用户名: 密码: 验证码:
海参自溶过程中生化变化及抗氧化活性寡肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海参是海洋中最常见的无脊椎动物,具有极高的营养价值。海参具有极强的自溶能力,在受到外界物理因素、化学因素和生理因素等刺激后,会出现吐肠和体壁软化的现象,严重影响了海参的品质,给其运输和加工等带来极大不便。对海参自溶进行系统研究,对促进海参深加工产业的发展具有重要意义。
     本文针对海参体壁和海参肠的自溶特性,研究其在自溶过程中所发生的一系列化学成分的变化和鲜度的变化,明确海参自溶过程的影响因素。同时,利用海参自溶技术制备海参肠自溶寡肽,并对其进行抗氧化活性的评价和氨基酸序列的鉴定。论文所得主要结论如下:
     (1)在海参体壁和海参肠自溶过程中,蛋白质和糖类两种主要化学成分均发生不同程度的变化。考察温度、pH、NaCl浓度和液料比对海参体壁和肠自溶过程的影响,发现温度和pH是两个最主要的影响因素。根据不同条件下海参体壁和肠自溶过程中主要化学成分溶出情况的变化规律,确定TCA可溶性寡肽溶出量为海参体壁自溶过程的评价指标,同时,还可采用还原糖溶出量作为海参肠自溶过程的评价指标。
     (2)海参肠在室温自溶和50℃自溶前后,组织蛋白酶B和组织蛋白酶L的活性均明显增强。室温自溶时,分别提高了11%和6%,50℃自溶时,分别提高了11%和17%。半胱氨酸蛋白酶抑制剂E-64、抗痛素及碘乙酸可显著抑制海参肠自溶,在浓度为1mmol/L条件下,抑制率分别达到48.97%、47.24%和12.24%。同时,半胱氨酸蛋白酶的激活剂DTT对海参自溶过程有明显的促进作用。上述结果表明半胱氨酸蛋白酶可能在海参肠自溶过程中起重要作用。
     (3)控制海参自溶时,应限制在较低的温度,pH可以控制在偏碱性范围内,而且要尽量避免阳光的照射。在加工即食海参等制品时,温度要超过60℃,以抑制海参自溶酶活性,进而保证产品具有良好的形态。利用自溶时,温度应控制在37~60℃,pH应控制在4~7之间:
     (4)采用响应面法研究不同影响因素对海参体壁自溶过程的交互作用。结果表明,分别以温度、pH、NaCl浓度和温度、pH、底物浓度为变量因素所建立的响应面模型均可以准确的反映不同因素对海参体壁自溶过程的交互作用。pH和底物浓度对海参体壁自溶过程的交互作用显著,表现为在较低底物浓度下,pH越低,TCA可溶性寡肽含量下降越快,对海参体壁自溶越不利。
     (5)研究海参体壁在25℃和46℃自溶过程中的鲜度变化。结果显示,pH随自溶时间延长呈先下降后上升趋势,在自溶20 h时最低。挥发性盐基氮(TVBN)的含量随着自溶时间的延长而逐渐增加,在25℃和46℃条件下分别自溶44 h和32 h时,TVBN超过20mg/100g。46℃自溶32h时,TVC超过106 cfu/g。上述结果表明,本研究所采用的4h自溶条件下的海参体壁自溶与微生物作用无关。
     (6)以TCA-可溶性寡肽含量(以干基计)为响应值,采用响应面法优化得到海参肠自溶的最佳条件为温度48.30℃、pH 4.43、料液比1:3和自溶时间4 h。
     (7)海参肠自溶水解物主要由分子质量小于3 kDa的组分组成,含有17种氨基酸,具有一定的DPPH自由基清除能力、Fe2+螯合能力和还原能力,其SC50、CC50和ACo.5值分别为4.04、5.91和8.06 mg/mL。
     (8)海参肠自溶水解物经Sephadex G-15分离纯化后得到4个组分,分别为Ⅰ、Ⅱ、Ⅲ和Ⅳ,其中组分Ⅳ的DPPH自由基清除能力、Fe2+螯合能力和对DNA氧化损伤的保护作用最强,这可能与其Ile和Leu等含量较高有关。
     (9)组分Ⅳ经ESI-MS/MS进行氨基酸序列分析,得到三种具有抗氧化活性的寡肽,分别为两种四肽Val-Thr-Pro-Tyr (479 Da)和Val-Leu-Leu-Tyr(507 Da)和一种六肽Val-Gly-Thr-Val-Glu-Met (635 Da)。在浓度为2mg/mL时,三种寡肽均对DNA氧化损伤具有明显的保护作用。说明利用自溶技术获得的海参肠抗氧化自溶寡肽作为功能性基料具有潜在的应用价值。
Sea cucumber is the most common invertebrate in the ocean with high nutritive value. It is susceptive to the environmental changes caused by physical, chemical and physiological factors and easy to undergo autolysis. The subsequent phenomena of gut vomitting and body wall softening will happened, which lead to severe deterioration in sea cucumber quality and bring great difficulties to the transportation and processing of sea cucumber. It is significant and necessary for the development of sea cucumber deep-processing industries to study the autolysis of sea cucumber systematicly.
     In the present study, the biochemical changes including main chemical composition changes and freshness changes were investigated and the influencing factors of sea cucumber autolysis process were determined according to the autolysis characteristic of sea cucumber body wall and guts. Meanwhile, the autolysis method was adopted to prepare oligopeptides from sea cucumber guts. The antioxidant activities of oligopeptides were evaluated and their amino acid sequences were identified. The main conclusions were as followed:
     (1) Both protein and sugar were changed during the autolysis process of sea cucumber body wall and guts. pH and temperature were found to be the two main factors by investigating the effects of pH, temperature, NaCl concentration and liquid to sample ratio on the autolysis process of sea cucumber body wall and guts. TCA-soluble oligopeptide was determined to be the evaluation indicator for the autolysis process of sea cucumber body wall and guts. Meanwhile, the reducing sugar content could also be used as the evaluation indicator for the autolysis of sea cucumber guts.
     (2) The activities of cathepsin B and cathepsin L from sea cucumber guts were enhanced by 6%~17% after autolysis under different temperatures (25℃and 50℃). The inhibitors of cathepsin B and cathepsin L including E-64, antipain and iodoacetic acid significantly inhibited the autolysis of sea cucumber guts. Their suppressing rates of TCA-soluble oligopeptides contents reached to 48.97%,47.24% and 12.24%, respectively. Meanwhile, dithiothreitol as a activitor of cathepsin B and cathepsin L obviously promoted the autolysis process of sea cucumber guts. These results suggest that cathepsin B and cathepsin L may play an important role in the sea cucumber autolysis process.
