用户名: 密码: 验证码:
铝、锌、镁合金电化学性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝、锌、镁及其合金是阴极保护系统中常用的电极材料。然而,铝合金牺牲阳极的溶解不均匀,锌参比电极在海水中的环境影响,以及镁合金牺牲阳极在青藏高原低温冻土层中的电化学性能的研究报道较少。因此,研究铝合金牺牲阳极的溶解不均匀性、锌参比电极在海水中的环境影响和镁合金牺牲阳极在冻土层中的电化学性能具有重要的现实意义。
     本文采用电化学测试技术,研究了合金元素Ga对Al-Zn-In系合金牺牲阳极的作用,考察了海水中的各种因素对锌参比电极电位稳定性的影响,并探讨了冻土层中镁合金系列牺牲阳极的电化学性能,借助扫描电镜、X-射线衍射等现代物理测试技术进行了表征,深入研究了合金元素作用机理和电极溶解机理。
     结果表明:Ga均匀地固溶于铝合金中,而In在阳极表面产生局部富集、形成富In第二相。随着Ga含量的增加,Al-Zn-In阳极工作电位负移,电流效率下降,孔蚀愈严重。在模拟海水中,Al-4%Zn-0.022%In-0.015%Ga牺牲阳极工作电位为-1039 mV,电流效率为96.3%,溶解均匀,具有良好的阳极极化性能和耐孔蚀性能,是一种理想的新型高效牺牲阳极;Al-In-Zn-Ga合金由于In3+的活化作用,破坏了表面钝化膜,使电极电位显著负移,从而激活了Ga3+的活性,使得Ga3+、In3+、Zn2+等产生共同沉积,维持了较高的阳极活性溶解,导致了合金的“溶解—再沉积”的过程。
     高纯锌、Zn-Al-Cd合金在海水、淡海水和淡水中电位稳定,适宜充当长效参比电极,其中Zn-Al-Cd合金的电化学性能较佳。在Cl-浓度小于0.1496 mol/L的溶液中,随着Cl-浓度的增大,锌电极电位呈线性负移的趋势;但当Cl-浓度大于0.1496 mol/L时,锌的电极电位基本不受Cl-浓度的影响。海水pH值对高纯锌、Zn-Al-Cd合金电位影响不明显。海水流速增加,锌电极电位正移。10μA/cm2的阳极电流明显改善高纯锌的电极电位稳定性;高纯锌、Zn-Al-Cd合金表面膜主要由ZnO、Zn2(OH)2CO3等组成,Cl-、金属表面微观组织的不均匀性等因素的作用产生小范围的电位波动。
     青藏高原冻土层中,高纯镁的腐蚀电位最负,MGAZ31B镁合金阳极的腐蚀电位最正;合金的溶解活性依次为MGAZ63B镁合金、MGAZ31B镁合金、MGMlC镁合金和高纯镁;MGAZ63B镁合金电化学性能较优,工作电位为-1630 mV,电流效率为61.77%,适宜做冻土层中的牺牲阳极。镁合金阳极表面呈现出沟槽或第二相腐蚀,腐蚀表面的主要元素为Mg、O以及镁合金中的基体元素,主要腐蚀产物为Mg(OH)2。
     以边界元为计算方法,应用Matlab为开发工具,计算出的冻土层中镁牺牲阳极-碳钢热管阴极保护系统中碳钢表面的电位分布与实测值的误差最大不超过10%,说明电位的数值计算是可靠有效的,为今后稳定冻土层路基和铺设管道阴极保护设计提供了参考。
Aluminum, zinc, magnesium and their alloys are commonly used in CP engineers. But, research work such as local dissolution of aluminum alloy sacrificial anodes, effects of external mediums on zinc reference electrodes in seawater, electrochemical performances of magnesium alloy sacrificial anodes in Qinghai-Tibetan plateau frozen soil have not been reported. Therefore, study on the above-mentioned problems is of importance. Centered on the above problems, electrochemical methods were used to study the followings: effects of Ga on Al-Zn-In performances, effects of medium on zinc reference electrodes in seawater, magnesium alloy performance in frozen soil. Modern physical methods including SCE and XRD were used to characterize some relevant problems in order to discuss the activation mechanism and dissolution mechanism.
