用户名: 密码: 验证码:
长江口海域氮的同位素特征及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以稳定氮同位素(δ~(15)N)技术为基础,对长江口海域氮的同位素特征及其环境意义进行了研究。确立了一套完整的水体中氮的稳定同位素分析预处理方法,并运用该方法对2006年长江干流以及长江口海域表层水体中的溶解态硝酸盐和悬浮颗粒物的δ~(15)N特征进行分析,根据不同季节、不同区域内其δ~(15)N值的变化研究水体中氮的迁移、转化等生物地球化学过程,揭示其环境行为,从而对该海域的氮循环机制进行探索。主要结果如下:
     稳定氮同位素的分析准确与否,预处理过程是关键。不同形态、不同水体中氮的预处理方法不同。本文以传统的蒸馏法为基础,对适合海水中溶解态硝酸盐的氮同位素分析预处理方法进行研究并改进,并进行了不同实验条件的验证,效果较好。此外,对淡水体系中溶解态硝酸盐的氮同位素分析预处理方法以及悬浮颗粒物的氮同位素分析方法也进行了研究,确立了一套完整的水体中氮的稳定同位素分析方法,对δ~(15)N技术在河口氮循环研究中的广泛应用提供了基础。
     依据上述方法,对2006年2、5、8、11月份长江口海域表层水体中的溶解态硝酸盐δ~(15)N值(δ~(15)N-NO_3-)进行分析。研究发现,δ~(15)N-NO_3-分布范围在0.4‰到6.5‰之间,平均为3.5‰,具有明显的时空分布特点,在不同季节不同区域内所受的物理、生物地球化学作用不同。口门内,δ~(15)N-NO_3-的季节变化主要受长江径流输入影响,来源单一。最大浑浊带,δ~(15)N-NO_3-的分布规律不明显,保守混合行为较差,说明该区域的影响作用复杂,不同季节水体中发生的生物地球化学作用存在差异。外海区,δ~(15)N-NO_3-的季节变化明显,春季>秋季>夏季>冬季,与生物对硝酸盐的吸收程度变化相一致,反映了生物作用在该区域的影
     响显著。同样在2006年2、5、8、11月份本文对长江口海域表层水体中悬浮颗粒物的δ~(15)N(δ~(15)Np)组成进行了研究。δ~(15)Np值分布在0.6-8.2‰之间,同样具有明显的时空分布特点,其变化趋势与陆源输入和水体中氮的生物地球化学过程有关。口门内,表层水体中δ~(15)Np的变化主要受长江径流的陆源输入影响,生物地球化学作用影响较弱;最大浑浊带,水体中的悬浮颗粒有机氮受微生物的降解活动影响明显,各季节均存在不同程度的颗粒物分解作用;外海区,陆源输入减弱,悬浮颗粒物的δ~(15)Np值主要受微藻的同化吸收作用以及一定程度的颗粒物分解作用影响。
     长江口海域水体中溶解态硝酸盐和悬浮颗粒有机氮之间存在重要的相互转化作用,二者之间δ~(15)N的变化及其相互关系反映了一定的生物地球化学变化和环境信息。总体而言,长江口海域表层水体中δ~(15)N-NO_3-的分布水平较δ~(15)Np略低,二者之间的分馏ε总体偏正。其中,δ~(15)N-NO_3-与δ~(15)Np的最低值均出现在2月份,说明该季节水体溶解态硝酸盐和悬浮颗粒物都可能受到一致的外源输入影响,其内部生物地球化学作用较弱。5月份和11月份水体中的δ~(15)N-NO_3-值和δ~(15)Np值均各自水平相近,说明在这两个季节溶解态硝酸盐和悬浮颗粒物都可能受到程度相近的外源输入或生物吸收作用的影响,分馏ε偏负程度较大。8月份δ~(15)N-NO_3-值较低而δ~(15)Np值较高,分馏ε在四个季节中最大,可能是该季节程度较大的颗粒物分解作用影响所致。
     2006年长江干流表层水体中溶解态硝酸盐及悬浮颗粒物的δ~(15)N组成也具有明显的时空分布特点,二者季节变化规律相近,丰水期(5、8月份)δ~(15)N值较高,而枯水期(2、11月份)较低。δ~(15)N-NO_3-与δ~(15)Np之间呈现明显的正向相关关系,其空间分布趋势相同,自长江上游至下游δ~(15)N值逐渐升高,说明二者均受到相似的氮来源影响;长江上游氮的来源均以大气沉降和农业源(无机化肥和土壤有机氮)为主,而中、下游水体氮的来源则都偏重于工业及生活排污的贡献,随着人类活动程度以及工业化、城市化程度的升高,硝酸盐及悬浮颗粒有机氮的来源发生变化,其δ~(15)N值相应增加。
Based on the analysis of stable nitrogen isotope (δ~(15)N), variability of nitrogen isotope in the Yangtze River (Changjiang) estuary and its environmental implications were studied. The comprehensive preparation method for stable nitrogen isotopic analysis in waters was given.δ~(15)N of dissolved nitrate (NO_3-) and suspended particulate matters (SPM) in surface water of the Yangtze River mainstream and its estuary were analyzed by using the preparation method in 2006. According to the variations ofδ~(15)N in different seasons and geographical regions, the biogeochemical processing of nitrogen transformation was studied and its environmental implications were also revealed. In this sense, the mechanism of nitrogen cycle was explored in the Yangtze River estuary.