     (3) In order to control the autolysis the temperature should be low and the pH should be controlled in the alkaline range in the transportation and processing of sea cucumber. In addition, sea cucumber should be sheltered from direct sunlight to avoid the inductive effects of ultraviolet irradiation on its autolysis. When the ready-to-eat sea cucumber was produced, the heating treatment should be performed at the temperature higher than 60℃in order to inhibit the activities of endogenous enzyme and maintain good appearance. Ultraviolet irradiation could be used in utilization of sea cucumber autolysis, and the temperature and pH should be in the range of 37~60℃and 4-7, respectively.
     (4) The combined interaction of different influencing factors on the sea cucumber autolysis was studied by response surface methodology. The results showed that the two models which were established on the basis of temperature, pH, NaCl concentration and temperature, pH and substrate concentration, respectively, could reflect the interaction accurately. The combined effect of pH and substrate concentration on the autolysis process of sea cucumber was significant. The TCA-soluble oligopeptides content decreased more quickly as the pH got more lower when the substrate concentration was relatively low, which was worse for the autolysis of sea cucumber body wall.
     (5) The freshness changes during the autolysis process of sea cucumber body wall were investigated at both 25℃and 46℃. The results showed that pH reached to minimum at 20 h and then increased gradually. The contents of TVBN were increased gradually with the autolysis period prolonged, and reached higher than 20mg/100g when the body wall was autolyzed for 44 h and 32 h at 25℃and 46℃, respectively. When the body wall was autolyzed for higher than 8h, the TVC were increased gradually and reached to 106 cfu/g at 32 h. These results suggest that microorganisms were not involved in the autolysis process of sea cucumber body wall under the experimental conditions in the present study.
     (6) The optimum autolytic conditions of sea cucumber guts were obtained by response surface methodology. Temperature at 48.30℃, pH at 4.43, sample to ratio 1:3 and time 4 h were found to be the optimal conditions to obtain autolysis hydrolysates from the guts of sea cucumber.
     (7) The autolysis hydrolysates were mainly composed of components below 3 kDa and it contained 17 kinds of amino acids. The autolysis hydrolysates had DPPH radical scavenging capacity, Fe2+-chelating ability and reducing power. The values of SC50, CC50 and AC0.5 were 4.04,5.91 and 8.06 mg/mL, respectively.
     (8) Four different fractions, namelyⅠ,Ⅱ,Ⅲand IV, were obtained after the autolysis hydrolysates were separated by Sephadex G-15. Fraction IV exhibited the highest DPPH radical scavenging capacity, Fe2+-chelating ability and protective effect against hydroxyl radicals-induced DNA damage, which may be related with the high content of Ile, Leu and Val.
     (9) The fraction IV was analyzed by ESI-MS for molecular mass determination and ESI-MS/MS for the characterization of peptides. Three kinds of antioxidative oligopeptides, including two tetrapeptides Val-Thr-Pro-Tyr (479 Da), Val-Leu-Leu-Tyr (507 Da) and a hexapeptide Val-Gly-Thr-Val-Glu-Met (635 Da), were identified. All of them showed obvious protective effects against hydroxyl radicals-induced DNA damage. protective effect against DNA damage. These results suggest that antioxidant oligopeptides derived from the guts of sea cucumber by autolysis method could be utilized for functional foods.
引文
[1]朱蓓薇.海珍品加工理论与技术的研究[M].北京:科学出版社,2010:6~9.
    [2]Thurmond F, Trotter J. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis[J]. Journal of Experimental Biology,1996,199(8):1817-1828.
    [3]Saito M, Kunisaki N, Urano N, et al. Collagen as the major edible component of sea cucumber (Stichopus japonicus)[J]. Journal of Food Science,2002,67(4):1319-1322.
    [4]纪加义,鸟类学,赵玉清,等.山东药用动物[M].济南:山东科学技术出版社,1979.
    [5]焦健,康海燕.海刺参在传统加工过程中部分功能成分流失的实验研究[J].中国海洋药物,2010(4):46~49.
    [6]袁文鹏,刘昌衡,王小军,等.仿刺参真空冷冻干燥工艺的研究[J].山东科学,2010,23(2):67-70.
    [7]云霞,韩学宏,农绍庄,等.海参真空冷冻干燥工艺[J].中国水产科学,2006,13(4):662~666.
    [8]苏秀榕,徐静,向怡卉,等.水发刺参的冷冻干燥技术研究[J].食品科学,2008,29(10):277~280.
    [9]Duan X, Zhang M, Mujumdar A S, et al. Microwave freeze drying of sea cucumber (Stichopus japonicus) [J]. Journal of Food Engineering,2010,96(4):491-497.
    [10]Duan X, Zhang M, Li X, et al. Microwave freeze drying of sea cucumber coated with nanoscale silver[J]. Drying Technology,2008,26(4):413-419.
    [11]孙妍,杨伟克,林爱东,等.海参微波真空干燥特性的研究.食品工业科技,2011,(6):99~101.
    [12]宋杨,张国琛,王彩霞,等.热泵与微波真空联合干燥海参的初步研究[J].渔业现代化,2009,36(1):47~51.
    [13]丛海花,孙妍,薛长湖,等.热泵-热风组合干燥盐渍海参的研究[c].第十二届全国干燥会议,兰州,2009:465~475.
    [14]丛海花,薛长湖,孙妍,等.热泵-热风组合干燥方式对干制海参品质的改善[J].农业工程学报,2010,26(5):342~346.
    [15]孙妍,薛长湖,齐祥明,等.海参最佳对流干燥温度的研究[J].农业工程学报,2007,23(5):205~209
    [16]Duan X, Zhang M, Mujumdar A S, et al. A novel dielectric drying method of sea cucumber[J]. International Journal of Food Science & Technology,2010,45(12):2538-2545.
    [17]李庆领,宋吉昌,吴俊飞,等.海参超高压保鲜的工艺研究[J].食品科学,2009,30(12):117~119.
    [18]刘程惠,朱蓓薇,董秀萍,等.海参酶解产物的分离及其体外抗氧化作用的研究[J].食品与发酵工业,2007,33(9):50~53.
    [19]曹荣,刘淇,殷邦忠.响应面法优化海参性腺酶解工艺的研究[J].食品科学,2012,33(2):29~33.
