samples.16S rRNA analysis indicated that it belonged to genus Vibrio, and polyphasic taxonomic approach was used to characterize it. Meanwhile, a cellulase gene was cloned from strain G21 and expressed in E. coli BL21, and the recombinant enzyme was characterized. Besides, a high-stable cellulolytic consortium SQD-1.1 was obtained by enrichment from mangrove soil samples and successive subcultivation. The consortium was further analyzed by PCR-DGGE,16S rRNA gene library construction and plate cultivation and metagenomic sequencing.
     1. Isolation and characterization of strain G21
     Strain G21 was isolated from mangrove soil samples collected from Xiamen Fujian province of China, when cellulas-producing bacteria were screened using CMC-Na as substrate. The cells of G21 are Gram-negative, slightly curved rods (0.7-0.8μm×1.4-1.55μm) and motile with a single polar flagellum. Its colonies on marine 2216E agar plate are circular to a little fusiform, white and half-translucent after incubation at 37℃for 24 h. The strain grows in the range of 15-40℃and 0.5-10% NaCl(w/v).
     Growth of G21 in anaerobic condition is detected in the presence of 10 mM glucose, but no gas was produced. Positive for oxidase and catalase. Negative for Voges Proskauer. Nitrate is reduced to nitrite. Starch, CMC and Tween 80 are hydrolyzed. Gelatine, casein, alginate and DNA are not hydrolyzed. The major cellular fatty acids of G21 were sum in feature 3 (C16:1ω7c and/or iso-C15:0 2-OH), C16:0 and C18:1ω7c.
     Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain G21 belonged to the genus Vibrio and formed a cluster with V. furnissii ATCC 350116T (sequence similarity,97.4%) and V.fluvialis LMG 7894T (97.1%). However, multilocus sequence analysis (rpoA, recA, ftsZ, mreB and gapA) and DNA-DNA hybridization experiments indicated that it was distinct from related Vibrio species. The DNA G+C content was 46.0 mol%.
     Based on the phylogenetic, phenotypic, chemotaxonomic and DNA-DNA hybridization analysis, it is concluded that strain G21 represents a novel species of the genus Vibrio, for which the name Vibrio xiamenensis sp. nov. is proposed. The type train is G21 (=DSM 22851T=CGMCC 1.10228T).
     2. Gene cloning and characterization of cellulase Cel5A
     Although cellulases have been isolated from various microorganisms, no functional cellulase gene has been reported from the Vibrio genus until now. In this study, a novel endo-β-1,4-glucanase gene, cel5A,1362 bp in length, was cloned from the newly-identified bacterium, Vibrio sp. G21. The deduced protein of cel5A contains a catalytic domain of glycosyl hydrolase family 5 (GH5), followed by a cellulose binding domain (CBM2). The catalytic domain of Cel5A shows the highest sequence similarity (69%) to the bifunctional beta 1,4-endoglucanase/cellobiohydrolase from Teredinibacter turnerae T7902.
     The gene cel5A was overexpressed in Escherichia coli and the mature Cel5A enzyme was purified to homogeneity. The optimal pH and temperature of the recombinant enzyme were determined to be 6.5-7.5 and 50℃, respectively. Cel5A was stable over a wide range of pH and retained more than 90% of its total activity even after treatment in pH 5.5-10.5 for 1 h, indicating its high alkali resistance. Moreover, the enzyme was activated after pretreatment with mild alkali, a novel characteristic that has not been previously reported in other cellulases. Cel5A also showed a high level of salt tolerance. Its activity rose to 1.6-fold in 0.5 M NaCl and remained elevated even in 4 M NaCl. Further experimentation demonstrated that the thermostability of Cel5A was improved in 0.4 M NaCl. In addition, Cel5A showed specific activity towardsβ-1,4-linkage of amorphous region of lignocellulose, and the main final hydrolysis product of carboxymethylcellulose sodium and cellooligosaccharides was cellobiose.