     The main results are as follows:
     The preparation method of water samples is critical to identify both inaccurate and accurate analysis ofδ~(15)N in seawater. The method varies with different nitrogen form and water bodies. In this paper, based on the traditional distillation, a suitable method for the preparation of dissolved nitrate samples in seawater for nitrogen isotopic analysis was studied and improved. Some tests of the method were conducted and good effect on analysis was found. Additionally, both the preparation method of dissolved nitrate in freshwater and the method of nitrogen isotopic analysis for SPM were studied. The comprehensive preparation method for stable nitrogen isotopic analysis in waters was given, which can supply basic information for wide application ofδ~(15)N in study of estuarine nitrogen cycle.
     Theδ~(15)N values of dissolved nitrate (δ~(15)N-NO_3-) in surface water of the Yangtze River estuary were analyzed in February, May, August and November of 2006 by using above method. It was indicated that the distribution ofδ~(15)N-NO_3- varied with seasons and geographic regions, with an average of 3.5‰(ranging from 0.4‰to 6.5‰). Different physical and biogeochemical processes affected theδ~(15)N-NO_3- signatures in different geographic regions. In the inner estuary,δ~(15)N-NO_3- was affected mainly by riverine input from the Yangtze River with single nitrogen source. In the Turbidity Maximum zone, irregular distribution and non-conservative mixing behaviour ofδ~(15)N-NO_3- were investigated, indicating complex processing of NO_3-. In the adjacent sea, seasonal variations ofδ~(15)N-NO_3- were consistent with those of nitrate uptake rates in phytoplankton as a result of biological processing.
     At the same time, theδ~(15)N values of SPM (δ~(15)Np) in surface water of the Yangtze River estuary were studied in February, May, August and November of 2006. The spatial and temporal variations were also observed inδ~(15)Np with a range between 0.6‰and 8.2‰, as the result of different influence of terrigenous inputs and nitrogen biogeochemical processing. In the inner estuary,δ~(15)Np was affected mainly by riverine inputs from the Yangtze River. In the Turbidity Maximum zone, SPOM was affected by microbial degradation obviously, indicating the control of the decomposition processing of SPOM inδ~(15)Np during four seasons. In adjacent marine sea, the influence of terrigenous inputs weakened andδ~(15)Np was controlled by inorganic nitrogen assimilation by phytoplankton and the decomposition of SPOM.
     The important mutual transformation of dissolved nitrate and SPM was found in the Yangtze River estuary. The variations and correlations betweenδ~(15)N-NO_3- andδ~(15)Np reflected some biogeochemical processing and environmental implications. In general,δ~(15)N-NO_3- was slightly lower thanδ~(15)Np. The nitrogen fractionation (ε) between them was positive in average. The lowestδ~(15)N-NO_3- andδ~(15)Np were both investigated in February, indicating consistent influence from external nitrogen inputs and weakened biogeochemical processing in waters. In May, theδ~(15)N-NO_3- andδ~(15)Np values were close to those in November, respectively. And the fractionation (ε) ofδ~(15)N-NO_3- andδ~(15)Np was seriously negative in general. It was shown that the dissolved nitrate and SPM were probably affected by similar influence from external inputs or biological assimilation. In August, the fractionation (ε) of highδ~(15)N-NO_3- and lowδ~(15)Np was most positive in four seasons, probably caused by intense decomposition of particulate matters.
