用户名: 密码: 验证码:
湿法烟气脱硫氧化过程动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电力生产以燃煤发电为主,由于中国煤炭资源的特点是高灰分、高硫,因此近年来燃煤电厂SO2的污染问题日益突出。烟气脱硫是控制燃煤电厂SO2排放的有效方法。湿式石灰石-石膏烟气脱硫工艺是当今燃煤电厂应用最为广泛的烟气脱硫技术。在该工艺中,亚硫酸氢钙的氧化程度关系到烟气中硫分的最终脱除程度,因此,开展烟气脱硫氧化过程的研究,对优化脱硫系统设计、提高脱硫效率、保证脱硫装置稳定可靠运行和降低运行成本具有重要作用。
     本文以相似原理为基础,对烟气脱硫氧化实验模拟装置进行了设计研究。针对典型300 MW级烟气脱硫装置,采用10:1的缩放比例,独创的圆盘式空气喷吹方式,使空气在浆液中的布置更加均匀。经CFD模拟及实验验证表明,该氧化模拟装置搅拌均匀、传质性能较好,能应用于烟气脱硫氧化过程的实验研究。
     利用建立的氧化模拟装置进行了亚硫酸盐的非催化氧化研究。结果表明,非催化氧化的适宜条件为:亚硫酸钙初始浓度0.01 mol·L~(-1)、浆液pH值为3.5、浆液初始温度为55℃、氧分压60.8 kPa、搅拌转速6 r·s~(-1)。在实验条件范围内,非催化氧化过程对HSO_3~-的反应级数为1,溶解氧级数为0,非催化氧化活化能为71.43kJ·mol~(-1)。该过程的速率控制步骤为HSO_3~-的二级电离。
     研究了Mn~(2+)、Fe~(2+)催化剂对亚硫酸氢钙氧化过程的催化作用。锰催化动力学实验表明,氧化反应对锰离子为0.5级响应,对亚硫酸氢盐为1级响应,对溶解氧为0级响应,锰催化氧化反应的活化能为40.72 kJ·mol~(-1),该反应的速率控制步骤为锰离子引发SO_3~(2-*)基团的过程。铁催化动力学实验表明,氧化反应对铁离子为0.5级响应,对亚硫酸氢盐为1级响应,对溶解氧为0级响应,铁催化氧化反应的活化能为54.52 kJ·mol~(-1),该反应的速率控制步骤为铁离子引发SO_3~(2-*)基团的过程,该机理与锰催化氧化反应机理基本相同,说明两种催化剂的催化效果相似。
     首次对Mn~(2+)和Fe~(2+)联合催化氧化过程进行了系统研究。在实验条件范围内,锰铁联合催化氧化反应对锰离子为0.25级响应,对铁离子为0.25级响应,对亚硫酸氢盐为1级响应,对溶解氧为0级响应,锰铁联合催化氧化反应的活化能为43.73 kJ·mol~(-1)。锰铁联合催化氧化反应的速率控制步骤为锰离子和铁离子分别引发SO_3~(2-*)基团的过程,符合平行反应机理。
     建立了烟气脱硫氧化过程的动力学模型,其主要表达式为:
     该模型能较好地对氧化过程进行分析和描述。计算结果表明,非催化氧化反应、锰催化氧化反应、铁催化氧化反应和锰铁联合催化氧化反应的活化能分别为73.08kJ·mol~(-1)、42.11kJ·mol~(-1)、53.85kJ·mol~(-1)、44.80kJ·mol~(-1),该计算结果与氧化动力学实验得到的实验值相对误差分别为2.32 %、3.40 %、1.22 %、2.46%。
     对石膏结晶过程研究结果表明,浆液中杂质的存在能引起晶体形态的改变,搅拌转速的改变也能引起晶体形态的改变,一方面是由于搅拌转速降低会导致亚硫酸氢钙的氧化效率下降,从而使溶液中硫酸钙的浓度降低,引起石膏结晶的推动力降低;另一方面,较低的搅拌转速使池中的浆液不能较好地混合,导致浆液池中各部分浓度不均匀,从而改变了各晶面的相对生长速度,明显地引起晶体形态的改变。
     本文的主要创新点:①针对典型300 MW烟气脱硫机组,建立了浆液池氧化模拟装置,首次进行了锰铁联合催化氧化亚硫酸氢钙研究。②系统研究了Mn~(2+)和Fe~(2+)两种催化剂对亚硫酸氢钙氧化过程的催化作用,首次获得了催化氧化反应的速率控制步骤为Mn~(2+)引发SO_3~(2-*)基团的过程。③建立了烟气脱硫氧化过程动力学模型,其主要表达式为:
The power generation in China is mostly generated by coal-fired plant. As the coals resources containing high quantity of ash and sulfur, the pollution of sulfur dioxide, which produced by coal-fired power plant, becomes severe nowadays. The flue gas desulfurization (FGD) is an effective way to control the emitted sulfur dioxide. The wet FGD process is the most extensively used technology for desulfurization. In that technology, the oxidation ratio of calcium bisulfite determines the removal ratio of SO_2 in the flue gas. So the study of oxidation is of significance.