     Considering the salt-tolerant and alkali-resistant properties of the enzyme, Cel5A of Vibrio sp. G21 has the potential to be used in industrial applications. Additionally, the characteristics of the enzyme, including thermostability improvement in salt solution and activation by alkaline, make it a good candidate for further research on the structure-function relationship and enzyme directed evolution.
     3. Enrichment and characterization of anaeraobic cellulolytic microbial consortium
     In nature, lignocellulose is partly decomposed by microbial communities inhabiting in anaerobic environments. These communities can keep stable and show high cellulolytic efficiency in native conditions. In this study, several mangrove soil samples from Hainan province were used to enrichment anaerobic cellulolytic microbial consortia. Eight consortia were transferred continually for 27 times and still could keep stable for efficient cellulose degradation.
     Consortium SQD-1.1, which can efficiently degrade filter paper in three days, utilize cellulose as the sole carbon source, and degrade xylan efficiently, was further characterized by PCR-DGGE,16S rRNA gene library and plate cultivation methods. Time-course analysis of the community composition within 10 days by PCR-DGGE showed that the members in SQD-1.1 were stable and no obvious change in consortium structure was found. The compostion of different generations was also stable.16S rRNA gene library analysis showed the presence of 27 OUT sequences, belonging to 21 genera of 7 phyla, and a potential cellulolytic bacterium M117 was found. Isolates using plate cultivation method both under anaerobic and aerobic conditions were belonged to Clostridium, Trichococcus and Proteiniclasticum and so on, of which five were potential new species and/or new species of new genus. Further analysis showed that strain P2 showed endoglucanase activity and should played an important role in the consortium in cellulose degradation.
     The study of SQD-1.1 can provide a candidate for investigating the mechanism of anaerobic cellulose degradation in nature environments, which is in favor of the industrial lignocellulose utilization for ethanol production.
     4. Metagenomic sequencing and analysis of consortium SQD-1.1
     In order to mine the gene and enzyme resources of consortium SQD-1.1, the metagenome DNA of consortium SQD-1.1 was sequenced.1.2 Gbp of DNA sequences was obtained and 1240 contigs longer than 1 kbp were assembled. According to the analysis result of EGTs database, the consortium mainly contains microorganisms belonging to Proteobacteria, Spirochaetes, Bacteroidetes and Firmicutes, and the potential anaerobic cellulolytic genus Clostrium of phylum Firmicutes was one of the main members. Annotation result showed that there were all of three types of cellulase, including endoglucanase, exoglucanase andβ-glucanase in the consortium, many of which are novel in sequence. Further analysis using the Blastall tool indicated that the consortium contained gene fragments belonging to dockerin and cohesion domains, the main components of cellulosome in anaerobic cellulolytic bacteria.
     As the cellulase genes from metagenomic sequences of consortium SQD-1.1 shared low similarity with proteins in GenBank database, the enzymes should be novel. Expression and further study of these novel cellulose genes can expand the source of cellulases, and may reveal new cellulose-degradation mechanism. Meanwhile, our study indicated that there are still many cellulolytic microorganism and enzyme resources in mangrove ecosystems to explore.