     Obvious spatial and temporal variations were also observed inδ~(15)N of dissolved nitrate and SPM from the Yangtze River mainstream in 2006. The seasonal variations ofδ~(15)N-NO_3- andδ~(15)Np were similar, with highδ~(15)N values in wet season (in May and August) and lowδ~(15)N values in dry season (in February and November). There was obvious positive correlation betweenδ~(15)N-NO_3- andδ~(15)Np. The uniform spatial distribution ofδ~(15)N-NO_3- andδ~(15)Np was also found, with an increase from the upper reaches to the lower reaches of the Yangtze River. It was considered that dissolved nitrate and SPM were influenced by similar nitrogen inputs. In the upper reaches, the main nitrogen inputs were from atmosphere deposition and agricultural sources. In the middle and lower reaches, nitrogen sources varied and theδ~(15)N values of dissolved nitrate and SPM increased with human activity, industrialization and urbanization.
引文
1. Adams T S, Sterner R W. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol. Oceanogr., 2004 (5): 601-607
    2. Ahad J M E, Ganeshram R S, Spencer R G M, Uher G, Upstill-Goddard R C and Cowie G L. Evaluating the sources and fate of anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Sea estuaries. Science of the Total Environment, 2006, 372: 317-333.
    3. Altabet M A, Deuser W G, Honjo S et al. Seasonal and depth-related changes in the source of sinking particles in the North Atalantic. Nature, 1991, 354: 136-139
    4. Amberger A., Schimidt H L. Naturliche isotopengehalte von nitratals indikatoren fur dessen herkunft. Geochimica et Cosmochimica Acta, 1987, 51 (2): 2699-2705
    5. Aranvena R, Evans M L, Cherry J A. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water, 1993, 31: 180-186
    6. Barnes H. Apparatus and methods of oceanography. Part One: Chemical. George Allen and Unwin Ltd, London, 1959, p. 341.
    7. Caaciotti K L, Sigman D M, Galanter H M, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chmistry, 2002, 74: 4905-4912
    8. Chai C., Yu Z M, Song X X and Cao X H. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia, 2006, 563: 313-328.
    9. Cifuentes L A, Fogel M L, Pennock J R, Sharp J H. Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary. Geochim Cosmochim Acta. 1989, 53: 2713-2721.
    10. Cifuentes L A, Sharp J H, and Fogel M L. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol. Oceanogr., 1988, 33:1102-1105.
    11. Cline J D., Kaplan I R. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar. Chem., 1975, 3:
    271-299.
    12. Cohen R A, Fong P. Nitrogen uptake and assimilation in Enteromorpha intestinalis (L.) Link (Chlorophyta): using 15N to determine preference during simultaneous pulses of nitrate and ammonium. Journal of Experimental Marine Biology and Ecology, 2004, 309: 67-77
    13. Cole M L, Valiela I, Kroeger K D, Tomasky G L, Cebrian J, Wigand C, Mckinney R A, Grady S P, and da Silva M H C. Assessment of aδ15N Isotopic Method to Indicate Anthropogenic Eutrophication in Aquatic Ecosystems. J. Environ. Qual., 2004 (33):124-132
    14. Cristina Diaconu, Natacha Brion, Marc Elskens et al. Validation of a dynamic ammonium extraction technique for the determination of 15N at enriched abundances. Analytica Chimica Acta, 2005, 554: 113-122.
    15. David J. Velinsky, J. R. Pennock, J. H. Sharp et al. Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry MRCHBD, 1989, 26: 351-361.
    16. Edmond J M, Spivack A, Grant B C., Hu M, Chen Z, Chen S and Zeng X. Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 1985, 4: 17-36.
    17. Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537
    18. Feast N A, Hiscock K M, Dennis P F, et al. Nitrogen isotope hydrochemistry and denitrification within the chalk aquifer system of North Norfolk, UK. Journal of Hydrology, 1998, 211: 233-252
    19. Fogel M L and Parel H W. Isotopic tracers of nitrogen from atmospheric deposition to coastal waters. Chem. Geol., 1993, 107: 233-236.
    20. Freyer H D. Seasonal variation of 15N/14N ratios in atmospheric nitrate species.Tellus, 1991, 43B: 30-44
    21. Garten Jr C T. Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. International Journal of Analytical Chemistry, 1992, 47: 33-45
    22. Grasshoff K. Methods of seawater analysis. Verlag Chemie, Weinheim New York, 1976, pp. 276-281.
    23. Handley L L et al, the 15N natural abundanceδ15N of ecosystem samples reflects measures of water availability. Aust. J. Plant Physiol., 1999 (26):185-199
    24. Harmelin-Vivien M, Loizeau V, Mellon C, et al. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Continental Shelf Research, 2008, 28: 1911-1919.