     Results show:Ga dissolves in the alloy uniformly but In segregates in the boundary, which forms a In-rich secondary phase. With the increase of Ga contents, the work potential of Al-Zn-In anodes shifts to a more negative value, the current coefficient drops and more serious pit corrosion happens. Al-4%Zn-0.02%In-0.015%Ga alloy is a kind of new ideal high-effective anode in man-mad seawater because of its potential (-1039 mV), current efficiency (96.3%), uniform dissolution, excellent anodic polarization performance and resistance to pit corrosion. In3+destroys the passivation membrane and shifts the potential to a more negative value and activates Ga3+. This promotes ions including Ga3+, In3+and Zn2+to precipitate together and maintains the dissolution of Al-Zn-In alloy. The process is called "dissolution-reprecipitation".
     Both high purity zinc and Zn-Al-Cd alloy are liable to establish a stable potential in seawater, diluted seawater and tap water. The two electrodes could be used as reference electrodes in cathodic protection engineering. The performance of Zn-Al-Cd alloy reference electrodes is better than that of high purity zinc. When Cl- concentration is below 0.1496 mol/L in tap water and diluted seawater, zinc electrode potentials shows a linear relationship with the increase of Cl" concentration. When Cl- concentration is higher, zinc electrode potentials have no relationships with Cl- concentration. As seawater flow velocity goes up, zinc potentials shift to more positive values. Seawater pH has no obvious effect on zinc potentials.10μA/cm2 anodic current improves the potential stability of high purity zinc remarkably.
     In simulated frozen soil, open potential of high purity magnesium is the most negative one and that of MGAZ31B is the most positive one. The sequence of dissolution activation and reaction activation from high to low is MGAZ63B, MGAZ31B, MGMIC and pure magnesium. Electrochemical performance of MGAZ63B with higher current efficiency is the best, MGAZ63B is suitable to act as a sacrificial anode in Qinghai-Tibetan plateau frozen soil. Grooving corrosion or secondary phase corrosion presents on the surface. The main elements appearing on the surface include Mg, O and bulk elements, which mainly form Mg(OH)2.
     Potential distributions on the steel protected by magnesium were calculated by BEM and Matlab. The errors between calculated potential, and measured ones is less than 10 percents. This illustrate that numerical calculation is reliable and effective. Numerical calculation could serve for the further CP in frozen soil.
引文
[1]梁成浩主编.现代腐蚀科学与技术.上海:华东理工大学出版社,2007.
    [2]化学工业部化工机械研究院.腐蚀与防护手册-耐蚀金属材料及防蚀技术.北京:化学工业出版社,1993.
    [3]火时中.电化学保护.北京:化学工业出版社,1988.
    [4]林玉珍,杨德钧编著.腐蚀和腐蚀控制原理.北京:中国石化出版社,2007.
    [5]中国腐蚀与防护学会,金属腐蚀防护手册编写组.金属腐蚀与防护手册.上海:上海科学技术出版社,1989.
    [6]化学工业部化工机械研究院主编.腐蚀与防护手册-耐蚀金属材料及防蚀技术.北京:化学工业出版社,1990.
    [7]胡士信主编.阴极保护工作手册.北京:化学工业版社,1999.
    [8]王光雍.自然环境的腐蚀与防护:大气、海水、土壤.北京:化学工业出版社,1997.
    [9]Ulig H H, Revive R W著,翁永基译.腐蚀与腐蚀控制.北京:石油工业出版社,1994.
    [10]Rohman. USP:27558082,1952.
    [11]Reading J T, Newport J J. Al alloy. Materials Protection,1966,5:15.
    [12]Werner B. The influence of electrolyte additives on the anodic dissolution of Al in alkaline solutions. Journal Power Sources,1980,(5):246-253.
    [13]Despic A R. Deposition and Dissolution of Metals and Alloys. Proc of the 29th IUPAC Congress Cologne, Germany,1983.
    [14]Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes. Corrossion,1984,40:366.-
    [15]Shun Hejian, Huo Shizhong. Role of In in dissolution of aluminum sacrifical anodes. Clin Journal Oceanol LImnol,1990,8(4):354-362.
    [16]Saffar A A, Ashworth V, Grant W A. The role of mercury in the dissolution of aluminium sacrificial anodes:A study using ion implantation. Corrosion Science,1978,18(8):687-700.
    [17]Despic A R, Drazic D M, Purenovic M M. Electrochemical properties of aluminium alloys containing indium, gallium and thallium. Applied Electrochemistry.1976,6(6):527-542.
    [18]吴培强.铝基牺牲阳极的研究进展.表面技术,1987,(06):1-6.
