用户名: 密码: 验证码:
黄、东海海洋浮游细菌的生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用表面荧光显微镜计数法调查我国黄、东海浮游细菌(包括异养细菌和蓝细菌)生态分布状况,对其在春秋两个季节不同水文状况下与浮游植物叶绿素、无机氮盐等之间的关系进行了研究。同时,利用流式细胞仪分选功能分离纯化了6株海洋聚球蓝细菌,并对其遗传多样性及捕光色素组成成分进行了分析。主要内容如下:
     春秋两季节黄东海海洋异养细菌丰度大致相当,异养细菌丰度在106 cells ml-1左右。春季异养细菌丰度总体表现为随离岸越远先逐渐降低后略微增高的趋势,秋季异养细菌丰度有离岸越远逐渐增高的趋势。
     春季黄、东海海域水温较低,垂直混合强烈,无显著温度、盐度跃层,水文状况相对简单。此时的异养细菌转化率和水体异养细菌生产力与温度呈正相关;异养细菌生物量与海水温度成负相关;硝酸盐与异养细菌各变量之间无显著相关。秋季的水文状况较春季较复杂,不同区域的水团对异养细菌有显著影响。
     春季,聚球蓝细菌生物量占浮游植物总生物量的百分比在4-98%之间(平均值42%)。总体变化趋势表现为在黄海海域聚球蓝细菌占浮游植物总生物量百分比较高,东海海域较低;近岸陆架区域聚球蓝细菌占浮游植物总初级生产比例较高,远海陆坡区域较低。秋季,聚球蓝细菌生物量占浮游植物总生物量的百分比在4-93%之间(平均值30%)。总体表现为在黄海海域聚球蓝细菌占浮游植物总生物量百分比较高,东海海域较低;聚球蓝细菌占浮游植物总生物量百分比数值有随纬度降低而降低的趋势。春秋两季,水团对聚球蓝细菌的分布状况无显著影响。
     通过胶州湾的年季变化研究表明,海洋浮游细菌在一年的变化有明显规律,冬季最低,夏季最高,秋季和春季相当。浮游细菌丰度随温度变化呈正相关性。
     系统进化分析表明,聚球蓝细菌是一种具有高度遗传多样性的类群。在黄海海域分离到的3株聚球蓝细菌都属Marine Cluster I,它们都含有捕光色素藻红蛋白PE。在东海分离到的3株聚球蓝细菌中,ECS01和ECS02含有捕光色素藻蓝蛋白PC, ECS01和ECS02与Synechococcus sp6301近缘关系很近。ECS03含PE,并且与在日本海分离到的MBIC10089独立成枝。
We investigated the distribution of the picoplankton in the East China Sea and Yellow Sea (ECSYS) with the special attention to the infuence of different hydrographys on the distribution of picoplankton. Also we studied the variation of picoplankton in different seasons during 2000-2006 in Jiaozhou Bay. Meanwhile, to learn the biodiversiy of Synechococcus spp in the ECSYS, we isolated six strains of Synechococcus in this sea area. The phylogeny of 6 isolates were analyzed and their absorption spectra and composition of phycobiliprotein were studied at the same time. The heterotrophic bacterial abundance was about 106 cells ml-1 in the ECSYS.
     There was distinct spatial distribution of the bacterial abundance in the ECSYS during fall and spring. Bacterial abundance decreased with the distance far away from the coast on most of transects in fall and spring. Also, bacteria abundance decreased with the distance away from the coast in the Yellow Sea and decreased from the Changjiang River Estuary as a center to outward in the East China Sea. During spring, heterotrophic bacterial production and turnover rate was positively correlated with temperature. While it was more complicated during summer. In this season, We testified several conditions that hydrography influenced the distribution of hetertrophic bacteria much.
     Furthermore, our research indicated that Synechococcus was a very important contributor to the primary biomass comparing with the phytoplankton primary production in the ECSYS. The contribution of Synechococcus biomass to the total primary production ranged 4-98% (averaged 42%) and 4-93% (averaged 30%) during spring and summer.
     The long term investigation in Jiaozhou bay indicated that the abundance of picoplankton varied periodic during the year round. The picoplankton abundance was positivly corelated with temperature. In this typical coastal ecosystem in china, the Synechococcus contributed only approxmately 4% on the phytoplankton primary production.
     Six strains of Synechococcus was isolated in the ECSYS. Among them, three, which contented the Phycoerythrobilin (PE), were from the Yellow Sea. The others, two contain Phycocyanobilin (PC) and one with PEB, were from the East China Sea. The phylogeny indicated that Synechococcus was diverse in ECSYS.