    25. Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chemical Geology (Isotope Geoscience Section), 1986, 59: 87-102
    26. Hoch et al. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol J., 1994 (12): 113-127
    27. Hodgkiss I J, Ho K C. Are changes in N: P ratios in coastal waters the key to increased red tide blooms. Hydorbiogia, 1997, 352: 141-147
    28. Holmes R. M., McClelland J. W., Sigman D. M., et al. Measuring 15N-NH4+ in marine, estuarine and fresh waters: An adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Marine Chemistry, 1998, 60: 235-243.
    29. Horrigan S G., Montoya J P, Nevins J L et al. Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake bay. Estuarine, Coastal and Shelf Science, 1990, 30: 393-410.
    30. Hubner H. Isotope effects of nitrogen in the soli and biosphere. In: Fritz P. Fontes J C. Handbook of environmental isotope geochemistry, vol. 2b. The terrestrial environment. Elsevier, 1986, 361-425
    31. Jones R D and Hood M A. Effect of temperature, pH, salinity and inorganicnitrogen on the rate of ammonium oxidation by nitrifiers isolated from wetland. Environments Microb Ecol, 1980, 6: 339-347.
    32. Kanda J, Itoh T, Ishikawa, D and Watanabe, Y. Environmental control of nitrate uptake in the East China Sea. Deep-Sea ResearchⅡ, 2003, 50: 403-422.
    33. Kelley K R, Ditsch D C, Alley M M. Diffusion and automated nitrogen-15 analysis of low-mass ammonium samples. Soil Science Society of America Journal, 1991, 55: 1016-1020.
    34. Kendall C, Mcdonnell J J. Isotope tracers in catchment hydrology, Elsevier Science B.V., Amsterdam, 1998: 519-576
    35. Kreitler C W and Browning L A. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution. J. Hydrol. (Amsterdam), 1983, 61: 285-301.
    36. Kreitler C W. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J. Hydrol., 1979, 42: 147-170
    37. Kuuppo P, Tamminen T, Voss M and Schulte U. Nitrogen discharges to the eastern Gulf of Finland, the Baltic Sea: elemental flows, stable isotope signatures, and their estuarine modification. Journal of Marine Systems, 2006, 63, 191-208.
    38. Li J F and Zhang C. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 1998, 148: 117-124.
    39. Lindau C W, Delaune R D, Alford D P. Monitoring nitrogen pollution from sugarcane runoff using 15N analysis. Water, Air, and Soil Pollution, 1997, 98: 389-399.
    40. Liu K K, Su M J, Hsueh C R and Gong G C. The nitrogen isotopic composition of nitrate in the Kuroshio Water northeast of Taiwan: evidence for nitrogen fixation as a source of isotopically light nitrate. Marine Chemistry, 1996, 54: 273-292.
    41. Liu M, Hou L J, Xu S Y, Ou D N, Yang Y, Yu J. & Wang Q. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Marine Pollution Bulletin, 2006, 52: 1625-1633.
    42. Liu S M, Zhang J, Chen H T, Wu Y, Xiong H and Zhang Z F. Nutrients in Changjiang and its tributaries. Biogeochemistry, 2003, 62: 1-18.
    43. Lory J A, Russelle M P. Evaluation of a diffusion method for preparing low-nitrogen samples for nitrogen-15 analysis. Soil Science Society of America Journal, 1994, 58: 1400-1404
    44. Mariotti A, Lancelot C and Billen G. Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochimica et Cosmochimica Acta, 1984, 48: 549-555.
    45. Mariotti A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 1983, 303: 685-687
    46. McClelland J W, Valiela I. Nitrogens -stable signature in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol Oceanogr, 1997, 42 (5): 930-937.
    47. Mcllvin M R.and Altabet M A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem., 2005, 77: 5589-5595.
    48. Middleburg J J and Nieuwenhuize J. Nitrogen isotope tracing of dissolved inorganic nitrogen behaviour in tidal estuaries. Estuarine, Coastal and Shelf Science, 2001, 53: 385-391.
    49. Milliman J D, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to ocean. American Journal of Science, 1984, 284: 824-834
    50. Miyake Y, Wada E. The isotope effect on the nitrogen in biogeochemical oxidation-reduction reaction. Rec. Oceanogr. Works Japan, 1971 (11): 1-6
    51. Montoya J P and McCarthy J J. Isotopic fractionation during nitrate uptake by phytoplankton growing under continuous cultures. J. Plankton Res., 1995, 17: 436-464.