    [20]徐逯,叶立斌,于平,等.东海海参多糖酶解提取工艺优化[J].食品科学,2010,31(20):61~66.
    [21]Conand C. Present status of world sea cucumber resources and utilisation:an international overview. FAO Fisheries Department, FAO Fisheries Technical Paper, Rome:Food and Agriculture Organization of the United Nations,2004:13-25.
    [22]许伟定.国外海参渔业及增养殖概况[J].大连水产学院学报,2009,(S1).
    [23]朱蓓薇,韩冰.海参自溶酶的分离纯化和部分性质研究[J].食品与发酵工业,2004,30(4):132~134.
    [24]韩冰,朱蓓薇.阴离子交换柱(DEAE-52)层析纯化海参自溶酶[J].大连轻工业学院学报,2004,23(2):118~121.
    [25]Sun L M, Zhu B W, Wu H, et al. Purification and characterization of cathepsin B from the gut of the sea cucumber (Stichopus japonicus)[J]. Food Science and Biotechnology,2011,20(4): 919-925.
    [26]Zhu B W, Zhao L L, Sun L M, et al. Purification and characterization of a Cathepsin L-Like enzyme from the body wall of the sea cucumber Stichopus japonicus[J]. Bioscience, Biotechnology, and Biochemistry,2008,76(2):1430-1437.
    [27]赵露露,董秀萍,于蕾,等.海参体壁组织蛋白酶B酶学性质的研究[J].食品研究与开发,2008,29(8):5~9.
    [28]焉荣歆,徐赛涛,丛丽娜,等.海刺参组织蛋白酶L基因的克隆、重组表达及活性鉴定[J].大连工业大学学报,2009,28(6):391~396.
    [29]李英辉,丛丽娜,朱蓓薇.海参肠中溶菌酶的分离纯化及其酶学性质[J].大连工业大学学报,2008,27(3):193~196.
    [30]赵军岗,董秀萍,朱蓓薇,等.海参肠道β-1,3-葡聚糖酶的提取条件及其酶学性质[J].大连轻工业学院学报,2007,26(4):289-293.
    [31]Zhu B W, Zhao J G, Yang J F, et al. Purification and partial characterization of a novel (3-1,3-glucanase from the gut of sea cucumber Stichopus japonicus[J]. Process Biochemistry, 2008,43:1102-1106.
    [32]杜英,朱蓓薇,吴海涛.海参肠乙酰胆碱酯酶亲和层析洗脱条件的优化[J].食品科学,2012,33(8)
    [33]于建伟,李冬梅,李吉龙,等.仿刺参酸性磷酸酶的提取及粗酶性质研究[J].水产科学,2009,28(1):5~7.
    [34]Zhu B W, Yu J W, Zhang Z, et al. Purification and partial characterization of an acid phosphatase from the body wall of sea cucumber Stichopus japonicus[J]. Process Biochemistry, 2009,44(8):875-879.
    [35]程菁恒.海参肠中酸性磷酸酶的提取分离、纯化及酶学性质研究[D].大连:大连工业大学,2011.
    [36]Su X R, Xu C Y, Li Y Y, et al. Antitumor activity of polysaccharides and saponin extracted from sea cucumber[J]. Cellular Immunology,2011,2(1):1-5.
    [37]Zhou X Q, Wang C H, Jiang A L. In vitro antitumor activities of low molecular sea cucumber stichopus japonicus peptides sequentially hydrolyzed by proteases[J].Advanced Materials Research,2012,393:1259-1262.
    [38]Han H, Yi Y H, Li L, et al. Triterpene glycosides from sea cucumber holothuria leucospilota[J]. Chinese Journal of Natural Medicines,2009,7(5):346-350.
    [39]Matsuhiro B, Osorio-Roman I O, Torres R. Vibrational spectroscopy characterization and anticoagulant activity of a sulfated polysaccharide from sea cucumber Athyonidium chilensis[J]. Carbohydrate Polymers,2012,88(3):959-965.
    [40]Chludil H D, Muniain C C, Seldes A M, et al. Cytotoxic and antifungal triterpene glycosides from the patagonian sea cucumber Hemoiedema s pectabilis[J]. Journal of Natural Products, 2002,65(6):860-865.
    [41]Tian F, Zhang X W, Tong Y Y, et al. PE, a new sulfated saponin from sea cucumber, Exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo[J]. Cancer Biology and Therapy, 2005,4(8):874-882.
    [42]Fredalina B, Ridzwan B, Abidin A, et al. Fatty acid compositions in local sea cucumber: Stichopus chloronotus, for wound healing[J]. General Pharmacology:The Vasular System, 1999,33(4):337-340.
    [43]Wang Y C, Su W, Zhang C Y, et al. Protective effect of sea cucumber (Acaudina molpadioides) fucoidan against ethanol-induced gastric damage[J]. Food Chemistry,2012,133(4):1414-1419.
    [44]Trotter J A, Lyons-Levy G, Thurmond F A, et al. Covalent composition of collagen fibrils from the dermis of the sea cucumber,Cucumaria frondosa, a tissue with mutable mechanical proper-ties[J]. Comparative Biochemistry and Physiology Part A:Physiology,1995,112:463-478.
    [45]崔凤霞,薛长湖,李兆杰,等.仿刺参胶原蛋白的提取及理化性质[J].水产学报,2006,30(4):549~553.
    [46]李翠翠,董秀萍,高杨,等.海参体壁酶促溶性胶原的提取工艺[J].大连工业大学学报,2008,27(1):1-4.
    [47]高杨,董秀萍,肖桂华,等.海参体壁酸溶性胶原提取及氨基酸组成分析[J].食品与发酵工业,2009,34(11):171~174.
    [48]Zhu B W, Dong X P, Zhou D Y, et al. Physicochemical properties and radical scavenging capacities of pepsin-solubilized collagen from sea cucumber Stichopus japonicus[J]. Food Hydrocolloids,2012,28(1):182-188.
    [49]Pan S K, Wu S. Hydroxyl radical scavenging activity of peptide from sea cucumber using enzyme complex isolated from the digestive tract of sea cucumber[J]. African Journal of Biotechnology,2012,11(5):1214-1219.
    [50]Okazaki T, Shigeta Y, Aoyama Y. Autolysis of unsalted guts of sea cucumber under hydrostatic pressure[J]. Nippon Suisan Gakkaishi,2007,73(4):734-738.
    [51]王静,王丹丹,王铎喜,等.均匀设计法优化海参多肽的自溶工艺[J].食品研究与开发,2010,31(5):36~39.