引文
贺杰等(2002)渤、黄海沿岸几种经济贝类及其生存环境中的粪大肠菌群海洋环境科学21(2):42-46
    刘瑞玉(1992)胶州湾生态学和自然资源,科学出版社(北京),4-9
    宁修仁(2003)南海北部微微型光合浮游生物的丰度及环境调控.海洋学报25(3):83-97
    宁修仁,沃洛D (1991)长江口及其毗邻东海水域蓝细菌的分布和细胞特征及其环境调节海洋学报13(4):552-559
    宁修仁,沃洛D (1992)英吉利海峡蓝细菌增长速率和被摄食速率的测定海洋学报14(4):84-93
    孙晟肖天岳海东(2003)秋季与春季东、黄海蓝细菌(Synechococcus spp)生态分布特点海洋与湖沼34(2):161-168
    宋铁英RasmussenUla等(2002) DGGE法检测稻田蓝细菌及硅藻的遗传多态性厦门大学学报:自然科学版41(5):669-673
    魏亦山薛静(2004) 2003年胶州湾红岛海域环境状况初步研究海洋科学28(9): 75-77
    肖天等(1995)胶州湾蓝细菌、细菌的数量分布特点.胶州湾生态学研究,科学出版社118-124
    肖天王荣(2002)春季与秋季渤海蓝细菌(聚球蓝细菌属)的分布特点生态学报22(12):2071-2078
    肖天岳海东张武昌(2003)东海聚球蓝细菌(Synechococcus.spp)的分布特点及在微食物环中的作用[J]海洋与湖沼34(1):33-43
    肖天张武昌王荣(1999)海洋蓝细菌在微食物环中的作用初步研究[J]海洋科学23(5):48-50
    王晨阳赵三军(2006)两株海洋聚球蓝细菌的特征及16s rDNA系统发生分析高技术通讯16(1):100-105
    姚云沈志良(2004)胶州湾海水富营养化水平研究海洋科学28(6):14-17
    郑天凌王斐徐美珠洪华生(2002)台湾海峡海域细菌产量、生物量及其在微食物环中的作用生产力及其异养活性研究海洋与湖沼33(4):415-423
    郑天凌默罕默德陈进才(1997)台湾海峡海域细菌生物量及其环境因子研究,《中国海洋文集》,海洋出版社7:146-152
    Allen J F, Forsberg J., 2001. Molecular recognition in thylakoid structure and function. Trends plant sci. 6:1-12.
    Agawin N S R., Duarte C M, Agusti S, VaquéD., 2004. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquatic Microbial Ecology. 34: 57-67.
    Altermann W, Kazmierczak J., 2003. Archean microfossils: a reappraisal of early life on Earth. Res Microbiol. 154: 611-617.
    Barnes H, 1959. Apparatus and methods of Oceanography. Part One: Chemical. George Allen and Unwin Ltd, London, pp. 341.
    Beardsley R C, Cannon G A, Limeburner R, Yu H., 1985. Discharge of Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research 4, 57-76.
    Bernardi Aubry, F Berton, A Bastianini, M Socal, G. Acri F., 2004, Phytoplankton succession in a coastal area of the NW Adriatic, over a 10-year sampling period 1990-1999. Continental Shelf Research. 24: 97-115.
    Binder B., 2000. Cells cycle regulation and the timing of chromosome replicationin a marine Synechococcus (Cyanobacteria) during light- and nitrogen-limited growth. J. Phycol. 36: 120–126.
    Boicourt W C, Chao S Y, Ducklow H W., 1987. Physics and microbial ecology of a buoyant estuarine plume on the continental shelf. Transaction of American Geophysics Union 68 (31), 666-668.
    Brahamsha B., 1996. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl. Environ. Microbiol. 5(62): 1747–1751.
    Brahamsha B., 1999. Non-flagellar swimming in marine Synechococcus . Mol. Microbiol. Biotechnol. 1: 59–62.
    Burkill P H, Leakey R J G., Owens N J P., 1993. Synechococcus and its imortance to the microbial foodweb of the northwestern Indian Ocean. Deep-Sea Research. 40(3):773-782.
    Campbell L and iturrriaga R., 1988. Identification of Synechococcus spp. in the Sargasso Sea by immunofluorescence and fluorescence excitation spectroscopy performed on individual cells. Limnol. Oceanogr. 33:1196-1201.
    Caron DA, Lim EL, Miceli G.., 1991. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar Ecol Prog Ser. 76:205-217.