引文
1.陈春岚,李楠(2007)细菌纤维素酶研究进展。广西轻工业,98:18-20。
    2.姜广策,林永成,周世宁,Vrijmoed LLP, Jones EBG (2000)。中国南海红树内生真菌No.1403次级代谢物的研究。中山大学学报(自然科学版),39:68-72。
    3.蒋云霞,郑天凌,田蕴(2002)红树林土壤微生物的研究:过去、现在、未来。微生物学报,46:848-851。
    4.李倩茹,符夏梨(2009)红树林土壤微生物与土壤酶活性分析。广东农业科学,7:93-96。
    5.刘长莉,王小芬,牛俊玲,李献梅,沈海龙,崔宗均(2008)一组多功能细菌复合系NSC-7的培养特性及稳定性。微生物学报,35(5):725-730。
    6.刘锋,洪葵(2006)红树林微生物及其代谢产物多样性。海南医学,17(5):171-173。
    7.龙寒,向伟,庄铁城,林鹏(2005)红树林区微生物资源。生态学杂志,24:696-702。
    8. 闫丽萍(2005)海南近海30株抗B16细胞活性放线菌的16S rRNA多样性分析。微生物学报,45:185-190。
    9.杨智源,陈荣忠,杨丰(2001)短小芽孢杆菌葡聚糖内切酶基因的克隆及序列测定。微生物学报,40:76-81。
    10.郑忠辉,缪莉,黄耀坚(2003)红树林内生真菌的抗肿瘤活性。厦门大学学报(自然科学版),42:513-516。
    11. Ali BR, Zhou L, Graves FM, Freedman RB, Black GW, Gilbert HJ, Hazelwood GP (1995) Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and encoded by multigene families. FEMS Microbiol Lett 125:15-22
    12. Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15:59-79
    13. Ansorge WJ (2009) Next-generation DNA sequencing techniques. N Biotechnol 25:195-203
    14. Arunasri K, Sasikala C, Ramana CV, Suling J, Imhoff JF (2005) Marichromatium indicum sp. nov., a novel purple sulfur gammaproteobacterium from mangrove soil of Goa. India. Int J Syst Evol Microbiol 2005 55:673-679
    15. Baumann P, Furniss AL, Lee JV (1984) Genus I. Vibrio Pacine 1854. In Krieg, N.R.& Holt, J.G., ed. Bergey's Manual of Systematic Bacteriology. Baltimore, Williams & Wilkins,1984. p.518-538
    16. Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552-559
    17. Bayer EA, Shimon LJW, Shoham Y, Lamed R (1998) Cellulosomes-structure and ultrastructure. J Struct Biol 124:221-234
    18. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides:SignalP 3.0. J Mol Biol 340:783-795
    19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254
    20. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics. Nucleic Acids Res 37:233-238
    21. Chang HW, Roh SW, Kim KH, Nam YD, Jeon CO, Oh HM, Bae JW (2008) Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol 58:1903-1906
    22. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259-2261
    23. Collins ES, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422:835-847
    24. Comlekcioglu U, Ozkose E, Yazdic FC, Akyol I, Ekinci MS (2010) Polysaccharidase and glycosidase production of avicel grown rumen fungus Orpinomyces sp. GMLF5. Acta Biol Hung 61:333-43
    25. Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40℃. Appl Environ Microbiol 68:838-845
    26. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850-861
    27. Couto GH, Glogauer A, Faoro H, Chubatsu LS, Souza EM, Pedrosa FO (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9:514-523
    28. Demain AL, Newcomb M, David Wu JH (2005) Cellulase, clostridia, and ethanol microbiol. Mol Biol Rev 69:124-154
    29. Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, Mullany P (2003) Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother 47:1430-1432
    30. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril:a new model derived from direct visualization. J Agric Food Chem 54:597-606
    31. Ding SY, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, Shoham Y, Bayer EA, Flint HJ (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183:1945-1953
    32. Doi RH, Kosugi A (2004) Cellulosomes:plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541-51
    33. Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907-5914
    34. D'Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11:725-737
    35. Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75(2):319-328
    36. Feng Y, Yu Y, Wang X, Qu Y, Li D, He W, Kim BH (2011) Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour Technol 102:742--747
    37. Fitch WM (1971) Toward defining the course of evolution:minimum change for a specific tree topology. Syst Zool 20:406-416
    38. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211-22
    39. Futamata H, Harayama S, Watanabe K (2001) Group specific monitoring of phenol hydroxylase genes for a functional assessment of phenol stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671-4677