    52. Munn T, Whyte A. Timmeran P. Emerging environment issues: A global perspective of scope. Ambio, 1999, 28 (6): 464-470
    53. Mutchler T, Dunton K H, Townsend-Small A, Fredriksen S and Rasser M K.Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico. Estuarine, Coastal, and Shelf Science, 2007, 74: 449-457.
    54. Officer C B. Discussion on the behaviour of nonconservative dissolved constituents in estuaries. Estuarine, Coastal, and Shelf Science, 1979, 9: 91-94.
    55. Ostrom N E, Knoke K E, Hedin L O, et al., Temporal trends in nitrogen isotope values of nitrate leaching from an agricultural soil. Chemical Geology, 1998, 146: 219-227
    56. Ostrom N E, Macko S A, Deibel D, Thompson R J. Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim Cosmochim Acta. 1997, 61: 2929-2942.
    57. Parel H W and Fogel M L. Isotopic characterization of atmospheric inputs as sources of enhanced productivity in coastal Atlantic Ocean. Mar. Biol., 1994, 119: 635-645.
    58. Parel H W, Fogel M L and Bates P W. Atmospheric nitrogen deposition in coastal waters: implications for marine productivity and C flux. In Trends in Microbial Ecology (ed. R. Guerrero and C. Pedros-Alio), 1993, pp. 459-464. Spanish Society for Microbiology.
    59. Parsons T R, Maitas Y., Lalli C M. A manual of chemical and biological methods for seawater analysis. Pergamon Press, 1984, 173 pp.
    60. Pennock J R, Velinsky D J, Ludlam J M, Sharp J H and Fogel M L. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: implications for 15N dynamics under bloom conditions. Limnol. Oceanogr., 1996, 41: 451-459.
    61. Peterson B J, Fry B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 1987, 18: 293-320
    62. Pirjo Kuuppo, Timo Tamminen, Maren Voss, Ulrike Schulte. Nitrogenous discharges to the eastern Gulf of Finland, the Baltic Sea: Elemental flows, stable isotope signatures, and their estuarine modification. Journal of Marine Systems, 2006, 63: 191-208.
    63. Qi D.M., Shen H.T. & Zhu J.R. Flushing time of the Yangtze Estuary by discharge: a model study. Journal of Hydrodynamics Series B., 2003, 3: 63-71.
    64. Reinhardt M, Muller B., Gacher R. & Wehrli B. Nitrogen removal in a small constructed wetland: an isotope mass balance approach. Environmental Science & Technology, 2006, 40: 3313-3319.
    65. Russell K A., Galloway J N., Macko S A., Moody J L. and Scudlark J R. Source of nitrogen in wet deposition in the Chesapeake Bay region. Atm. Environ., 1998, 32: 2453-2465.
    66. Shearer G, Kohl D H. N2-fixation in field settings: Estimations based on natural 15N abundance. Aust. J. Plant Physiol., 1986 (13): 699-757
    67. Shi J X et al. Measurements of bacteria and ATP in the Changjiang Estuary and the adjacent East China Sea. In: Biogeochemical study of the Changjiang estuary (Yu Guohui, J M Martin, Zhou Jiayi eds.). Beijing: China Ocean Press, 1990. 131-135.
    68. Sigman D M, Altabct M A., Michener R et al. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry, 1997, 57: 227-242.
    69. Sigman D M, Cacciotti K L, Andreani M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 2001, 73: 4145-4153
    70. Silva S R, Kendall C, Wilkisn D H, et al. A new method for collection of nitrate and oxygen isotope ratios. Journal of Hydrology, 2000, 228: 22-36
    71. Strickland J D H and Parsons T R. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin, 1972, 167: 311.
    72. Sugimoto R, Kasai A., Miyajima T. and Fujita K. Nitrogen isotopic discrimination by water column nitrification in a shallow coastal environment. Journal of Oceanography, 2008, 64: 39-48.
    73. Sutka R L, Ostrom N E., Ostrom P H. and Phanikumar M S. Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North PacificSubtropical Gyre to the Eastern Tropical North Pacific. Geochim. Cosmochim. Acta, 2004, 68: 517-527.
    74. Tian R.C., Hu F X. and Saliot A. Biogeochemical processes controlling nutrients at the turbidity maximum and the plume water fronts in the Changjiang Estuary. Biogeochemistry, 1993, 19: 83-102.
