用户名: 密码: 验证码:
海洋悬浮粒子的米氏散射特性及布里渊散射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋悬浮粒子的光学散射特性不仅直接影响激光在海水中的传输特性,而且是海洋环境光学监测的重要理论基础。当一束光射入海水中时,经过光与海水的相互作用,会发生弹性散射和非弹性散射。弹性散射光没有发生频移变化,但是散射特性与入射光的波长、海水的属性以及海水中悬浮粒子的大小、密度等有关。在海水中引发光弹性散射的散射元主要是海水水分子和海洋悬浮粒子等。弹性散射主要包括瑞利散射、米氏散射和无选择性散射三类,其中海水中水分子主要引起的是瑞利散射,而海洋悬浮粒子主要引起的是米氏散射。通过研究海洋悬浮粒子的米氏散射特性,可以得到海水中各种悬浮粒子的大小、密度等信息。光与海水产生的另一类散射是非弹性散射,这类散射存在散射光的频率相对于入射光的频率发生移动。非弹性散射又分为两类:拉曼散射与布里渊散射。拉曼散射与物质的分子结构有关,而布里渊散射实际上是由多普勒效应引起的,它和海水中的温度和盐度等密切相关。通过分析海洋悬浮粒子的布里渊散射特性,可以构建海洋悬浮粒子水体的温度和盐度检测模型。
     通常情况下,海水中水分子比光波波长小很多,可以用瑞利散射理论来描述其散射特性;而海洋悬浮粒子主要包括浮游植物和非色素悬浮粒子这两大类,其粒子的密度、大小、分布极其复杂,还没有严格的描述理论。目前,利用瑞利散射理论研究水分子的散射特性已经比较成熟,而针对海洋中浮游植物散射系数的研究,较多的采用基于叶绿素浓度的经验公式来计算其散射系数的大小,具有一定的不准确性,同时通过经验公式难于分析其散射系数特性;针对海洋中复杂的非色素悬浮粒子,也主要依靠经验公式来计算其散射系数,目前还有很多不成熟的地方。同时,描述海水中浮游植物和非色素悬浮粒子等海洋悬浮粒子后向散射率特性的严格理论还不存在,使得其后向散射率的具体数值一直难于计算。
     本文针对上述问题重点利用等效球的米氏散射理论分析研究了海洋悬浮粒子的散射特性,首先提出了利用散射效率因子来计算海洋悬浮粒子散射系数的公式,解决了浮游植物和非色素悬浮粒子等海洋悬浮粒子散射系数计算不准确的问题,同时还可以有效分析其散射系数特性。接着,提出了利用散射相函数来计算浮游植物和非色素悬浮粒子等海洋悬浮粒子后向散射率的公式,可以准确的计算出海洋悬浮粒子后向散射率的大小,而且还可以有效的分析其后向散射率特性。
     目前,利用布里渊散射技术检测海水温度是通过检测海水中布里渊散射信号的频移量来实现的,在这一过程中,通常是假定海水盐度为一定值,这样就存在较大的测量误差,同时还不能够测量海水的盐度信息。本文在分析海洋悬浮粒子布里渊散射特性的基础之上,引入了布里渊散射信号功率这一变量,利用布里渊散射信号的频移量和功率两个参量分别建立了海水温度和盐度检测的理论模型,能够实现对海水温度和盐度的检测。通过对布里渊散射激光雷达检测系统的研究,针对470nm到550nm光谱区域范围内的碘127分子吸收滤波器吸收谱线进行了仿真,并在此范围内寻找合适的吸收谱线,完成了整个探测系统鉴频器的设计,分析了满足探测需要的激光单稳频指标,在此基础之上,选择了合适的探测激光器。
     文章结合机载激光雷达技术,对该研究应用于海洋悬浮粒子的监测进行了仿真分析。针对海洋赤潮的监测应用,文章以探测海洋赤潮密度信息为基础,以检测海洋赤潮水体温度、盐度两个参量为辅助,不仅从本质上解决了悬浮泥沙和水分子对回波信号的影响,而且利用多个参数更加准确、直接的反映出赤潮消长的有关信息,比单参数预报方法有更高的预报精度,为实际海洋赤潮的监测和预报提供理论支持和技术指导。针对入海口悬浮泥沙颗粒的检测应用,文章利用蓝绿激光能够穿透浑浊的海水,有效的检测海洋悬浮泥沙颗粒的密度信息,为实际的入海口悬浮泥沙颗粒浓度检测提供了指导。通过对海洋悬浮粒子的米氏散射特性和布里渊散射特性研究,为实际海洋环境监测的实现提供了必要的理论支持,在海洋赤潮、入海口泥沙等海洋环境监测巡航、预报、应急与跟踪监视等方面具有广阔的环境、社会和经济效益前景。
The optical scattering characteristics of oceanic suspended particles can directly affect the transmitting property of laser in seawater, and they are also significant theory basement of oceanic environmental optics detecting. When a beam of light is emitted into seawater, elastic scattering and non-elastic scattering will occur due to the combined action of light and water. The frequency of elastic scattering light has no shift. While the scattering characteristics are depended on incident wavelength, attribute of seawater, size and density of suspended particles and so on. The main scattering elements which provoke elastic scattering in seawater are water molecules and suspended particles. Elastic scattering usually contains Rayleigh scattering, Mie scattering and non-selective scattering. Water molecules mainly provoke Rayleigh scattering, while suspended particles mainly provoke Mie scattering. People can get information about the dimension and density of suspended particles by doing research on Mie scattering characteristics of suspended particles. Another scattering activated by light and water is non-elastic scattering. The frequency of such scattering light has a shift. Non-elastic scattering is divided into two kinds: Raman scattering and Brillouin scattering. Raman scattering is related to molecule structure of substance, while Brillouin scattering is introduced duo to Doppler Effect. And Brillouin scattering is closely related to the temperature and salinity of seawater. After analyzing the Brillouin scattering characteristics, the temperature and salinity detecting model of oceanic suspended particles can be established.