    [52]黄冬香,李林,于新.罗非鱼蛋白自溶水解条件优化[J].西南大学学报(自然科学版),2009,31(5):93~97.
    [53]黄冬香,于新,李林.食品添加剂对罗非鱼蛋白自溶作用的影响[J].食品科学,2010,31(5):73-77.
    [54]孔美兰,吉宏武,章超桦.罗非鱼下脚料自溶条件的初步探讨[J].湛江海洋大学学报,2005,25(4):27~31.
    [55]Yarnpakdee S, Benjakul S, Visessanguan W, et al. Autolysis of goatfish (Mulloidichthys martinicus) mince:Characterisation and effect of washing and skin inclusion[J]. Food Chemistry,2009,114(4):1339-1344.
    [56]Intarasirisawat R, Benjakul S, Visessanguan W, et al. Autolysis study of bigeye snapper (Priacanthus macracanthus) skin and its effect on gelatin[J]. Food hydrocolloids,2007, 21(4):537-544.
    [57]Yongsawatdigul J, Piyadhammaviboon P. Inhibition of autolytic activity of lizardfish surimi by proteinase inhibitors[J]. Food Chemistry,2004,87(3):447-455.
    [58]曹文红,章超桦,洪鹏志,等.响应面法优化南美白对虾虾头自溶工艺的研究[J].中国食品学报,2009,9(1):158~164.
    [59]Cao W H, Zhang C H, Hong P Z, et al. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis[J]. Food Chemistry,2008,109(1):176-183.
    [60]章超桦,邓尚贵.刀额新对虾的快速自溶技术[J].水产学报,1999,23(4):387~391.
    [61]司伟兰,辛绮婷,余颖儿,等.鱿鱼内脏成分分析及自溶条件的研究[J].农产品加工.学刊,2010,(8):11~14.
    [62]郑丽,汪秋宽,谢智芬,等扇贝加工废弃物自溶技术的研究[J].大连水产学院学报,2007,22(1):49~52.
    [63]Klomaklao S, Kishimura H, Benjakul S, et al. Autolysis and biochemical properties of endogenous proteinases in Japanese sandfish (Arctoscopus japonicus)[J]. International Journal of Food Science & Technology,2009,44(7):1344-1350.
    [64]R awdkuen S, Benjakul S, Visessanguan W, et al. Fractionation and characterization of cysteine proteinase inhibitor from chicken plasma[J]. Journal of Food Biochemistry, 2005,29(5):486-503.
    [65]Rawdkuen S, Benjakul S, Visessanguan W, et al. Effect of cysteine proteinase inhibitor containing fraction from chicken plasma on autolysis and gelation of Pacific whiting surimi[J]. Food Hydrocolloids,2007,21(7):1209-1216.
    [66]Rawdkuen S, Benjakul S, Visessanguan W, et al. Cysteine proteinase inhibitor from chicken plasma:Fractionation, characterization and autolysis inhibition of fish myofibrillar proteins[J]. Food Chemistry,2007,101(4):1647-1657.
    [67]Rawdkuen S, Benjakul S. Whey protein concentrate:Autolysis inhibition and effects on the gel properties of surimi prepared from tropical fish[J]. Food Chemistry,2008,106(3):1077-1084.
    [68]Oujifard A, Benjakul S, Ahmad M, et al. Effect of bambara groundnut protein isolate on autolysis and gel properties of surimi from threadfin bream (Nemipterus bleekeri)[J]. LWT-Food Science and Technology,2012,47(2):261-266.
    [69]迟海,李学英,杭虞杰,等.食品添加剂对南极大磷虾蛋白自溶的影响[J].海洋渔业2011,33(3):346~351.
    [70]章超桦,邓尚贵,杨丽明,等.紫外线和温度对虾快速自溶的影响—水产品快速自溶影响因素探讨之一[J].湛江海洋大学学报,1994,14(2):51~56.
    [71]Eakpetch P, Benjakul S, Visessanguan W, et al. Autolysis of pacific white shrimp (Litopenaeus vannamei) meat:characterization and the effects of protein additives[J]. Journal of Food Science,2008,73(2):S95-S103.
    [72]徐伟,于刚,薛勇.鳀鱼自溶水解过程的生化变化[J].食品科技,2010,(4):136~139.
    [73]徐伟,戴莉,石海英,等.鱿鱼加工废弃物自溶水解过程中的生化变化[J].食品科技,2011,36(6):163~166.
    [74]姜艳喜,张建友,丁玉庭.鱿鱼副产物自溶水解过程的生化变化及其机理[J].食品工业科技,2010,(12):142~145.
    [75]朱国萍,曹文红,章超桦,等.凡纳滨对虾虾头自溶过程中游离氨基酸的释放规律及产物的分子质量分布[J].食品与发酵工业,2010,36(2):66~70.
    [76]Sone I, Olsen R L, Dahl R, et al. Visible/Near-Infrared Spectroscopy Detects Autolytic Changes during Storage of Atlantic Salmon (Salmo salar L.)[J]. Journal of Food Science, 2011,76(3):S203-S209.
    [77]James D. Autolytic changes occuring in fish muscle after death and their effect on spoilage, 1978.
    [78]Fey M, Regenstein J. Extending shelf-life of fresh wet red Hake and Salmon using CO2-O2 modified atmosphere and potassium sorbate ice at 1℃[J]. Journal of Food Science,1982,47(4): 1048-1054.
    [79]Olafsdottir G, Martinsdottir E, Oehlenschlager J, et al. Methods to evaluate fish freshness in research and industry[J]. Trends in Food Science & Technology,1997,8(8):258-265.
    [80]J(?)rgensen B, Oehlenschlager J, Olafsdottir G, et al. A study of the attitudes of the European fish setor towards quality monitoring and labelling[J].2003,57-74.
    [81]Luten J. Introduction to and outcome of the Concerted Action Fish Quality Labelling and Monitoring (FAIR 98-4174),2003,33-42.
    [82]Stone H, Sidel J L. Sensory evaluation practices[M]. USA:Academic press,2004.
    [83]Tanikawa E, Motohiro T, Wakasa T. Studies on post-mortem changes in the chemical constitution of the meat of sea cucumber (stichopus japonicus selenka):Ⅳ. Determination of the freshness of the meat of stichopus japonicus and the limit of the freshness for use as the raw material of canned[J]. Hokkaido University Collection of Scholarly and Academic Papers, 1955,6(1):73-79.