    75. Velinsky D J, Pennock J R, Sharp J H, Cifuentes L A & Fogel M L. Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry, 1989, 26: 351-361.
    76. VoβM, Struck U. Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder River (Baltic Sea). Marine Chemistry, 1997, 59 (1-2): 35-49
    77. Wada E, Hattori A. Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochim Cosmochim Acta, 1976, 40: 249-251
    78. Wada E. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environment. Isotope Marine Chemistry, 1980: 375-398
    79. Waldron S., Tatner P., Jack I. and Arnott C. The impact of sewage discharge in a marine embayment: a stable isotope reconnaissance. Estuarine, Coastal and Shelf Science, 2001, 52: 111-115.
    80. Wang D Q, Chen Z L., Wang J, Xu S Y., Yang H X., Chen H, Yang L Y. and Hu L Z. Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary. Estuarine, Coastal and Shelf Science, 2007, 73: 43-53.
    81. Waser N A D, Harrison P J, Nielsen B, Calvert S E. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium and urea by a marine diatom. Limnol Oceanogr, 1998, 43 (2): 215-224
    82. Waser N A D, Yin K D , Yu Z M et al. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium and urea by marine diatoms and coccolithophores under various conditions of N availability. Mar Ecol Prog Ser., 1998, 169: 29-41
    83. Waser N A, Yu Z M et al. Nitrogen isotopic fractionation during a simulated diatom spring bloom: importance of N-starvation in controlling fractionation. Marine Ecology Progress Series, 1999 (179): 291-296
    84. Wu J P, Calvert S E, Wong C S. Nitrogen isotope variations in the subarctic northeast Pacific: relationships to nitrate utilization and trophic structure. Deep-Sea ResearchⅠ, 1997, 44(2): 287-314.
    85. Wu Y, Dittmar T, Ludwichowski K-U et al. Tracing suspended organic nitrogen from the Yangtze River catchments into the East China Sea. Marine Chemistry, 2007, 107 (3): 367-377
    86. Wu Y., Zhang J., Li D.J., Wei H. & Lu R.X. Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry, 2003, 65: 31-49.
    87. Yan W J., Zhang S., Sun P. & Seitzinger, S.P. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: a temporal analysis for 1968-1997. Global Biogeochemical Cycles, 2003, 17: 1091-1099.
    88. Zhang J, Zhang Z F, Liu S M, et al. Human impacts on the large world rivers: Would the Changjiang1 (Yangtze River) be an illustration? Global Biogeochemical Cycles, 1999, 13 (4): 1099-1105
    89. Zhang J. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 1996, 16: 1023-1045.