    Charles F, Lantoine F, Sonia Brugel., 2005. Seasonal survey of the phytoplankton biomass, composition and production in a littoral NW Mediterranean site, with special emphasis on the picoplanktonic contribution. Estuarine, Coastal and Shelf Science. 65: 199-212.
    Chang J, Shiah F K, Gong G. C., 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in East China Sea, summer 1998. Deep-Sea Research II 50, 1237-1247.
    Cherrier J, Bauer J A, Druffel E T M., 1996. Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Marine Ecology Progress Series 139, 267-279.
    Cho B C, Azam F., 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441-443.
    Christaki U, Jacque S Dolan, JR Vaulot D Rassoulzadegan F., 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliate. Limnol. Oceanogr. 44(1):52-61.
    Cole J J, Findlay S, Pace M P., 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43, 1-10.
    David J, Scanlan Nyree J, West., 2002. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. Microbiology Ecology. 40: 1-12.
    De Lorimier R, Chen C-C J and Glazer A N., 1992. Sequence comparison of two highly homologous phycoerythrins differing in bilin composition. Plant Mol. Biol. 20:353-356.
    Duarte C M, Agusti S, Kennedy H, VaquéD., 1999. The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanishlittoral. Progress in Oceanography. 44: 245-270.
    Ferris M J, and Palenik B., 1998. Niche adaptation in ocean cyanobacteria. Nature. 396: 226–228.
    Fuhrman J A and F Azam., 1980. Bacterioplankton secondary production estimates for coastal waters of Brithish Columbia, Antartica, and California. Appl.Envir.Microbiol. 39:1085-1095.
    Fuhrman J A, Azam F., 1982. Thymidine incorporation as a measurement of heterotrophic bacterioplankton production in marine surface water: evaluation and field results. Marine Biology 66, 109-120.
    Fuhrman J A, Sleeter T D, Carlson C A, Protor L M., 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Marine Ecology Progress Series 57, 207-217.
    Gallagar S M,Waterbury J B, Stoecker D K., 1994. Efficient grazing and utilization of the marine cyanobacterium Synechococcus sp. By larvae of the bivalve Mercencaria mercenaria. Mar. Biol. 119:251-259.
    Geider R J and Osborne B A., 1992. Agal Photosynthesis (During M J and Melkonnian M. Eds.). New York: Chapman and Hall. 107-121.
    Glazer A N, J A West, and C Chan., 1982. Phycoerythrins as chemotaxonomic markers in red algae: a survey. Syst. Ecol., 10: 203-215.
    Glazer A N., 1999. Cyanobacterial photosynthetic apparatus: an overview. Bull. Inst. Oceanogr. 19: 419-434.
    Glover H E., 1985. The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv. Aquat. Microbiol. 3: 49-107.
    Grossman A R, Schaefer M R, et al., 1993. The phycobilisome, a light-havesting complex responsive to environmental conditions. Microbiol. Rev. 57: 725-749.
    Hagstrǒm A, Larsson U, Horstedt P, Normark S., 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Applied and Environmental Microbiology. 37, 805-812.
    Hess WR, Rocap G, et al., 2001. The photosynthetic apparatus of prochlorococcus: insights through comparative genomics. Photosynth. Res. 70:53-72.
    Honda D, Yokota A, and Sugiyama J., 1999. Detection of severn major evolutionary lineages in cyanobacteria based on 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J. Mol. Evol. 48:723-739.
    Hobbie J E, Daley R J, Jasper S., 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology. 33(5): 1225-1228.
    Hur H B, Jacobs G A, Teague W J., 1999. Monthly variations of water masses in the Yellow and East China Sea, November 6, 1998. Journal of Oceanography. 55, 171-184.
    Hyun J H, Kim K H., 2003. Bacterial abundance and production during the unique spring phytoplankton bloom in the central Yellow Sea. Marine Ecology Progress Series. 252, 77-88.
    James E, Cloern Brian E Cole., 2000. Spatial and temporal variability of picocyanobacteria Synechococcus sp. In San Francisco Bay. Limnol. Oceanogr. 45(3):695-702.
    Jordana E, Duchene J C, Charles F, Grémare A, Amouroux J M., 2001. Experimental study of suspension-feeding activity in the serpulid polychaete Ditrupa arietina O.F. Müller. Journal of Experimental Marine Biology and Ecology. 252: 57-74.
    Jürgens K, Gasol J M, VaquéD., 2000. Bacteria-flagellate coupling in microcosm experiments in the Central Atlantic Ocean. Journal of Experimental Marine Biology and Ecology. 245, 127-147.