    40. Glazer AW, Nikaido H (1995) Microbial Biotechnology:fundamentals of applied microbiology. San Francisco:W. H. Freeman, pp 340
    41. Gomez-Gil B, Fajer-Avila EF, Pascual J, Macian MC, Pujalte MJ, Garay E, Roque A (2008) Vibrio sinaloensis sp. nov., isolated from the spotted rose snapper, Lutjanus guttatus Steindachner,1869. Int J Syst Evol Microbiol 58:1621-1624
    42. Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1(3):151-156
    43. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chem Biol 5:245-249
    44. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529-534
    45. Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309-316
    46. Henrissat B, Davies GJ (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Op Struct Biol 7:637-644
    47. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463-467
    48. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance:engineering plants and enzymes for biofuels production. Science 315:804-807
    49. Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358-364
    50. Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, Horikoshi K (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leeuwenhoek 89(2):211-219
    51. Hong K, Yan B (2008) Uncultured microorganisms in Hainan mangrove soil: diversity and functional genes. In:Liu SJ, Drake HL, Eds (ed) Microbes and the Environment:Perspective and Challenges. Beijing, China pp 52-58
    52. Hou PB, Li YZ, Wu BH, Yan ZC, Yan BX, Gao PJ (2006) Cellulolytic complex exists in cellulolytic myxobacterium Sorangium. Enzyme Microbiol Technol 38:273-278
    53. Hugenboltz P, Pace NR (1996) Identifying microbial diversity in the natural environment:a molecular phylogenetic approach. Trends Biotechnol 14:190-197
    54. Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling:what gaps occur in our knowledge? Hydrobiologia 295:107-118
    55. Hyun JK, James QB, Jang WC, Rustem FI (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci 105(47):18188-18193
    56. Iiyama K, Lam T, Stone BA (1994) Covalent Cross-Links in the Cell Wall. Plant Physiol 104:315-320
    57. Ito S (1997) Alkaline cellulases from alkaliphilic Bacillus:enzymatic properties, genetics, and application to detergents. Extremophiles 1(2):61-66
    58. Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles:enzymatic properties, genetics, and structures. Extremophiles 2(3):185-190
    59. Jensen PR, Fenical W, (1995) The relative abundance and seawater requirements of gram-positive bacteria in near-shore tropical marine samples. Microb Ecol, 29:249-257.
    60. Jiang YX, Zheng TL, Tian Y (2006) Research on mangrove soil microorganisms: past, present and future. Wei Sheng Wu Xue Bao 46(5):848-851
    61. Johnson KG, Lanthier PH, Gochnauer MB (1986) Studies of two strains of Actinopolyspora halophilia, an extremely halophilic actinomycete. Arch Microbiol 143:370-378
    62. Jones EBG, Hyde KD (1988) Methods for the study of marine fungi from the mangroves. In:Agate AD, ed Mangrove Microbiology:Role of microorganism in Nutrient Cycling of Mangrove Soils and Waters. Paris, France pp 9-27
    63. Jung ED, Lao G, Irwin D, Barr BK, Benjamin A, Wilson DB (1993) DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59(9):3032-3043
    64. Juy M, Amit A, Alzari P, Poljak R, Claeyssens M, Beguin P, Aubert J (1992) Three-dimensional structure of a thermostable bacterial cellulase. Nature 357:89-91
    65. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-120
    66. Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408-1416
    67. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377-91
    68. Leibovitz E, Beguin PA (1996) New type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome integrating protein CipA. J Bacteriol 178:3077-3084
    69. Li R, Fan W, Tian G et al. (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311-317
    70. Li X, Dong X, Zhao C, Chen Z, Chen F (2003) Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying from soil. World J Micobiol Biotechnol 19:375-379
    71. Li XL, Chen H, Ljungdahl LG. (1997) Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol 63:6282635