     In ordinary occasion, water molecule in seawater is smaller than wavelength of light, and its scattering characteristics can be described by Reyleigh scattering theory. Suspended particles mainly contain phytoplankton and non-algal particles. The density, dimension and distribution of these particles are quite complex, and there are no strict theory to describe them. Nowadays, the technology of studying scattering characteristics of water molecules with Rayleigh theory is more and more mature. About the research of scattering coefficient of marine phytoplankton, people usually use empirical equation of chlorophyll density to calculate it. This method has a rather large error. It is difficult to analyze the characteristics of scattering coefficient by empirical equation either. The scattering coefficient of complex non-algal particles is also depended on empirical equation. They all have immature aspects. Meanwhile, the strict theory to describe the characteristics of back scattering power is not existed yet. This leads to the difficulty to calculate the concrete value of scattering power.
     Focusing on the problems above, making use of equivalent sphere Mie scattering theory, this paper analyzes the scattering characteristics of oceanic suspended particles. At first, it promotes a formula to calculate scattering coefficient of suspended particles using scattering efficiency factor. This solves the inaccuracy problems to calculate the scattering efficiency of phytoplankton and non-algal particles, and it can analyze the characteristics of scattering coefficient effectively. Then, the formulas of back scattering efficiency of phytoplankton and non-algal particles are deduced using scattering phase function. These can accurately calculate the back scattering efficiency of suspended particles, and analyze the characteristics of back scattering coefficient effectively.
     At present, the realization of detecting temperature of seawater using Brillouin scattering theory relies on the detecting of frequency drift of Brillouin scattering signal. During the process, the salinity of seawater is usually considered as a constant. This leads to a large measurement error, and at the same time, the salinity of seawater can’t be detected. This paper bases on the research of Brillouin scattering characteristics of oceanic suspended particles, introduces a variable of Brillouin scattering energy, separately establishes detecting model of temperature and salinity of seawater using the frequency drift and energy parameters of Brillouin scattering signal, and finally realizes simultaneous measurement of temperature and salinity of seawater. The paper designs Brillouin scattering detecting system of lidar, simulates the absorption spectrum of I2127 in the range of wavelength between 470nm and 550nm, finds out appropriate absorption line, and completes the final design of frequency discriminator system. It analyses the proper monochromatic and stable frequency indexes that satisfy the detecting system’s demand, and makes a proper choice of detecting laser.