    Kirchman D L, Rich J, Barber T., 1995. Biomass and biomass production of heterotrophic bacterioplankton along 140W in the equatorial pacific: effects of temperature on the microbial loop. Deep-Sea Research II 42 (2-3): 603-619.
    Krempin D W, Sullivan C W., 1981. The seasonal abundance, vertical distribution and relative microbial biomass of chroococcoid cyanobacteria at a station in southern California coastal waters. Canadian Journal of Microbiology. 27: 1341-1344.
    Kuo-Ping Chiang, Min-Chieh Kuo et al., 2002. Spatial and temporal variation of Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Continental Shelf Research. 22:3-13.
    Lagus A, Suomela J, Weithoff G., Heikkil? K, Helminem H, Sipura J., 2004.Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. Journal of Plankton Research. 26: 779-798.
    Laloui W, et al., 2002. Genotyping of axenic and non-axenic isolates of the genus Prochlorococcus and the OMF-‘Synechococcus’clade by size, sequence analysis or RFLP of the internal transcribed spacer of the ribosomal operon. Microbiology. 148(2): 453-465.
    Lantoine F, et al., 1999. Phycoerythrins in the sea: Aboundance and spectral diversity. Paris: Institute Oceanographyique and ORSTOM. 443-450.
    Lancelot C, Billen G.., 1984. Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the south bight of the North Sea. Limnology and Oceanography. 29 (4): 721-730.
    Li WKW, Subba RDV, Harrison J C., 1983. Autotrophic picoplankton in the tropical ocean. Science. 219:292-295.
    Liu K K, Iseki K, Chao S Y., 1999. Continental margin carbon fluxes. In: Hanson, R.B., Field, J.G. (eds) The Changing Ocean Carbon Cycle. Cambridge University Press, Cambridge, pp. 187-239.
    Liu K, Lai Z, Gong G., Shiah F K., 1995. Distribution of particulate organic matter in the southern East China Sea: implications of production and transport. Terrestrial Atmospheric and Oceanic Sciences. 6(1): 27-46.
    Lindell D, Padan E, and Post A F., 1999. Effect of ammonium on nitrate/nitrite uptake and ntcA expression in Synechococcus sp.strain WH 7803. Bull.Inst.Oceanogr. 19: 273-278.
    Malkin R, Niyogi K., 2000. Photosynthesis. In:Buchanan B B, Gruissem W, Jones R L (eds). Biochemistry and molecular biology of plants. American society of plank physiology. Rockville, Maryland. 568-628.
    Mcginn PJ Price GD, Badger MR., 2004. High light enhances the expression of low CO2-inducible transcripts involved in the CO2-concentrating mechanism in Synechocysitis sp. PCC6803. Plant, Cell and Environment. 27:615-626.
    Murphy LS, Haugen EM.., 1985. The distribution and abundance of phytotrophicultrapankton in the North Atlantic Limnol Oceanogr. 30: 47-58.
    Newman J, Mann N H, and Carr N G.., 1994. Organization and transcription of the class I phycoerythrin genes of the marne cyanobacterium Synechococcus sp. WH78903. Plant Mol. Biol. 24: 679-683.
    Olson R J, Chisholm S W, et al., 1988. Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep Sea Res. 35:425-440.
    Olson R J, Chisholm S W., et al., 1990. Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol. Oceanogr. 35:45-58.
    Palenik B., 2001. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbial. 67:991-994.
    Partensky F, J Blanchot, and D Vaulot., 1999. Differential distribution and ecology of prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Inst. Oceanogr. 19:457-475.
    Parsons T R, Maita Y, Lalli C M., 1984. In: A manual of Chemical and Biological Methods for Seawater Analysis. Pergamon, New York, pp. 173.
    Pitta T P, et al., 1997. Calcium is required for swimming cyanobacteria. J. Bacteriol. 177:5701-5703.
    Schopf J W., 1993. Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science. 260: 640-646.
    Seung Y H, Park Y C, 1989. Physical and environmental character of the Yellow Sea. In: Park C.H (eds) The regime of the Yellow Sea, IEW, Yonsei University, pp. 9-48.
    Shiah F K, Ducklow H W., 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production and specific growth rate in Chesapeake Bay. Limnology and Oceanography. 39: 1243-1258.
    Shiah F K, Gong C, Chen T Y, Chen C C, Chiang G. P, Huang J J., 2001. Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquatic Microbial Ecology. 23, 273-282.