    [84]Mukundan M K, Antony P D, Nair M R. A review on autolysis in fish[J]. Fisheries research, 1986,4(3-4):259-269.
    [85]崔春,赵谋明,林伟锋,等.蓝园鯵快速自溶机理研究[J].食品工业科技,2005,26:85~87.
    [86]李树红,张楠,刘欢,等.鲢鱼背肌肌原纤维蛋白自溶与内源组织蛋白酶B,L,H的关系[J].中国农业大学学报,2004,9(5):71~75.
    [87]Yamashita M, Konagaya S. Differentiation and localization of catheptic proteinases responsible for extensive autolysis of mature chum salmon muscle (Oncorhynchus ketd)[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1992,103(4):999-1003.
    [88]Felberg H S, Hagen L, Slupphaug G, et al. Partial characterisation of gelatinolytic activities in herring (Clupea harengus) and sardine (Sardina pilchardus) possibly involved in post-mortem autolysis of ventral muscle[J]. Food Chemistry,2010,119(2):675-683.
    [89]Aoki T, Ueno R. Involvement of cathepsins B and L in the post-mortem autolysis of mackerel muscle[J]. Food Research International,1997,30(8):585-591.
    [90]Kubota M, Kinoshita M, Kubota S, et al. Possible implication of metalloproteinases in post-mortem tenderization of fish muscle[J]. Fisheries Science,2001,67(5):965-968.
    [91]Sherekar S, Doke S, Gore M, et al. Proteinases of tropical fish and their role in autolysis[J]. Indian Journal of Experimental Biology,1986,24(7):440-444.
    [92]廖启元,钱俊青,姜洪峰,等.自溶法回收鱼类加工废弃物中鱼油的研究[J].浙江工业大学学报,2006,34(3):294~297.
    [93]Liu C C, Morioka K, Itoh Y, et al. Autolysis:An effective way to recover protein from fish solid wast[J]. Journal of Shanghai Fisheries University,2003,12(suppl):71-77.
    [94]刘承初,森罔克司,伊藤庆明,等.鱼类废弃物低温自溶回收液的脱苦及其在鱼糜制品的增鲜作用[J].上海交通大学学报:农业科学版,2004,22(1):98~103.
    [95]钱俊青,单昱东,廖启元.黄鲇鱼内脏自溶酶解提取鱼油的工艺[J].食品与发酵工业,2009,35(12):66~69.
    [96]Samaranayaka A G P, Li-Chan E C Y. Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus)[J]. Food Chemistry,2008,107(2):768-776.
    [97]Morioka K, Fujii S, Itoh Y, et al. Effective utilization of fish wastes. Ⅱ. recovery of amino acid from the protein in the head and viscera of frigate mackerel by autolysis[J]. Fisheries Science, 1999,65(4):588-591.
    [98]郝更新,章超桦,曹文红.对虾蛋白自溶制备ACE抑制肽的工艺条件优化[J].湛江海洋大学学报,2006,26(4):59~62.
    [99]侯佰立,吉宏武,王燕,等.凡纳滨对虾虾头制备甲壳素工艺的研究[J].食品工业科技,2011,(10):273~276.
    [100]姜淼,杨贤庆,李来好,等.内源酶辅助提取虾壳虾青素的研究[J].南方水产科学,2011,7(2):55~60.
    [101]段杉,张影霞,陆婷婷,等.利用乳酸菌发酵协同自溶作用回收虾头、虾壳中的蛋白质[J].食品与发酵工业,2009,35(2):80~83.
    [102]杨锡洪,章超桦,解万翠,等虾头自溶脱蛋白法制备壳聚糖的新工艺[J].现代食品科技,2008,24(7):667~670.
    [103]章超桦,邓尚贵.虾组织快速自溶技术在海鲜调味料生产上的应用研究[J].食品与发酵工业,2000,26(2):36~39.
    [104]Cao W H, Zhang C H, Hong P Z, et al.. Autolysis of shrimp head by gradual temperature and nutritional quality of the resulting hydrolysate[J]. LWT-Food Science and Technology, 2009,42(1):244-249.
    [105]Sowmya R, Rathinaraj K, Sachindra N M. An autolytic process for recovery of antioxidant activity rich carotenoprotein from shrimp heads. Marine Biotechnology,2011,13(5): 918-927.
    [106]Senphan, T., Benjakul, S., Compositions and yield of lipids extracted from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei) as affected by prior autolysis[J]. Food Chemistry 2012, doi:10.1016/j.foodchem.2012.02.188.
    [107]Delbarre-Ladrat C, Cheret R, Taylor R, et al. Trends in postmortem aging in fish: Understanding of proteolysis and disorganization of the myofibrillar structure[J]. Critical reviews in food science and nutrition,2006,46(5):409-421.
    [108]Kim S K, Wijesekara I. Development and biological activities of marine-derived bioactive peptides:a review[J]. Journal of Functional Foods,2010,2(1):1-9.
    [109]Kim S K, Ravichandran Y D, Khan S B, et al. Prospective of the cosmeceuticals derived from marine organisms[J]. Biotechnology and Bioprocess Engineering,2008,13(5): 511-523.
    [110]Murray B, FitzGerald R. Angiotensin converting enzyme inhibitory peptides derived from food proteins:biochemistry, bioactivity and production. [J]. Current Pharmaceutical Design, 2007,13(8):773-791.
    [111]Alasalvar C, Shahidi F, Miyashita K, et al. Handbook of seafood quality, safety, and health applications[M], USA:John Wiley & Sons,2010:26-31.
    [112]董秀萍.海参,扇贝和牡蛎的加工特性及其抗氧化活性肽的研究[D],博士学位论文.镇江:江苏大学,2010.
    [113]Najafian L, Babji AS. A review of fish-derived antioxidant and antimicrobial peptides:their production, assessment, and applications[J]. Peptides.2011,33(1):178-185.
    [114]蒋长兴,李伟超.小龙虾头中血管紧张素转化酶抑制肽提取工艺优化研究[J].食品工业,2011,(11):10~13.
    [115]Ding G F, Huang F F, Yang Z S, et al. Anticancer activity of an oligopeptide isolated from hydrolysates of sepia ink[J]. Chinese Journal of Natural Medicines,2011,9(2):151-155.
    [116]朱洪珍,刘淑集,吴成业,等.海地瓜中具吸湿保湿特性的胶原蛋白肽提取工艺研究[J].福建水产,2012,33(5):24~30.
    [117]徐鑫,何佳易,刘国艳,等.小黄鱼抗氧化肽制备条件的响应面优化[J].食品科学,2011,32(21):165~170.