     Based on airborne lidar technology, this paper simulates the detecting of oceanic suspended particles. Targeting the application of marine red tide, taking the detecting of density of red tide as foundation, and the detecting of temperature and salinity as accessory, the paper not only essentially solves the effect of suspend sand and water molecule to echo signal, but also more accurately and directly reflects correlated information of red tide with multi-parameter, which has higher forecast precision than one-parameter forecast method. It supplies necessary theory foundation and technical support for real detecting and predicting of marine red tide. Targeting the detecting application of suspended particles in entrance of the ocean, making use of the information that blue-green laser can penetrate turbid seawater to detect density of suspended particles; the paper provides a foundation to real suspended particles density detecting. According to the detecting of Mie scattering and Brillouin scattering characteristics of oceanic suspended particles, this paper supplies necessary theory foundation for realization of practice system, and holds wide environment, society and economy benefit foreground in oceanic red tide detecting, suspended particles detecting, cruise, forecast, emergency and track.
引文
[1]G. Daoming, Z. Xiuwen. Red tide disaster in coastal waters of China and its prevention suggestions[J]. Marine Environmental Science, 2003, 22(2):60~63
    [2]Donald M.Anderson. The Growing Problem of Harmful Algae[J].Oceanus Magazine, 2004, 43(1):1~5
    [3]Jing Xin, Preservation of the marine environment in China[J].China National Environment Monitoring Center, 2003, 120~127
    [4]陈文革,黄铁侠,卢益民.机载海洋激光雷达发展综述[J].激光技术,1998, 22(3):147~152
    [5]M. Yi, Z. Jie. A Preliminary Research on Dominant Species Identification of Red Tide Organism by Airborne Hyperspectral Technique[J].Ocean Remote Sensing and Application, 2003, SPIE 4892: 278~286
    [6]贺岩,吴东.机载海洋激光雷达测量叶绿素a浓度、悬移质浓度和浅海深度的性能估计[J].中国海洋大学学报,2004,34(4):649~654
    [7]陈文革,黄铁侠,柳健.激光雷达测量海水光学水质参数[J].华中理工大学学报, 1997, 25(5): 71~73
    [8]姚春华,陈卫标.机载激光测深系统中的精确海表测量[J].红外与激光工程,2003, 32(4):351~376
    [9]Markager W, Vincent W F. Spectral Light Attenuation and Absorption of UV and Blue Light in Natural Waters[J]. Limnol & Oceanogr, 2000, 45(3):642~650
    [10]Wu Dong, Liu Zhishen, Zhang Kailin et al. Liadr Measurement of Ocean Suspended Matter[J]. Acta Optica Sinca, 2003, 23(2):245~248
    [11]F. E. Hoge, R. N. Swift, E. B. Frederick et al. Water depth measurement using an airborne pulsed neon laser system[J]. Appl. Opt., 1980, 19(6):871~883
    [12]Fischer J, Doerffer R. An Inverse Technique for Remote Detection of Suspended Matter, Phytoplankton and Yellow Substance from CZCS Measure[J]. Adv. Space. Res., 1987, 7(2): 21~26
    [13]Lillycop W J, Parson L E, Estep L L. Field testing of the U S Army Cops of engineers airborne lidar Hrdrography survey system[C]. Proceedings U S Hydrographic Conference’94. Norfolk USA, 1994, 144~151
    [14]Sathyendranath S, Prieur L, Morel A. A Three Component Model of Ocean Colour and its Application to Remote Sensing of Phytoplankton Pigments in Coastal Waters[J]. International Journal Remote Sensing. 1989, 10(9):1373~1394
    [15]Setter C, Willis R J. LADS form development to hydrographic operations[C]. Proceedings U S Hydrographic Conference’94. Norfolk USA, 1994, 134~143