    72. Li YC, Irwin D, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Ce19A. Appl Environ Microbiol 73(10):3165-3172
    73. Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142 (9):2533-2542
    74. Lim YW, Baik KS, Han SK, Kim SB, Bae KS (2003) Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int J Syst Evol Microbiol 53:1631-1631
    75. Lin Y, Wu X, Deng Z, Wang J, Zhou S, Vrijmoed LL, Jones EB (2002) The metabolites of the mangrove fungus Verruculina enalia No.2606 from a salt lake in the Bahamas. Phytochemistry 59:469-471
    76. Liu H, Yang C, Tian Y, Lin G, Zheng T (2010) Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP. Mar Pollut Bull 60:2056-2061
    77. Lyimo TJ, Pol A, Op den Camp HJ, Harhangi HR, Vogels GD (2000) Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 50:171-178
    78. Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189::2477-2486
    79. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization:fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506-577
    80. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization:fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506-577
    81. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization:fundamentals and biotechnology. Microbiol Mol Biol 66:506-77
    82. Ma XD, Ke T, Xiong L, Yan H, Ma LX (2007) A new plate method for screening of polysaccharide-degrading enzymes and their producing microorganisms. Wei Sheng Wu Xue Bao 47(6):1102-1104
    83. Majernik A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na(+)(Li(+))/H(+) antiporter activity on Escherichia coli:characterization of the recovered genes and the corresponding gene products. J Bacteriol 183:6645-6653
    84. Mesarch MB, Nakatsu, CH, Nies L (2000) Development of catechol 2,3-dioxygenase specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol 66:678-683
    85. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297-306
    86. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584-586
    87. Nicholson MJ, Theodorou MK, Brookman JL (2005) Molecular analysis of the anaerobic rumen fungus Orpinomyces insights into an AT-rich genome. Microbiology 151:121-133
    88. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93-100
    89. Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249-262
    90. Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement:screening and selection strategies. Biotechnol Adv 24:452-81
    91. Poch GK, Gloer J (1989) Helicascolides A and B:new lactones from the marine fungus Helicascus kanaloanus. J Nat Prod 52:257-260
    92. Poch GK, Gloer J (1991) Auranticins A and B:two new depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod 54:213-217
    93. Pohlschroder M, Canale-Parola E, Leschine SB (1995) Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7. J Bacteriol 177:6625-6629
    94. Pointing SB, Buswell JA, Gareth Jones EB, Vrihmoed LLP (1999) Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycological Research 103:696-700
    95. Qin J, Li R, Raes J, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65
    96. Ramesh S, Rajesh M, Mathivanan N (2009) Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 32:791-800
    97. Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380-386
    98. Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci 102:3004-3009
    99. Saha BC (2000) Alpha-L-arabinofuranosidases-biochemistry, molecular biology and application in biotechnology. Biotech Adv 18:403-423
    100.Saitou N, Nei M (1987) The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425
    101.Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Nati Acad Sci 74:5463-5467
    102.Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL (1990) celB, a gene coding for a bifunctional cellulase from the extreme thermophile "Caldocellum saccharolyticum". Appl Environ Microbiol 56:3117-24
    103.Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189:7932-7936
    104.Schlingmann G, Milne L, Williams DR, Carter GT (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256.Ⅱ. Isolation and structure determination J Antibiot 51(3):303-16.