    [118]姚兴存,邱春江.文蛤蛋白抗菌肽制备工艺优化与抗菌活性研究[J].安徽农业科学,2010,38(31):17729~17730.
    [119]刘景伙,仇宏伟,庄桂东,等.海蜇降压肽制备工艺及体内降压效果的研究[J].食品科学,2009,30(11):227~231.
    [120]宋茹,冯婷立,谢超.海产小杂鱼抗氧化肽制备工艺[J].食品科学,2011,32(12):29~33.
    [121]Qin L, Zhu B W, Zhou D Y, et al. Preparation and antioxidant activity of enzymatic hydrolysates from purple sea urchin (Strongylocentrotus nudus) gonad[J]. LWT-Food Science and Technology,2011,44(4):1113-1118.
    [122]汪秋宽,刘红丹,徐坚,等.牡蛎酶解液的抗氧化活性[J].中国水产科学,2007,14(2):295~300.
    [123]肖军霞,黄国清,孙萍,等.牡蛎酶解液的美拉德反应及抗氧化活性研究[J].食品科技,2011,36(4):211~214.
    [124]胡文婷,孙谧,王跃军.栉孔扇贝(Chlamys farreri)中抗氧化肽的分离纯化及性质研究[J].海洋与湖沼,2006,37(1):14~19.
    [125]Lin L, Lv S, Li B. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates[J]. Food Chemistry,2012,131(1):225-230.
    [126]Zhou D Y, Qin L, Zhu B W, et al. Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate[J]. Journal of the Science of Food and Agriculture, 2012
    [127]Dong X P, Zhu B W, Zhao H X, et al.. Preparation and in vitro antioxidant activity of enzymatic hydrolysates from oyster (Crassostrea talienwhannensis) meat[J]. International Journal of Food Science & Technology,2010,45(5):978-984.
    [128]Zhou D Y, Tang Y, Zhu B W, et al. Antioxidant activity of hydrolysates obtained from scallop (Patinopecten yessoensis) and abalone(Haliotis discus hannai Ino) muscle[J]. Food Chemistry, 2012,132(2):815-822
    [129]Zhou D Y, Zhu B W, Qiao L, et al. In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone(Haliotis discus hannai Ino) viscera[J]. Food and Bioproducts Processing,2012,90(2):148-154.
    [130]Himaya S, Ngo D H, Ryu B M, et al. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-I converting enzyme (ACE) activity and cellular oxidative stress[J]. Food Chemistry,2012,132(4):1872-1882.
    [131]Mendis E, Rajapakse N, Byun H G, et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects[J]. Life Science,2005,77(17):2166-2178.
    [132]Cheung I W Y, Li-Chan E C Y. Angiotensin-I-converting enzyme inhibitory activity and bitterness of enzymatically-produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design[J]. Food Chemistry,2010,122(4):1003-1012.
    [133]Guerard F, Guimas L, Binet A. Production of tuna waste hydrolysates by a commercial neutr-al protease preparation[J]. Journal of Molecular Catalysis B:Enzymatic,2002,19:489-498.
    [134]Suetsuna K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle[J]. Marine Biotechnolo gy,2000,2(1):5-10.
    [135]Benhabiles M, Abdi N, Drouiche N, et al. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit[J]. Materials Science and Engineering:C,2012,32(4):922-928.
    [136]Je J Y, Qian Z J, Byun H G, et al. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis[J]. Process Biochemistry,2007, 42(5):840-846.
    [137]Mukhin V, Novikov V Y, Ryzhikova L. A protein hydrolysate enzymatically produced from the industrial waste of processing Icelandic scallop Chlamys islandica[J]. Applied Biochemistry and Microbiology,2001,37(3):292-296.
    [138]Shiozaki K, Shiozaki M, Masuda J, et al. Identification of oyster-derived hypotensive peptide acting as angiotensin-I-converting enzyme inhibitor[J]. Fisheries Science,2010,76(5): 865-872.
    [139]Thiansilakul Y, Benjakul S, Shahidi F. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme[J]. Journal of food biochemistry,2007, 31(2):266-287.
    [140]Je J Y, Kim S Y, Kim S K. Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes[J]. European Food Research and Technology, 2005,221(1):157-162.
    [141]Di Bernardini R, Harnedy P, Bolton D, et al. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products[J]. Food Chemistry,2011,124(4): 1296-1307.
    [142]刘国艳.自由基的生物学效应及自由基清除系统的功能特性[J].上海交通大学学报:农业科学版,2002,20(1):93~96.
    [143]Viljanen K, Kivikari R, Heinonen M. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds[J]. Journal of Agricultural and Food Chemistry,2004,52(5):1104-1111.
    [144]Parkin K, Damodaran S. Oxidation of food components[J]. Encyclopedia of Food Science and Nutrition,2003,4288-4294.
    [145]Rajaram D, Nazeer R A. Antioxidant properties of protein hydrolysates obtained from marine fishes Lepturacanthus savala and Sphyraena barracuda[J]. International Journal of Biotechnology and Biochemistry,2010,6:435-444.
    [146]Huang D, Ou B, Ronald L. The chemistry behind antioxidant capacity assays[J]. Journal of Agricultural and Food Chemistry,2005,53(6):1841-1856.
    [147]程云辉,曾知音,郭建伟,等.抗氧化肽的酶法制备及其构效关系的研究进展[J].食品与机械,2009:174~180.
    [148]Suetsuna K, Ukeda H. Isolation of an octapeptide which posseses active oxygen scavenging activity from peptic digest of sardine muscle[J]. Nippon Suisan Gakkaishi, 1999,65(6):1096-1099.
    [149]Kim S K, Kim Y, Byun H G, et al. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin[J]. Journal of Agricultural and Food Chemistry, 2001,49(4):1984-1989.
    [150]Raghavan S, Kristinsson H G, Leeuwenburgh C. Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates[J]. Journal of Agricultural and Food Chemistry,2008,56(21):10359-10367.
    [151]Jun S Y, Park P J, Jung W K, et al. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein[J]. European Food Research and Technology.219(1):20-26.
    [152]罗成,周达,鲁晓翔.天然产物抗氧化机理的研究进展[J].食品工业科技,2009,30(4):335~339.
    [153]Elias R J, Kellerby S S, Decker E A. Antioxidant activity of proteins and peptides[J]. Critical Reviews in Food Science and Nutrition,2008,48(5):430-441.