    [19]Mance A, Cervoic D, Mihajlovic A. The effect of gallium and phosphorus on the corrosion behaviour of aluminium in sodium chloride solution. Applied Electrochemistry.1985, 15(3):415-420.
    [20]吴益华.合金元素在铝基牺牲阳极活化过程中的作用.中国腐蚀与防护学报.1989,9(2):113-120.
    [21]秦学.铝阳极电化学行为及活化机理的研究(硕士学位论文).天津:天津大学,1998.
    [22]李振亚,秦学,余远彬,等.含镓、锡的铝合金在碱性溶液中的阳极行为.物理化学学报.1999,15(4):381-384.
    [23]Tuck D S, Hunter J A, Samans G M. The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. Journal of Electrochemical Society.1987,123(12): 2970-2981.
    [24]Shelk M A, Ganesan M, Anbukul M, et al. Development of new alloys of commercial Al(s) for alkaline batteries. Journal of Power Soures.1987,27:235-244.
    [25]Drazic D M, Zecevic S K, Atansoski R T, et al. The effect of anions on the electrochemical behavior of Al. Electrochimiical Acta.1983,28:751.
    [26]Chin L F, Chao C Y, Machdonald D D. A point defect model for anoidc passive films. Journal of Electrochemical Society.1981,128:1194.
    [27]Wilhelmsen W, Arnesen T, Hasvold, et al. The electrochemical behaviours of Al-In alloys in alkaline electrolytes. Electrochemical Acta.1991,36(1):79-85.
    [28]Macdonald D D, Silvia R, Macdonald M U. Evaluation of alloy anodes for Al-air batteries. Journal of Electrochemiical Society.1998,135(10):2397-2409.
    [29]Gnana S R L, Ganesan M, Anbu K M, et al. Influence of inhibitors on corrosion and anodic behaviour of different grade of Al in alkaline media. Journal of Power Sources,1994,50: 321-329.
    [30]Salinas D R, Garciaa S G, Bessone J B. Influence of alloying elements and microstructure on alumnimum sacrificial anode performance:case of Al-Zn. Applied Electrochemistry.1999, 29:1063-1071.
    [31]Zein E L, Abedin S, Endres F. Electrochemical behaviours of Al, Al-In and Al-Ga-In alloys in chloride solutions. Applied Electrochemistry.2004,34:1071-1080.
    [32]Flamini D O, Saidman S B, Bessone J B. Aluminium activation produced by Gallium. Corrosion Science,2006,48(6):1413-1425.
    [33]Shayeb H A, Wahab F M, Abedin S. Effect of gallium ions on the electrochemical behaviours of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions. Corrosion Science,2001, 43(4):643-654.
    [34]振亚,易玲,刘稚蕙.含稼、锡的铝合金在碱性溶液中的活化机理.电化学,2001,7(3):316-310.
    [35]贝克曼W v等著,胡士信等译.阴极保护工程手册.北京:化学工业出版社,1999.
    [36]胡会利,李宁.电化学测量.北京:国防工业出版社,2007.
    [37]Munro J I, Henderson C E, Segall S. Cathodic Protection on Ice Shields on the Northumberland Strait Confederation Bridge. Materials Performance,1998,37(10):27-32.
    [38]刘景海,战广深,彭乔等.电厂海水循环冷却水管道阴极保护工程设计.中国电力.2000,33(12):21-24.
    [39]彭乔,殷正安,郭建伟.高纯锌参比电极电化学行为研究.全面腐蚀控制.1995,9(3):22-25.
    [40]王增娣,王兴浩.土壤中高纯锌参比电极电化学行为研究.全面腐蚀控制.2008,22(3):18-21.
    [41]李柏林.锌参比电极的研究.舰船科学技术.1984,(3):62-73.
    [42]卢阿平,郭津年,徐斌.海水和海泥中长效参比电极的研究.海洋科学.1990,(4):14-22.
    [43]付超,魏炜,杜元龙等.海洋平台节点阴极保护状态智能探测仪的研制.材料保护.1992,25(6):19-21.
    [44]郑忠立,许世力,石小燕.用于海洋钢筋混凝土结构阴极保护的永久性参比电极.材料保护.1994,27(2):16-19.
    [45]王增娣,闫永贵,马力等.高纯锌参比电极电位稳定性研究.腐蚀与防护.2006,27(9):450-453.