    105.Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, et al. (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77-90
    106.Schmeisser C, Stockigt C, Raasch C, Wingender J, Timmis KN, Wenderoth DF, Flemming HC, Liesegang H, Schmitz RA, Jaeger KE, Streit WR (2003) Metagenome survey of biofilms in drinking water networks. Appl Environ Microbiol 69:7298-7309
    107.Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787-99
    108.Sonan GK, Receveur-Brechot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293-302
    109.Souichiro K, Shin H, Zong JC, Masaharu I, Yasuo I (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71(11):7099-7106
    110.Statzell-Tallman A, Scorzetti G, Fell JW (2010) Candida spencermartinsiae sp. nov., Candida taylorii sp. nov. and Pseudozyma abaconensis sp. nov., novel yeasts from mangrove and coral reef ecosystems. Int J Syst Evol Microbiol 60:1978-1984
    111.Syn CK, Swarup S (2000). A scalable protocol for the isolation of large-sized genome DNA within an hour from several bacteria. Anal Biochem 278:86-90
    112.Takeuchi M, Hatano K (1998) Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. Int J Syst Bacteriol 48:907-912
    113.Takeuchi M, Hatano K (2001) Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 51:1529-1537
    114.Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol and Evol 24:1596-1599
    115.Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107-5115
    116.Thompson FL, Iida T, Swings J (2004). Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403-431
    117.Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680
    118.Tokuda G., Watanabe H (2007) Hidden cellulases in termites:revision of an old hypothesis. Biol Lett 3:336-339
    119.Trujillo ME, Fernandez-Molinero C, Velazquez E, Kroppenstedt RM, Schumann P, Mateos PF, Martinez-Molina E (2005) Micromonospora mirobrigensis sp. nov. J Syst Evol Microbiol 55:877-880
    120.Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37-43
    121.Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem,32:420-424
    122.van Solingen P, Meijer D, van der Kleij WA, Barnett C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5:333-41
    123.Venter JC, Remington K, Heidelberg JF, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66-74
    124.Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulose. J Biotechnol 126:26-36
    125.Vongvilai P, Isaka M, Kittakoop P, Srikitikulchai P, Kongsaeree P, Thebtaranonth Y (2004) Ketene acetal and spiroacetal constituents of the marine fungus Aigialus parvus BCC 5311. J Nat Prod 67(3):457-460
    126.Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bactria in a subsurface salt formation. Extremophiles 2:321-331
    127.Wang Y, Zhang XH, Yu M, Wang H, Austin B (2009) Vibrio atypicus sp. nov., isolated from the digestive tract of Chinese prawn(Penaeus chinensis, O'sbeck). Int J Syst Evol Microbiol 60:2517-2523
    128.Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560-565
    129.Watson BJ, Zhang HT, Longmire AG (2009) Processive endoglucanase mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191(18):5697-5705
    130.Wayne LG, Brenner DJ, Colwell RR, et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463-464
    131.Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697-703
    132.Wexler M, Bond PL, Richardson DJ, Johnston AW (2005) A wide host range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7:917-1926
    133.Wilson CA, Wood TM (1992) The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37:125-129
    134.Wilson DB (1992) Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol 12:45-63
    135.Wood TM (1988) Preparation of crystalline, amorphous, and dyed cellulase substrates. Mthods Enzymol 160:19-25
    136.Wu RY (1993) Studies on the microbial ecology of Tansui Estuary. Bot Bull Acad Sin 34:13-30
    137.Xiao J, Wang Y, Luo Y, Xie SJ, Ruan JS, Xu J (2009) Streptomyces avicenniae sp. nov., a novel actinomycete isolated from the rhizosphere of the mangrove plant Avicennia mariana. Int J Syst Evol Microbiol 59:2624-2628
    138.Xu J, Wang Y, Xie SJ, Xu J, Xiao J, Ruan JS (2009) Streptomyces xiamenensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 59:472-476
    139.Yan B, Hong K, Yu Z (2006) Archaeal communities in mangrove soil characterized by 16S rRNA gene colones. J Microbiol 44:566-571
    140.Yang ZY, Chen RZ, Yang F, Xu X (2001) Cloning and DNA sequencing of Bacillus pumilus endo-1,4-beta-glucanase gene. Wei Sheng Wu Xue Bao 41:76-81
    141.Zhuang T, Cheng LP (1998) Soil microbial function of Kandelia candel mangrove: degradation of diesel oil. In:Morton B, ed The Marine Biology of the South China Sea. Hongkong University, Hongkong pp 389-395.
    142.Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700