    [154]Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J]. Journal of Agricultural and Food Chemistry,1996,44(9):2619-2623.
    [155]Kong X, Zhou H, Hua Y. Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes[J]. Journal of the Science of Food and Agriculture, 2008,88(5):920-926.
    [156]Zhao J, Huang G, Zhang M, et al. Amino acid composition, molecular weight distribution and antioxidant stability of shrimp processing byproduct hydrolysate[J]. American Journal of Food Technology,2011,6(10):904-913.
    [157]Rajapakse N, Mendis E, Jung W K, et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J]. Food Research International, 2005,38(2):175-182.
    [158]Yamaguchi N, Yokoo Y, Fujimaki M. Studies on antioxidative activities of amino compounds on fats and oils,2:Antioxidative activities of dispeptides and their synergistic effects on tocopherol[J]. Journal of Food Science and Technology,1975,22(9):425-430.
    [159]Kawashima K, Itoh H, Miyoshi M, et al. Antioxidant properties of branched-chain amino acid derivatives[J]. Chemical Pharmaceutical Bulletin (Tokyo),1979,27(8):1912-1916.
    [160]Chan K M, Decker E A, Feustman D C. Endogenous skeletal muscle antioxidants[J]. Critical Reviews in Food Science & Nutrition,1994,34(4):403-426.
    [161]Moure A, Dominguez H, Parajo J C. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates[J]. Process Biochemistry, 2006,41(2):447-456.
    [162]Laakso S. Inhibition of lipid peroxidation by casein Evidence of molecular encapsulation of 1,4-pentadiene fatty acids[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1984,792(1):11-15.
    [163]Rival S G, Fornaroli S, Boeriu C G, et al.Caseins and casein hydrolysates.1. Lipoxygenase inhibitory properties[J]. Journal of Agricultural and Food Chemistry,2001,49(1):287.
    [164]Roberts P R, Burney J, Black K W, et al. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract[J]. Digestion,1999,60(4):332-337.
    [165]Davalos A, Miguel M, Bartolome B, et al. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis[J]. Journal of Food Protection.2004,67(9):1939-1944.
    [166]Qian Z J, Jung W K, Byun H G, et al. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage[J]. Bioresource technology,2008,99(9):3365-3371.
    [167]Sheih I, Wu T K,Fang T J. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems[J]. Bioresource technology,2009, 100(13):3419-3425.
    [168]Jung W K, Rajapakse N,Kim S K. Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis[J]. European Food Research and Technology.,2005,220(5):535-539.
    [169]Byun H G, Lee J K, Park H G, et al. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis[J]. Process Biochemistry,2009,44(8):842-846.
    [170]Ranathunga S, Rajapakse N,Kim S K. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). European Food Research and Technology,2006,222(3):310-315.
    [171]Qian Z J, Jung W K,Kim S K. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw[J]. Bioresource Technology,2008,99(6):1690-1698.
    [172]游丽君.泥鳅蛋白抗氧化肽的分离纯化及抗疲劳、抗癌功效研究[D].广州:华南理工大学,2010.
    [173]Mendis E, Rajapakse N,Kim S K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate[J]. Journal of Agricultural and Food Chemistry,2005,53(3):581-587.
    [174]Kim S Y, Je J Y,Kim S K. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion[J]. The Journal of nutritional biochemistry,2007,18(1):31-38.
    [175]San Miguel-Ruiz J, Garcia-Arraras J. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima[J]. BMC Developmental Biology,2007,7(1):115.
    [176]Murray G, Garcia-Arraras J E. Myogenesis during holothurian intestinal regeneration[J]. Cell Tissue Research,2004,318(3):515-524.
    [177]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of Biological Chemistry,1951,193(1):265-275.
    [178]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1994。
    [179]Qi H, Dong X, Cong L, et al. Purification and characterization of a cysteine-like protease from the body wall of the sea cucumber Stichopus japonicus[J]. Fish Physiology and Biochemistry,2007,33(2):181-188.
    [180]吴茜茜,蔡敬民,吴克,等.海洋真菌LD8岩藻多糖酶的固态发酵条件研究.海洋科学,2004,28(6):23~27.
    [181]孙雪,隋正红.几种环境因子对龙须菜α-半乳糖苷酶活性的影响[J].青岛海洋大学学报:自然科学版,2000,30(3):510~514.
    [182]Zhu B W, Zheng J, Zhang Z S, et al. Autophagy plays a potential role in the process of sea cucumber body wall "melting" induced by UV irradiation [J]. Wuhan University Journal of Natural Sciences,2008,13(2):232-238.
    [183]Joglekar A, May A. Product excellence through design of experiments[J]. Cereal Foods World,1987,32(12):857-868.
    [184]张君慧,张晖,王兴国,等.抗氧化活性肽的研究进展[J].中国粮油学报,2008,23(6):227~233.
    [185]尤娟,罗永康,沈慧星.酶法制备鲢鱼蛋白抗氧化肽研究[J].渔业现代化,2010,(3):42~47.
    [186]张一江,曹文红,毕春波.海湾扇贝酶解产物清除自由基活性的研究[J].食品与发酵工业,2008,34(4):60-63.
    [187]Binsan W, Benjakul S, Visessanguan W, et al. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei)[J]. Food Chemistry, 2008,106(1):185-193.
    [188]谢宁宁,陈小娥,方旭波,等.水产抗氧化肽研究进展[J].浙江海洋学院学报:自然科学版,2010,(1):74~80.
    [189]Yongsawatdigul J, Piyadhammaviboon P, Singchan K. Gel-forming ability of small scale mud carp (Cirrhiana microlepis) unwashed and washed mince as related to endogenous proteinases and transglutaminase activities[J]. European Food Research and Technology, 2006,223(6):769-774.
    [190]Kasankala L, Xiong Y L, Chen J. Enzymatic Activity and Flavor Compound Production in Fermented Silver Carp Fish Paste Inoculated with Douchi Starter Culture[J]. Journal of Agricultural and Food Chemistry,2012,60(1):226-233.
    [191]Chen Y, Wang M, Rosen R T, et al.2,2-Diphenyl-l-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb[J]. Journal of Agricultural and Food Chemistry,1999,47(6):2226-2228.
    [192]Hsu B, Coupar I M, Ng K. Antioxidant activity of hot water extract from the fruit of the doum palm, hyphaene thebaica[J]. Food Chemistry,2006,98(2):317-328.
    [193]Zhu L, Chen J, Tang X, et al. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate[J]. Journal of Agricultural and Food Chemistry,2008,56(8):2714-2721.