    90. Zhang J., Wu Y., Jennerjahn T C., Ittekkot V. & He Q. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry, 2007, 106: 111-126.
    91. Zhou J L, Wu Y, Zhang J, Kang Q S & Liu Z T. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere, 2006, 65: 310-317.
    92.蔡德陵,李红燕,周卫建,刘卫国,曹蕴宁.无定河流域碳氮稳定同位素研究.地球化学, 2004, 33 (6): 619-626
    93.蔡德陵,李红燕.稳定碳、氮同位素在河流系统研究中的应用.海洋科学进展, 2004, 22 (2): 225-232
    94.柴超.长江口水域富营养化现状与特征研究.中国科学院研究生院博士论文, 2006
    95.陈法锦,李学辉,贾国东.氮氧同位素在河流硝酸盐研究中的应用.地球科学进展, 2007, 22 (12): 1251-1257
    96.陈吉余,杨启伦,胡辉等.上海市海岸带和海涂资源综合调查报告.上海:上海科学技术出版社, 1988. 112-134
    97.陈能汪,洪华生,张络平.九龙江流域大气氮湿沉降研究.环境科学, 2008, 29 (1): 38-46
    98.陈惟才,陈伟琪,张络平,洪华生.九龙江流域地表水中硝酸盐来源辨析.环境科学, 2008, 29 (6): 1484-1487
    99.崔茂常.长江冲淡水转向研究.海洋与湖沼. 1984, 15 (3): 222-229
    100.杜丽娟,施书莲.水体系中硝酸态氮的富集和δ15N值的测定.土壤. 1994, 26 (4): 332-334
    101.高建华,汪亚平,潘少明,张瑞,李军,白风龙.长江口外海域沉积物中有机物的来源及分布.地理学报, 2007, 62 (9): 981-991
    102.葛晨东,王颖, T. F. Pedersen, O. Slaymaker.海南岛万泉河口沉积物有机碳、氮同位素的特征及其环境意义.第四纪研究, 2007, 27 (5): 845-852
    103.顾宏堪,马锡年,沈万仁,任广法,陈志,刁焕祥,李国基,张莲影.长江口附近氮的地球化学Ⅱ.长江口附近海水中的亚硝酸盐及氨.山东海洋学院学报, 1982, 12 (2): 31-38
    104.顾宏堪,熊孝先,刘明星,李延.长江口附近氮的地球化学Ⅰ.长江口附近海水中的硝酸盐.山东海洋学院学报, 1981, 11 (4): 37-46
    105.顾玉荷.长江冲淡水转向原因的探讨.海洋与湖沼, 1985, 16 (5): 354-363
    106.郭玉法,鲍庆煜,杜勇. 2006年8-9月长江南京段枯水位分析.江苏水利, 2007, (10): 21-23
    107.韩秀荣,王修林,孙霞,石晓勇,祝陈坚,张传松,陆茸.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报, 2003, 7 (14): 1094-1011
    108.黄清辉,沈焕庭,刘新成等, 2001.人类活动对长江河口硝酸盐输入通量的影响.长江流域资源与环境, 10 (6): 564-569
    109.乐肯堂.长江冲淡水路径的初步研究I:模式.海洋与湖沼, 1984, 15 (2): 157-167
    110.乐肯堂.关于长江冲淡水路径的若干问题.海洋科学集刊, 1986 (27): 221-22
    111.李思亮,刘丛强,肖化云,陶发祥,郎超,韩贵琳.δ15N在贵阳地下水氮污染来源和转化过程中的辨识应用.地球化学, 2005, 34 (3): 257-262
    112.林金祥.王宗山.关于长江冲淡水异常变化的分析.黄渤海海洋, 1985, 3 (4): 11-19
    113.林以安,唐仁有,李炎,董恒霖,关许为,陈英祖.长江口生源要素的生物地球化学特征与絮凝沉降的关系.海洋学报, 1995, 17 (5): 65-72
    114.刘成,何耘,李行伟,韦鹤平.上海市污水排放口污染物运动轨迹模拟.水利学报, 2003, (4): 114-118
    115.刘敏,侯立军,许世远,欧冬妮,蒋海燕,余婕, Gardner Wayne S.长江口潮滩有机质来源的C、N稳定同位素示踪.地理学报, 2004, 59 (6): 918-926
    116.罗绪强,王世杰,刘秀明.稳定氮同位素在环境污染示踪中的应用进展.矿物岩石地球化学通报. 2007, 26 (3): 295-299
    117.毛汉礼,甘子钩,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼, 1963, 5 (3): 183-206
    118.毛绪美,罗泽娇,李永勇等,地下水硝酸盐氮同位素分析最新方法-细菌反硝化法.地球学报, 2005, 26: 44-47.
    119.茅志昌,沈焕庭,陈景山,浏河排污对罗泾河段南岸浅水区水质的影响.海洋湖沼通报, 2003, (2): 37-40.
    120.孟伟,秦延文,郑炳辉,富国,李子成,雷坤,张雷.长江口水体中氮、磷含量及其化学耗氧量的分析.环境科学, 2004, 25 (6): 65-68
    121.潘定安,沈焕庭,茅志昌.长江口浑浊带的形成机理与特点.海洋学报, 1999, 21 (4): 62-69
    122.蒲新明,吴玉霖,张永山.长江口浮游植物营养盐限制因子的研究.海洋学报, 2000, 22 (4): 58-66
    123.浦泳修,许小云.从径流、水位和海区盐度的分布看长江水的扩展.海洋通报, 1983, 2 (3): 1-7
    124.浦泳修.夏季长江冲淡水的扩展机制初析.东海海洋, 1983 (1): 43-51
    125.邱训平,穆宏强,支俊峰,长江河口水环境现状及趋势分析.人民长江. 2001, 32 (7): 26-28.