    [46]田飞,高志明,宋诗哲.阳极氧化法提高土壤中锌参比电极电位稳定性.腐蚀科学与防护.2006,18(2):155-156.
    [47]Frank J, Ansuini J, Dimond R. Factors Affecting the Accuracy of Reference Electrodes. Materials Performance.1994,33(11):14-17.
    [48]Elood. G. Honey. NACE Corrosion 85, Boston, USA, NACE,1985, (31):1.
    [49]涂湘湘.实用防腐蚀工程施工手册.北京:化学工业出版社,2000.
    [50]宋曰海,郭忠诚,樊爱民等.牺牲阳极材料的研究现状.腐蚀科学与防护技术.2004,16(1):24-28.
    [51]王力臻,吴涛,刘玉林等.合金元素对锌电极电化学行为的影响.电池.2005,35(1):33-34.
    [52]李异,戚本胜,王胜利.锌合金牺牲阳极在淡水中的性能研究.腐蚀与防护.1992,13(4):189-191.
    [53]Ashworth V, Googan C G, Scoutiebury J D. Intergranular dissolution of zinc alloy sacrificial anodes in seawater at elevated temperature. British Corrosion.1979,14(1):46.
    [54]Haughton C J, Ashworth V. The performance of commercial zinc and aluminum anodes in hot sea-bed mud. Materials Performance.1982,21(7):20.
    [55]DevillersL P, Niessen P. The mechanism of inter granular corrosion of dilute zinc-aluminum alloys in hot water. Corrosion Science.1976,16(4):243.
    [56]Roberts C W. An investigation into the causes of intercrystalline corrosion in zinc-aluminium alloys.Metallurgia.1961,9:57-66.
    [57]Ahmed D S, Ashworth V, Scantlebury D et al. Mechanism of intergranular attack in Zn-Al-Cd sacrificial anodes at elevated temperatures. British corrosion.1989,24(2): 149-152.
    [58]龙萍,李庆芬.热海水中Zn-Al-Cd阳极腐蚀机理的探讨.腐蚀科学与防护技术.2007,19(4):235-238.
    [59]岳中海.阴极保护时锌-碳钢电偶对的电位反转.腐蚀与防护.1992,13(6):282-285.
    [60]杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及应用.北京:科学出版社,1991.
    [61]Zhang X G. Corrosion and Electrochemistry of Zinc. New York:Plenum Press,1996.
    [62]王芷芳,杨骁.牺牲阳极在高温下垫化学性能的测定.化工腐蚀与防护.1994,(2):21-24.
    [63]周三杰,张洋,郑鹏华.纯锌在水环境中腐蚀行为.装备环境工程.2008,5(5):9-12.
    [64]Lee T S,Thiele R W, Wolorf J F. Seawater velocity effects on corrosion behavior of materials. Materials Performance.1984,23(11):44.
    [65]朱相荣,戴明安,陈振进,等.高流速海水中金属材料的腐蚀行为.中国腐蚀与防护学报.1992,12(2):173-179.
    [66]王秉刚著.冻土地区路面基层结构与材料.北京:人民交通出版社,2007.
    [67]新建铁路青藏线格尔木至拉萨段高原多年冻土区试验工程修改初步设计-路基工程设计图第一册.兰州:兰州铁道第一勘察设计院,2001.
    [68]程伟.多年冻土对青藏铁路房建工程的影响及对策.四川建筑.2003,23(2):64.
    [69]盛煜,刘永智,张建明等.青藏公路下伏多年冻土的融化分析.冰川冻土.2003,25(1):43-48.
    [70]金会军,王绍令,吕兰芝等.中俄管道(漠河-乌尔其段)多年冻土环境工程地质区划和评价.水文地质工程地质.2009,36(4):102-107.
    [71]王玉妹,刘玲莉,陈芳.阿拉斯加冻土区管道阴极保护.腐蚀与防护.2008,29(12):780-782.
    [72]http://www. esph. com. cn/jczx/wl/jsyd/ckzl/0043. ASP.
    [73]谢鸣.国外加固多年冻土地基的新方法-热管技术的应用.施工技术.1994(6):51-53
    [74]陶汉中,张红.采用热管技术加固冻土铁路路基的热影响分析.能源研究与利用,2003,(3):19-21.
    [75]王才虎,陶秀英,姜芝英.带状镁阳极的开发.腐蚀与防护.1996,17(1):30.
    [76]Nordlien J H, Masuko SON, Nisancioglu K. A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion Science,1997,39(8):1397-1414.