    Shiah F K, Ducklow H.W., 1995. Regulation of bacterial abundance and production by substrate supply and bacterivory: a mesocosm study. Aquatic Microbial Ecology. 30, 239-255.
    Shiah F K, Kao S J, Gong G.C, Liu K.K., 2000. The coupling of bacterial production and hydrography in the southern East China Sea: spatial patterns in spring and fall. Continental Shelf Research. 20, 459-477.
    Shiah F K, Gong G.C, Chen C C., 2003. Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Research II. 50, 1295-1309.
    Simon M, Cho B C, Azam F., 1992. Significance of bacterial biomass in lake and the oceans: comparison to phytoplankton biomass and biogeochemical implications. Marine Ecology Progress Series. 86, 103-110.
    Sidler W A., 1994. The molecular biology of cyanobacteria (D.A. Bryant, ed.), Kluwer Academic Publisher, Dordrecht, Netherlands. pp 139-216.
    Steglich C, Post AF, Hess WR., 2003. Analysis of matural populations of prochlorococcus spp. in the Northern Red Sea using phycoerythrin gene sequences. Environ. Microbiol. 5:681-691.
    Six C, Thomas J C, Brahamsha B., et al., 2004. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat Microb Ecol, 35: 17-29.
    Stephan Jacquet et al., 1998. Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol. Oceanogr. 43(8): 1916-1931.
    Toledo G., Palenik B., 1997. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) genesequences of isolated strains. Appl. Environ. Microbiol, 63: 4298-4303.
    Toledo D, Palenik B, and Brahamsha B., 1999. Swimming marine Synechococcus strains with widely different photosynethetic pigment ratios from a monophyletic group. Appl. Environ. Microbiol. 65:5247-5251.
    Uysal Z., 2000. Pigments, size and distribution of Synechococcus spp. In the Black Sea. J. Mar. Syst. 24:313-326.
    Urbach E, Scanlan, D J, et al., 1998. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences ofProchlorococcus and Synechococcus (cyanobacteria). J. Mol. Evol. 46:188-201.
    Urbach E, et al., 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radition. Nature. 355: 267-269.
    Wang A J, Wang Y P, Gao S, Pan S N., 2005. Relationship between suspended sediment grain size and concentration in Changjiang Estuary Area during dry season. Advance in Marine Science 23, 159-168.
    Wang J T, Zhang Z B., 1999. Preliminary study of dissolved organic carbon (DOC) in the East China Sea. In: Hu, D.X and Tsunogai, S.Z., (eds) Margin Flux in the East China Sea, pp. 157-162.
    Waterbury J B, and J M Willey et al., 1985. A cyanobacterium capable of swimming motility. Science. 230:74-76.
    Waterbury JB, Watson SW, Gullard RRL., 1979. Wide-spread occurrence of a unicellular, marine planktonic, cyanobacterium. Nature. 277:293-294.
    Waterbury J B, and Willey J M., 1988, Isolation and growth of marineplanktonic cyanobacteria. Methods Enzymol. 167: 100–105.
    Waterbury J B, Watson S W, Guillard R R L and Brand L E., 1979. Widespread occurrence of a unicellsular, marine, planktonic, cyanobacterium. Nature. 277: 293-294.
    Wikner J, Hagstr?m A., 1998. Evidence for tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment. Marine Ecology Progress Series. 50, 137-145.
    Wilbanks S M, Glazer A N., 1993. Rod-structure of a phycoerythrin II-containing phycobilisome. I. Organisation and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus spp. WH 8020. J. Biol. Chem. 268:1226-1235.
    Willey J M, Waterbury J B, and Greenberg E P., 1987. Sodium-coupled motility in swimming cyanobacterium. J. Bacteriol. 169:3429-3434.
    Willey J M, and Waterbury., 1989. Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Sppl. Environ. Microbiol. 55:1888-1894.
    Wolfgang R Hess., 2004. Genome analysis of marine photosynthetic microbes and theirglobal role. Current opinion in biotechnology. 15:191-198.
    Wood A M, Horan P K, et al., 1985. Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy and flow cytometry. Limnol. Oceanogr. 30:1303-1315.
    Wood A M, Phinney D A, and Yentsch C S., 1998. Water column transparency and the distribution of spectrally distinct forms of phycoerythrin containing organisms. Mar. Ecol. Prog. Ser. 162:25-31.
    Wood A M, M Lipsen, and P Coble., 1999. Fluorescence-based characterization of phycoerythrin-containing cyanobacterial communities in the Arabian Sea during the northeast and early southwest monsoon(1994-1995). Deep Sea Res. II 46:1769-1790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700