    126.沈焕庭,潘定安.长江河口最大浑浊带.北京:科学出版社, 2001. p39
    127.沈焕庭等.长江河口物质通量.海洋出版社, 2001. p2
    128.沈志良,刘群,张淑美,苗辉,张平.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼, 2001, 32 (5): 465-473
    129.沈志良,陆家平,刘兴俊,刁焕祥.长江口区营养盐的分布特征及三峡工程对其影响.海洋科学集刊, 1992, 33: 102-129
    130.沈志良,刘群,张淑美.长江无机氮的分布变化和迁移.海洋与湖沼, 2003, 34 (4): 355-363
    131.沈志良,刘群,张淑美.长江总氮和有机氮的分布变化和迁移.海洋与湖沼,2003, 34 (6):577-584
    132.沈志良.长江氮的输送通量.水科学进展, 2004, 15 (6 ): 752-759
    133.沈志良.长江干流营养盐通量的初步研究.海洋与湖沼, 1997, 28 (5): 522-528
    134.石晓勇,王修林,韩秀荣等.长江口邻近海域营养盐分布特征及其控制过程的初步研究.应用生态学报, 2003, 14 (7): 1086-1092
    135.宋飞.长江口海域富营养化的氮同位素特征研究.中国科学院研究生院硕士学位论文, 2006
    136.苏波,韩兴国,黄建辉. 15N自然丰度法在生态系统氮素循环研究中的应用.生态学报, 1999, 19 (3): 408-416
    137.孙志高,刘景双,于君宝,王金达. 15N示踪技术在湿地氮素生物地球化学过程研究中的应用进展.地理科学, 2005, 25 (6): 762-768
    138.屠建波,王保栋.长江口及其临近海域富营养化状况评价.海洋科学进展, 2006, 24 (4): 532-538
    139.屠建波,王保栋.长江口营养元素生物地球化学研究.海洋环境科学, 2004, 23 (4): 10-13
    140.王东启,陈振楼,许世远,达良俊,毕春娟.长江口潮滩沉积物反硝化作用及其时空变化特征.中国科学, B辑:化学, 2007, 37 (6): 604-611
    141.王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础.地球学报, 1997, 18 (2): 220-223
    142.吴莹,张经,张再峰,任景玲,曹建平.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼, 2002, 33 (5): 547-552
    143.吴玉霖,周成旭,张永山等.烟台四十里湾海域裸甲藻赤潮发展过程极其成因.海洋与湖沼, 2001, 32 (2): 159-167
    144.肖化云,刘丛强.水样氮同位素分析预处理方法的研究现状与进展.岩矿测试, 2001, 20 (2): 125-130.
    145.肖化云,刘丛强.水样硝酸盐氮同位素分析预处理方法探讨.岩矿测试, 2002, 21 (2): 105-108.
    146.邢萌,刘卫国.西安浐河、灞河硝酸盐氮同位素特征及污染源示踪探讨.地球学报, 2008, 29 (6): 783-789
    147.徐俊杰,何青,刘红,陈吉余. 2006年长江特枯径流及其原因初探.长江流域资源与环境, 2008, 17 (5): 716-722
    148.许世远.长江三角洲地区风暴沉积研究.北京:科学出版社, 1997. pp150
    149.杨琰,蔡鹤生,刘存富等,地下水中NO3-的15N和18O同位素测试新技术-密封石英管燃烧法.水文地质工程地质, 2005, (2): 20-24.
    150.叶仙森,张勇,项有堂.长江口海域营养盐的分布特征及其成因.海洋通报, 2000, 19 (1): 89-92
    151.余婕,刘敏,许世远,侯立军,欧冬妮,程书波.长江口潮滩有机质稳定碳同位素时空分布与来源分析.地理研究, 2008, 27 (4): 847-854
    152.俞志明, Waser N A D, Harrison P J.不同氮源对海洋微藻氮同位素分馏作用的影响.海洋与湖沼, 2004, 35 (6): 524-529
    153.袁耀初,苏纪兰,赵金三.东中国海陆架环流的单层模式.海洋学报. 1982, 4 (1): 1-1l
    154.张国森,陈洪涛,张经,刘素美.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报, 2003, 14 (7): 1107-1111
    155.赵卫红,王江涛.大气湿沉降对营养盐向长江口输入及水域富营养化的影响.海洋环境科学, 2007, 26 (3): 208-216
    156.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社, 2000. 248-259
    157.周爱国,陈银琢,蔡鹤生等.水环境硝酸盐氮污染研究新方法-15N和18O相关法.地球科学-中国地质大学学报, 2003, 28 (2): 129-134.
    158.周淑清,沈志良,李峥,姚云.长江口最大浑浊带及邻近水域营养盐的分布特征.海洋科学, 2007, 31 (6): 34-42
    159.诸大宇,郑炳辉,雷坤,王丽婧,秦延文,邓义祥,陈玉成.基于营养盐分布特征的长江口附近海域分区研究.环境科学学报, 2008, 28 (6): 1233-1240
    158.中国气象局,中国气象年鉴, 2007.气象出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700