    [194]Joglekar A M, May A T. Product excellence through experimental design of experiments. Food Product Development (ed. E. Graf & IS Saguy), New York, Van Nostrand Reinhold-AVI:,1991,211-230.
    [195]Raissi S. Developing new processes and optimizing performance using response surface m-ethodology[J]. World Academy of Science, Engineering and Technology,2009,49:1039-1042.
    [196]Mason R L, Gunst R F, Hess J L. Statistical design and analysis of experiments[M]. USA: Society for Industrial Mathematics,1989.
    [197]Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment[J]. Journal of Agricultural and Food Chemistry, 2003,51(12):3661-3667.
    [198]Guo H, Kouzuma Y, Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein[J]. Food Chemistry,2009,113(1):238-245.
    [199]Hsu B, Coupar I M, Ng K. Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica[J]. Food Chemistry,2006,98(2):317-328.
    [200]Sanchez-Moreno C. Review:Methods used to evaluate the free radical scavenging activity in foods and biological systems[J]. Food science and technology international,2002,8(3): 121-137.
    [201]Soares J, Dinis T, Cunha A P, et al. Antioxidant activities of some extracts of thymus zygis[J]. Free radical research,1997,26(5):469-478.
    [202]Xie Z, Huang J, Xu X, et al. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate[J]. Food Chemistry,2008,111(2):370-376.
    [203]Wang Y, Zhu F, Han F, et al. Purification and characterization of antioxidative peptides from salmon protamine hydrolysate[J]. Journal of food biochemistry,2008,32(5):654-671.
    [204]Yang J I, Ho H Y, Chu Y J, et al. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin[J]. Food Chemistry,2008,110(1): 128-136.
    [205]Yamaguchi F, Saito M, Ariga T, et al. Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind[J]. Journal of Agricultural and Food Chemistry, 2000,48(6):2320-2325.
    [206]Dong S, Zeng M, Wang D, et al. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chemistry, 2008,107(4):1485-1493.
    [207]Gimenez B, Aleman A, Montero P, et al. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid[J]. Food Chemistry,2009,114(3): 976-983.
    [208]吴海涛,张或,缪琪,等.牡蛎水提液的抗氧化特性[J].食品与发酵工业,2005,31(4):42~45.
    [209]Chen H M, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein[J]. Journal of Agricultural and Food Chemistry,1998,46(1):49-53.
    [210]Yu H, Liu X, Xing R, et al. In vitro determination of antioxidant activity of proteins from jellyfish Rhopilema esculentum[J]. Food Chemistry,2006,95(1):123-130.
    [211]Ngo D H, Wijesekara I, Vo T S, et al. Marine food-derived functional ingredients as potential antioxidants in the food industry:An overview[J]. Food Research International,2011,44(2): 523-529.
    [212]Rustad T, Storr0 I, Slizyte R. Possibilities for the utilisation of marine by-products[J]. International Journal of Food Science & Technology,2011,46(10):2001-2014.
    [213]Conand C. Present status of world sea cucumber resources and utilization:an international overview[C]. Fisheries and Aquaculture Department. FAO Fisheries Technical Paper, Rome, 2005:13-24.
    [214]Gao F, Yang H, Xu Q, et al. Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation[J]. Chinese Journal of Oceanology and Limnology,2009,27(4):714-722.
    [215]Fu X, Xue C, Miao B, et al. Study of a highly alkaline protease extracted from digestive tract of sea cucumber (Stichopus japonicus). Food Research International,2005,38(3):323-329.
    [216]Mcgettigan S, Canning M, O'Cuinn G, et al. Peptide hydrolases in holothurian intestinal mucosa[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 1981,69(1):169-170.
    [217]Mamelona J, Saint-Louis R, Pelletier E. Nutritional composition and antioxidant properties of protein hydrolysates prepared from echinoderm byproducts[J]. International Journal of Food Science & Technology,2010,45(1):147-154.
    [218]张超桦,邓尚贵,洪鹏志.刀额新对虾的快速自溶技术[J].水产学报,1999,(4):387~391.
    [219]Nogata Y, Nagamine T, Yanaka M, et al. Angiotensin I converting enzyme inhibitory peptides produced by autolysis reactions from wheat bran[J]. Journal of Agricultural and Food Chemistry,2009,57(15):6618-6622.
    [220]Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus)[J]. Food Research International,2003,36(9-10):949-957.
    [221]Ahmad M, Benjakul S, Ovissipour M, et al. Indigenous proteases in the skin of unicorn leatherjacket (Alutherus monoceros) and their influence on characteristic and functional properties of gelatin[J]. Food Chemistry,2011,127:508-515.
    [222]Ren J, Zhao M, Shi J, et al. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry[J]. Food Chemistry,2008,108(2):727-736.
    [223]Zhao Y, Li B, Liu Z, et al. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate[J]. Process Biochemistry,2007,42(12): 1586-1591.
    [224]Lee S J, Kim E K, Hwang J W, et al. Purification and characterisation of an antioxidative peptide from enzymatic hydrolysates of duck processing by-products[J]. Food Chemistry, 2010,123(2):216-220.
    [225]Gul M Z, Bhakshu L M, Ahmad F, et al. Evaluation of Abelmoschus moschatus extracts for antioxidant, free radical scavenging, antimicrobial and antiproliferative activities using in vitro assays[J]. BMC Complementary and Alternative Medicine,2011,11(1):64.
    [226]Martinez G R, Loureiro A P M, Marques S A, et al. Oxidative and alkylating damage in DNA[J]. Mutation Research/Reviews in Mutation Research,2003,544(2):115-127.
    [227]You H J, Oh D, Choi C Y, et al. Protective effect of metallothionein-III on DNA damage in response to reactive oxygen species[J]. Biochimica et Biophysica Acta,2002,1573(1):33-38.
    [228]Suetsuna K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle[J]. Marine Biotechnology,2000,2(1):5-10.
    [229]Wang J, Zhao M, Zhao Q, et al. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems[J]. Food Chemistry,2007,101(4):1658-1663
    [230]Samaranayaka A G P, Li-Chan E C Y. Food-derived peptidic antioxidants:A review of their production, assessment, and potential applications[J]. Journal of Functional Foods,2011,3(4): 229-254.
    [231]Zhang S B, Wang Z, Xu S Y, et al. Purification and characterization of a radical scavenging peptide from rapeseed protein hydrolysates[J]. Journal of the American Oil Chemists' Society, 2009,86(10):959-966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700