    [16]Koppari K, Karlsson U, Steinvall O. Airborne sounding in Sweden[C]. Proceedings U S Hydrographic Conference’94. Norfolk USA, 1994, 124~133
    [17]Thuresson P. SHOALS-HawksEyes[M]. Ronneby, Sweden, 1994, 240~250
    [18]R.N.Fraser. Hyperspectral remote sensing of turbidity and chlorophyll-a among Nebraska Sand Hills lakes[J].International Journal of Remote Sensing, 1998, 19(8): 1579~1589
    [19]赵凯华,钟锡华.光学(下册)[M].北京:北京大学出版社,1984:251~254
    [20]Davies H. The reflection of electromagnetic waves from a rough surface[C]. Proceedings of the Institution of Electrical Engineers, 1954, 101:209~214
    [21]Van de Hulst H C. Light Scattering by Small Particles[M].New York:Wiley,1957,2~5
    [22]Kerker M. The Scattering of Light and Other Electromagnetic Radiation[M]. New York:Academic, 1969:1~3
    [23]Swithenbank J. A laser diagnositic technique for the measurement of droplet and particle size distribution[J]. AIAA Paper, 1976, 76:69~80
    [24]Zaneveld J R V, Bartz R, Kitchen J C. A reflective tube absorption meter[J]. SPIE, Ocean Optics X, 1980, 124~136
    [25]Bricaud A, Morel A, Prieu R L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains [J]. Limnol Oceanogr, 1981, 26(1):43~53
    [26]Haltrin V. One-Parameter Model of Seawater Optical Properties[J]. SPIE, Ocean Optics, Kailua-Kona, Hawaii: Society of Photo-Optical Instrumentation Engineers, 1998, 201~244
    [27]Sathyendranath S, Cota G, Stuart V, et al. Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches[J]. Remote Sensing, 2001, 22(2):249~273
    [28]K. Allali, Annick Bricaud, Herve Claustre. Spatial variability in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetic pigments in the equatorial Pacific[C]. Proc. SPIE, 1997, 2963:179~184
    [29]A.Morel. Optical modeling of the upper ocean in relation to its biogenous matter content(case I waters)[J]. J.Geophys.Res, 1988, 93:10749~10768
    [30]C.F.Bohren, D.R.Huffman. Absorption and scattering of light by small particles[M]. NewYork:Wiley, 1983, 2~6
    [31]Gordon H R, Morel A. Remote assessment of ocean color for interpretation of satellite visible imagery: a review[M]. Lecture Notes on Coastal and Estuarine Studies, New York: Springer Verlag, 1983, 114~120
    [32]Howard R. Gordon. Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile[J]. Applied Optics, 1992, 31(12) :2116~2129
    [33]Donald J. Collins, John A. Bell, Ray Zanoni, I. Stuart McDermid, James B. Breckinridge, Cesar A. Sepulveda, Recent Progress in the Measurement of Temperature and Salinity by Optical Scattering[J] . SPIE, Vol.489, Ocean Optics VII, 1984, 247~269
    [34]Donald A. Leonard, Harold E. Sweeney. Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques[J]. SPIE, Vol.925, Ocean Optics IX, 1988, 407~414
    [35]G. D. Hickman, G. W. Kattawar, E. S. Fry. Aircraft Laser Sensing of Sound Velocity in Water: Brillouin Scattering[J]. J. Acoust. Soc. Am. Suppl. Pennsylvania State University, State College, PA.1990, 21~25
    [36]J.G. Hirschberg. The Use of Brillouin and Raman Scattering to Measure Temperature and Salinity below the Water Surface[C]. Proceedings, Waste Heat Management and Utilization Conference, Miami Beach, Florida, 1977, 389~410.
    [37]J.L. Guagliardo, H.L. Dufilho. Range Resolved Brillouin Scattering Using a Pulsed Laser[J]. Rev. Sci. Instrum., 1980, 51:79~81.