    [77]梁成浩,袁传军,勇艳华.低温青藏高原土壤中镁合金阳极的电化学性能.材料科学与工艺.200816(2):163-166.
    [78]李异,李建三,郝小军.镁合金牺牲阳极研究.四川化工.1997,(4):13-16.
    [79]Akavipat S, Hale E B, Habermann C E, et al. Effects of iron implantation on the aqueous corrosion of magnesium. Materials Science and Engineering,1984,69:311-316.
    [80]毕毕柯夫H H.海船电化学保护.北京:国防工业出版社,1975.
    [81]刘文峰,孙钢,陈永哲,等.Cl-浓度和pH值对AZ31镁合金腐蚀行为的影响.太原科技大学学报.2009,30(3):221-224.
    [82]黄建中,左禹.材料的腐蚀性与腐蚀数据.北京:化学工业出版社,2002.
    [83]Song G L,Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials.1999,1(1):11-33.
    [84]托马晓夫H H著,华保定等译.金属腐蚀与防护的理论.北京:中国工业出版社,1964.
    [85]孙秋霞.材料腐蚀与防护.北京:机械工业出版社,2001.
    [86]Pekguleryuz M O. Some potentials for alloy development. Light Metal,1992,42(12): 679-686.
    [87]Garboggini A, Mcshane H B. Effect of Zn and Si additions on structure and properties of rapidly solidified Mg-Al alloys. Materials Sicence and Technology,1994,10(9):763-769.
    [88]#12
    [89]王保贝,刘根太,张承典,等.带状镁基牺牲阳极及其应用.腐蚀与防护,2002,23(4):159-161.
    [90]高联益,阎东,孟凡,等.可换性镁带阳极对已建地面钢质贮罐底板实施阴极保护的新技术.腐蚀与防护.2001,22(11):500-502.
    [91]胡士信.值得借鉴的国外管道阴极保护技术.材料保护.1993,26(4):23-27.
    [92]Rossi S, Bonora P L, Pasinentti R, et al. Composite sacrificial anodes for offshore structures. Material Performmance.1996,35(2):29-33.
    [93]胡士信.复合式牺牲阳极的研制与应用.油气储运.1998,17(9):42-44.
    [94]陈顺杭,梁成浩,袁传军.数值方法在阴极保护中的应用及发展.全面腐蚀控制.2006,20(5):19-22.
    [95]Doig P, Flewitt P E J. Finite difference numerical analysis of galvanic corrosion semi-infinite linear coplanar electrodes. Electrochemical Society.1979,26(12):2057-2063.
    [96]Strommen R, Rodland A. Computerized techniques applied in design of offshore cathodic Protection system. Materials Performance,1981,20(4):15-20.
    [97]张鸣镝,杜元龙,殷正安等.有限差分法计算海底管道阴极保护时的电位分布.中国腐蚀与防护学报.1994,14(1):77-81.
    [98]Kranc S C, Albert A S. Detailed modeling of corrosion macrocells on steel reinforcing in concrete. Corrosion Science.2001,43(7):1355-1372.
    [99]Helle, Beek H P E, Ligtelijn G H M. Numerical determination of Potential distributions and current densities in multi-electrode systems. Corrosion.1981,37(9):522-530.
    [100]Raymond S M. Mathematical model for a galvanic anode cathodic protection system. Materials Performace.1982,21(8):29-36.
    [101]Chin D T, Sabde G M. Current Distribution and electrochemical, nvironment in a cathodically protected crevice. Corrosion.2000,56(3):229-237.
    [102]Chin D T, Sabde G M. Modeling transport process and current distribution in a cathodically protected crevice. Corrosion.2000,56(8):783-793.
    [103]Kasper R G, April M G. Electrogalvanic finite element analysis of partially protected marine structures. Corrosion.1983,39(5):181-188.
    [104]Fu J W, Chow J S. Cathodic protection designs using an integral equation numerical method. Materials Performance,1952,21(10):9-12.
    [105]Bardal, Einar, Johnsen, et al. Prediction of galvanic corrosion rates and distribution by means of calculation and experimental models. Corrosion.1984,40(12):628-633.
    [106]Aoki S, Kishimoto K, Yoshibe K, et al. Galvanic corrosion.of cast iron-stainless steel couple (Prediction by boundary element method). Journal of the Society of Matersas Science Japan,1986,35:394.