    [38]Collins D J, Bell J A. Zanoni P. Recent progress in the measurement of temperature and salinity byoptical scattering[C]. Proc. SPIE-The Internaional Society for Optical Engineering, 1984, 489:247~255
    [39]J. G. Hirschberg, J. D. Byrne. Rapid underwater ocean measurements using Brillouin scattering[J]. SPIE, Vol.489, Ocean Optics VII, 1984, 270~276
    [40]J. G. Hirschberg, J. D. Byrne, A. W. Wouters, and G. C. Boynton. Speed of Sound and Temperature in the Ocean by Brill.Scattering[J]. Appl.Opt., Vol.23, 1984, 2624~2628
    [41]Y.E.Emery, E.S.Fry. Laboratory Development of a lidar for Measurement of sound Velocity[J]. Ocean Optics XIII, 1997, 2963:210~215
    [42]E.S.Fry, Y.Emery, X.Quan, et al. Accuracy Limitations on Brillouin Lidar Measurements of Temperature and Sound Speed in the Ocean[J]. Appl.Opt, 1997, 36:6887~6894
    [43]C.L Korb and B.Gentry,and C.Weng. The edge technique theory and application to the lidar measurement of atmspheric winds[J]. Appl.Opt, 1992, 31:4202~4213
    [44]B.Gentry and C.L Korb. Edge technique for high-accural Doppler velocimetry[J]. Appl.Opt, 1994, 33:5770~5777
    [45]C.L Korb,B.M.Gentry, and P.B.Hays. Observations winds with an incoherent lidar detector[J]. Appl. Opt, 1992, 31:4509~4514
    [46]Piironen, P. and W.Eloranta. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19:234~236
    [47]E. S. Fry, J. Katz, R. Nicolaescu, et al. Remote Sensing in the Ocean: Measurement of sound Velocity and Temperature[J]. SPIE, Ocean Optics XIV, 1998, 201~230
    [48]Grund, C.J., W.Eloranta. The University of Wisconsin High Spectral Resolution Lidar[J]. Optical Engineering, 1991, 30:6~12
    [49]C.Lkorb, B Gentry. New Doppler lidar methods for atmospheric wind measurements:the edge technique[C]. Conference on Lasers and Electro-Optics, Vol.7 of 1990 OSA technicalDigest Series (Optical) Society of America, Washinton, D, C, 1990, 322~324
    [50]G. D. Hickman, J. M. Harding, M. Carnes, et al. Aircraft Laser Sensing of Sound Velocity in Water: Brillouin Scattering[J]. Remote Sens. Environ, 1991, 36:165~178
    [51]陈卫标,张亭禄,吴东,刘智深.原子廓线激光多普勒测速仪[J].光学学报, 1997, 17(3):346~350
    [52]Z. S. Liu, W. B. Chen, T. L. Zhang, et al. An Incoherent Doppler Lidar for Ground-based Atmospheric Wind Profiling[J]. Applied Physics B, 1997, 64:561~566
    [53]Liu Dahe, Quan Xiaohong. Range and line resolved Brillouin scattering in pure water using pulsed Nd:YAG laser[J]. Chinese Journal of lasers, 1995, 4:123~125
    [54]Dahe Liu, Jianfeng Xu, Huaying Wang et al. Remote sensing to ocean by using Brillouin scattering: test of sound speed and submerged objects[C]. Proc. SPIE, 2000, 4222:114~118
    [55]Dahe Liu, Jianfeng Xu, Rongsheng Li et al. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser[J]. Opt.Commun, 2002, 203:335~338
    [56]刘大禾.用布里渊散射实现水中声速的实时遥测[J].声学学报.1998, 23:184~187
    [57]刘大禾,汪华英,周静.布里渊散射法测量盐度及温度不同的海水中的声速[J].中国激光,2000,27:381~384
    [58]徐建峰,李荣胜,周静等.用布里渊散射测量水的体粘滞系数[J].光学学报, 2001, 21:1112~1115
    [59]Gong W, Dai R, Sun Z et al. Detecting submerged objects by Brillouin scattering[J]. Appl, Phy. B: Lasers and Opt, 2004, 79:635~638
    [60]Dai R, Gong W, Xu J et al. The edge technique as used in Brillouin lidar for remote sensing of the ocean[J]. Appl, Phy. B: Lasers and Opt., 2004, 79:245~248
    [61]Raymond C. Smith, Karen S. Baker. Optical properties of the clearest natural waters[J]. Applied Optics, 1981, 20(2):177~184
    [62]杨顶田,曹文熙,杨跃中等.珠江口水体的光学特征及分析[J].生态科学, 2004, 23(1):1~4
    [63]G. D. Hickman, J. M. Harding, M. Carnes, et al. Aircraft Laser Sensing of Sound Velocity in Water: Brillouin Scattering[J] . Remote Sens. Environ, 1991, 36:165~178
    [64]徐啟阳,杨坤涛,王新兵等.蓝绿激光雷达海洋探测[M].北京:国防工业出版社,2002,36~40
    [65]陈烽,陈良益,薛鸣球.机载激光测深海洋传输通道的吸收和散射特性分析[J].光子学报, 1997, 26(6):561~565
    [66]朱晓,王华,齐丽君等.机载激光测深后向散射光雷达方程[J].激光与红外, 2002, 32(6): 386~388
    [67]Richard N, Dubinsky. Lidar Moves Toward the 21st Century[J]. Lasers & Optronics, 1988, 94:128~134
    [68]W. Scott Pegau, Deric Gray, J. Ronald V. Zaneveld. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity[J]. Applied Optics, 1997, 36(24):6035~6046
    [69]S. Tassan. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12):2369~2378
    [70]Stephen M. Doss-Hammel, Carl R. Zeisse. Low-altitude infrared propagation in a coastal zone: refraction and scattering[J]. Applied Optics,2002, 41(18):3706~3724
    [71]戴永江.激光雷达原理[M].北京:国防工业出版, 2002, 126~130
    [72]王桂芬,曹文熙,张建林等.南海北部水体浮游植物比吸收系数的变化[J].热带海洋学报, 2005, 24(5):1~10
    [73]朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析[J].中国科学D辑地球科学, 2004, 34(8):757~762
    [74]许晓强,曹文熙,杨跃忠.珠江口颗粒物吸收系数与盐度及叶绿素a浓度的关系[J].热带海洋学报, 2004, 23(5):64~71
    [75]Michael Sydor, Richard W.Gould, Robert A. Arnone et al. Uniqueness in remote sensing of the inherentoptical properties of ocean water[J]. Applied Optics, 2004, 43(10):2156~2162
    [76]Markager W,Vincent W F. Spectral light attenuation and absorption of UV and blue light in natural waters[J]. Limnol & Oceanogr, 2000, 45(3):642~650
    [77]张绪琴,张士魁,吴永森等.海水黄色物质研究进展[J].黄渤海海洋, 2000, 18(1):89~92
    [78]Roderick E. Warnock, Winfried W.C. Gieskes, Sandor van Laar. Regional and seasonal differences in light absorption by yellow substance in the Southern Bight of the North Sea[J]. Journal of Sea Research, 1999, 42:169~178
    [79]Roesler C.S. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique[J]. Limnol.Oceanogr, 1998, 43:1649~1662
    [80]M.D.Dowell, J-F.Berthon. Absorption modeling in CaseⅡwaters: the need to distinguish Colored Dissolved Organic Matter from Non-Chlorophyllous Particulates[J]. SPIE, 2963:401~407
    [81]A. Bricaud. Variations of light absorption by suspend particles with chlorophyll a concentration in oceanic (caseⅠ) waters: Analysis and implications for bio-optical models[J]. J.Geophys.Res., 1998, 103:31033~31045
    [82]张杰.具有复折射率微粒的Mie散射光学特性研究[J].光散射学报, 2006, 17(4):359~365
    [83]黄培强,盛夏.对流层与平流层大气气溶胶粒子的若干散射特性[J].气象科学, 1996, 16(3): 233~239
    [84]王小东,吴健,邱荣. Mie散射系数的改进算法[J].光电工程,2006, 33(3):24~27