    [107]Cherry, Foo B W, Siauw M. Boundary element method analysis of the potential field associated with a corroding eleetrode. Corrosion.1986,42(11):654-662.
    [108]Wrobel L C, Telles J C F, Mansur W J, et al. Boundary element system for cathodic protection design. London:Pentech Press,1986.
    [109]Telles J C, Mansur W J. Numerical Simulation of Cathodically protected semisubmersible platform Using Procat System. Corrosion,1990,46(6):513-518.
    [110]刘曼,殷正安,战广深.流动场管内阴极保护的电位分布计算.大连理工大学学报.1998,38(5):599-302.
    [111]梁旭魏,吴中元,刘燕华,等.阴极保护系统中电流的优化控制.天津纺织工学院学报.1999,18(1):37-40.
    [112]梁旭魏,吴中元,孟宪级,等.油田区域性阴极保护计算机辅助优化设计研究.天津纺织工学院学报.1998,17(5):90-94.
    [113]孟宪级,吴中元,梁旭巍,等.区域性阴极保护数学模型算法的改进.中国腐蚀与防护学报.1998,18(3):221-224.
    [114]AmayaK, Aoki S. Effective boundary element methods in corrosion analysis. Engineering Analysis with Boundary.2003,27(5):507-519.
    [115]邢少华,李相波,姚萍.铜管道内壁铁牺牲阳极保护电位数值模拟计算.腐蚀与防护.2008,29(10):622-624.
    [116]胡舸,向斌,张胜涛.MATLAB在海底管线阴极保护电场计算中的应用.海洋科学.2007,31(12):34-37.
    [117]胡舸,张胜涛,向斌.数值计算在腐蚀领域阴极保护设计中的应用.计算机与应用化学.2007,24(7):888-890.
    [118]张志勇,刘瑞桢,杨祖樱.掌握和精通Matlab.北京:北京航空航天大学出版社,1997.
    [119]亓公台,郭稚弧,魏伯康.固溶处理对Al-Zn-In-Sn-Mg阳极组织与电化学性能的影响.金属热处理学报.1997,21(4):68-71.
    [120]邓和平.铝基牺牲阳极多元化合金试验.中国海上油气(工程).1990,2(1):44-49.
    [121]Salinas D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance. Journal of Applied Electrochemistry.1999,29: 1063-1071.
    [122]张信义,王元玺,火时中.Al-Zn-Mg-In-Sn-Ca合金牺牲阳极电化学性能研究.腐蚀科学与防护技术.1995,7(1):53-57.
    [123]钱鸣,黄永昌,吴益华.XPS定量法研究Al-Zn-In牺牲阳极表面组成.中国腐蚀与防护学报.1999,10(4):339-345.
    [124]唐仁政,田荣璋.二元合金相图及中间相晶体结构.长沙:中南大学出版社,2009.
    [125]龚金保,徐乃欣,张承典,等.不同温度下镁基牺牲阳极AZ41合金的电化学行为.中国腐蚀与防护学报.1999,17(3):167-172.
    [126]王绍令.试论青藏高原多年冻土类型的划分.干旱地区地理.1997,20(3):56-61.
    [137]GB/T 17848-1999,牺牲阳极电化学性能试验方法.
    [138]#12
    [139]SY/T 0095-2000,埋地镁合金阳极试样实验室评价的试验方法.
    [140]ASTM G97-89, Standard Test Method for Laboratory Evaluation of Magnesium Sacrificial Anode Test Specimens for Underground Applications.
    [141]日本學衍振興會.金屬防蝕技術便覧(新版).東京:日刊工業新聞社,1972.
    [142]SY/T 0019-97,埋地钢制管道牺牲阳极阴极保护设计规范.
    [143]Froates A, Aune TK, Hawke D, et al. Metals Handbook(9th ed). Ohio:ASM,1987.
    [144]Makar G L, Kuger J. Corrosion of naghesium. International Materiails Reviews.1993, 38(3):138-153.
    [145]王强.地下金属管道的腐蚀与阴极保护.西宁:青海人民出版社,1984.
    [146]范燕青,王建朝,赵斌.AZ63B镁牺牲阳极的电化学性能研究.青海师范大学学报(自然科学版).2003,(1):56-59.
    [147]梁成浩主编.海洋工程金属材料腐蚀学.辽宁:大连海事大学出版社,2009,
    [148]杜艳霞,张国忠,李健.阴极保护电位分布的数值计算.中国腐蚀与防护学报.2008,28(1):53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700