    [85]Annick Bricaud, Andre Morel. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling[J]. Applied Optics, 1986, 25(4):571~580
    [86]Richard W. Gould, Robert A. Arnone. Spectral dependence of the scattering coefficient in case 1 and case 2 waters[J]. Applied Optics.1999, 38(12):2377~2383
    [87]L.S.Dolin, I.M.Levin. New instrument for measuring the scattering coefficient and the concentration of suspended particles in turbid water[J]. SPIE, Ocean Optics XII, 1994, 522~528
    [88]Immanuil L. Fabelinskii. Molecular Scattering of Light[M]. Plenum Press, New York, 1968, 81~92
    [89]黄昆,韩汝琦.固体物理学[M].高等教育出版社, 1988, 122~137
    [90]R. Y. Chiao and P. A. Fleury. Brillouin Scattering and the Dispersion of Hypersonic Waves[J]. in :Physics of Quantum Electronics[M]. P. L. Kelly, P. E. Tannenwald, B.Laxs Eds, MeGraw-Hill, New York,1965, 241~152
    [91]Raymond D. Moutain. hermal Relaxation and Brillouin Scattering in Liquids[J]. Journal of Research of the National Bureou of Standards-A Physics and Chemistry, 1966, 70A(3), 207~220
    [92]H.Z.Cummins, R.W.Gammon. Rayleigh and Brillouin Scattering in liquids: the Landau-Placzek ratio[J]. J.Chem. Phys, 1966, 44(7):2785~2796
    [93]J.W.Goodman. Statistical Optics[M]. New York: John Wiley & Sons, 1985, 470~520
    [94]Buekel E. I. Scattering of X-ray with very high Energy Resolution[J]. Modern Physics, 1991, 125: 238~254
    [95]郎道, E.M.粟弗席兹著(周奇译).连续媒质电动力学(下册)[M].人民教育出版社, 1973, 128~130
    [96]M.Bron, K.Houng. Dynamical Theory of Crystal Lattices[M]. Clarendon Press Oxford, 1958, 379~390
    [97]刘大禾.水中布里渊散射的边缘探测方法[J].中国激光, 1999, 26(4):307~311
    [98]刘大禾.边缘探测技术的信号估算及误差分析[J].中国激光, 1999, 26(8):701~705
    [99]翁开华,刘金清.激光准直系统的设计[J].福建师范大学学报(自然科学版), 2001, 17(2): 35~39
    [100]毛钧杰,何建国.实用光学设计方法与现代光学系统[M].北京:国防科技大学出版社,1998, 63~322
    [101]J.N.Forkey, W.R.Lempert, R.B.Miles. Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths[J]. Applied Optics, 1997, 36:6729~6738
    [102]C.L.Korb, B.M.Gentry, C.Y.Weng. Edge technique:theory and application to the lidar measurement of atmospheric wind[J]. Appl. Opt., 1992, 21:4202~4213
    [103]Roehle I. Schodl R. Evaluation of the accuracy of the Doppler global technique[C]. Proceeding of the Optical Methods and Data Processing in Heat and Fluid Flow, City University, UK., 1994, 155~161
    [104]Victor Soon So Chan (B.Eng.). Particle Based Velocimetry Techniques for Measurement in Reciprocating Engines:[Ph.D Thesis]. The Manchester School of Engineering, University of Manchester, UK., 1999
    [105]J.Tellinghuisen, Intensity factorsw for the I2 B-X band system[J]. J, Quan, Spectrosc, Radiat. Transfer, 1978, 19:149~161
    [106]Alberty R. A. Physical Chemistry[M]. 7th ed., Wiley, New York, 1987, 304~333
    [107]Sime R. J.Physical Chemistry:Methods, Techniques, and Experiments[M].Saunders, Philadelphia, PA, 1990
    [108]D'alterio.R, R.Mattson, R.Harris. Potential Curves for the I2 Molecule[J]. J.Chem. Educ., 1974, 51:282~297
    [109]Gaydon A.G. Dissociation Energies[M]. 2nd ed., rev., Chapman and Hall, London, 1953, 188~207
    [110]Herzberg G. Molecular Spectra and Structure. Vol.1, Spectra of Diatomic Molecules[M], 2nd ed., Van Nostrand, Princeton, NJ, 1950
    [111]McNaught I.J. The Electronic Spectrum of Iodine Revisited[J]. J.Chem.Educ., 1980, 57:101~122
    [112]Moore C.E. Atomic Energy Levels[M]. Vol.III, Circular of the National Bureau of Standards, U.S. Government Printing Office, Washington, DC, 1958
    [113]Rosen B. Tables de Constantes et Donnes Numeriques[M]. 4, Donnes Spectroscopiques, Herman and Co., Paris, 1951
    [114]Miles R.B, Lempert W.R, Forkey J. Instantaneous velocity fields and background suppression by filtered Rayleigh scattering. AIAA, 1991, 91~357
    [115]L.Brewer and J.Tellinghuisen. Quantum yield for unimolecular dissociation of i2 in visible absorption[J]. J,Chem.Phys, 1972, 56:3929~3928
    [116] S.Gerstenkorn, P.Luc. IDENTIFICATION DES TRANSITIONS DU SYSTEMEC (B-X) DE LA MOLECULE D'IODE ET FACTEURS DE FRANCK-CONDON 14000-15600 CM-1"C. Laboratoire AiméCotton, CNRS II, 91405 Orsay, France
    [117]S.Gerstenkorn, P.Luc. ATLAS DU SPECTRE D’ABSORPTION DE LA MOLECULE D’IODE. Laboratoire AiméCotton, CNRS II, 91405 Orsay, France, 1978
    [118]C.Lkorb, B.M.Gentry. Edge technique: theory and application to the lidar measurement of atmospheric wind[J]. Appl.Opt, 1992, 31(21):4202~4213
    [119]U.Von Zahn, E.V.Thrane, R.Skatteboe. The ALOMAR project: Status and outlook[C]. Proc. 12th ESA symp. on European Rocket and Ballon Programmes and Related Research, Space Agency Pub1. ESA SP-370,1995, 379~386
    [120]K.B.Macadam,A.Steinbach,C.Wieman,A narrow-band tunable diode laser system with gratingfeedback,and a saturated absorption spectrometer for Cs and Rb[J]. Am.J.Phys. 1992, 60(12): 1098~1111
    [121]Wang Junmin, Zhang Tiancai, Xie Changde et al. Frequency-offset locking of LD to hyperfine transition of Cesium atoms[J]. J.Chinese.J.Lasers, 1999, 26(3):248~252
    [122]Li Xiaoying, Pan Qing, Jing Jietai et al. LD pumped intracavity frequency-doubled and frequency -stabilized Nd:YAP/KTP laser with 1.1 W output at 540 nm. [J]. J.Opt. Commun, 2002, 201: 165~171
    [123]Ma Y, Lin H, Ji H et al. A Scattering Coefficient Model for Airborne Lidar Detection of Red Tide[J]. Acta Photonica Sinica, 2007, 36(2):344~349
    [124]Lin Hong, Dong Tianlin, Ma Yong. The Study on Infrared Scattering of Red Tide[J]. International Journal of Infrared and Millimeter Waves, 2007, 28(4):305~314
    [125]安达六郎.赤潮生物と赤潮实态[J].水产土木,1973, 9(1):31~36
    [126]安达六郎.三重县水产学报纪要[J].1972, 9(1):1~149
    [127]关道明,战秀文.我国沿海水域赤潮灾害及其防治对策[J].海洋环境科学,2003,22(2):60~63
    [128]张前前,王修林,祝陈坚.赤潮浮游植物种类和数量分析的研究进展[J].海洋环境科学, 2004, 23(1):31~34
    [129]王项南.用于遥感测温的双通道红外辐射计[J].海洋技术, 1999, 18(1):28~34
    [130]徐惠.SYA2-2型实验室盐度计及其应用[J].海洋技术, 2005, 24(1):37~39
    [131]童明荣,孙朝辉,刘增宏.AUTOSAL8400B型实验室盐度计及其应用[J].海洋技术, 2003, 22(4):85~88
    [132]余文畴,岳红艳.长江径流泥沙在世界江河中的地位[J].长江科学院院报,2002,19(6):13~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700