     Aim at the typical 300 MW FGD absorber, the simulant device has been set up, based on similarity principle. The similarity ratio of the device was set to 10:1. So its inside diameter was 1.2 m and height was 1.2 m. The device also has been equipped with a dial type air jet to make air uniformity in the slurry. The results of simulations and experiments indicated that, the simulant device is of preferable mass transfer performance. So the device could be used in the experimental research of the oxidation process.
     The uncatalyzed oxidation experiments have been executed in the simulant device. The bisulfite was obtained by the reaction of analytic calcium oxide, distilled water and sulfur dioxide. The optimal experimental conditions, have been gained by orthogonal experiments, which the bisulfite concentration was 0.01 mol·L~(-1), the pH was 3.5, the temperature of slurry was 55℃, the oxygen partial pressure was 60.8 kPa and the stir speed was 0.01 mol·L~(-1). The uncatalyzed oxidation experimental results indicated that the reaction order of bisulfite was 1, the reaction order of dissolved oxygen was 0 and the activation energy was 71.43kJ·mol~(-1). The rate determine step of uncatalyzed oxidation was the secondary ionization of bisulfite.
     The oxidation process which was catalyzed by manganese or ferrous ion has been researched. The manganese catalyzed experiments indicated that, the reaction order of manganese ion was 0.5, the bisulfite was 1 and the dissolved oxygen was 0. The activation energy was 40.72 kJ·mol~(-1). The rate determine step of manganese catalyzed oxidation was the generation of free radical initiated by manganese ion. The ferrous catalyzed experiments indicated that, the reaction order of ferrous ion was 0.5, the bisulfite was 1 and the dissolved oxygen was 0. The activation energy was 54.52 kJ·mol~(-1). The rate determine step of ferrous catalyzed oxidation was the generation of free radical initiated by ferrous ion.
     The catalyzed oxidation experiments have been executed first time when manganese and ferrous ion existed simultaneously. The manganese-ferrous catalyzed experiments indicated that, the reaction order of manganese ion was 0.25, the ferrous ion was 0.25, the bisulfite was 1 and the dissolved oxygen was 0. The activation energy was 43.73 kJ·mol~(-1). The rate determine step of manganese-ferrous catalyzed oxidation was the generation of free radical initiated by manganese ion and ferrous ion. It agreed the parallel reaction mechanism.
     The dynamic model of oxidation process has been established, based on the experimental results. The main expression was as follows:
     The calculation results indicated that the model could preferably explain the oxidation process. The results also indicated that, the activation energy of uncatalyzed oxidation, manganese catalyzed oxidation, ferrous catalyzed oxidation and manganese-ferrous catalyzed oxidation were 73.08kJ·mol~(-1), 42.11kJ·mol~(-1), 53.85kJ·mol~(-1) and 44.80kJ·mol~(-1) respectively. The relative errors between these calculation results and the experimental results were 2.32 %, 3.40 %, 1.22 % and 2.46% respectively.
     The crystallization process of desulfurization gypsum has been researched experimentally. The results indicated that, the optimal residence time was eight hours. Besides, the impurities could change the crystal form, which might be related to the crystal plane absorbing the impurities. The last, the stir speed could change the crystal form. That was because descending the stir speed could reduce the calcium bisulfate concentration in one hand, in another hand the low stir speed could make the grow speed of crystal plane differently.
     The originality innovations of the thesis are as follows. (1) The simulant device has been set up aim at the typical 300 MW FGD absorber. Based on the device, the catalyzed oxidation experiments have been executed first time when manganese and ferrous ion existed simultaneously. (2) The oxidation process which was catalyzed by manganese or ferrous ion has been systemically researched. The rate determine step of manganese catalyzed oxidation has been obtained the first time, which was the generation of free radical initiated by manganese ion or ferrous ion. (3) The dynamics model of oxidation process has been established. The main expression of it was as follows:
引文
[1]蒋文举.烟气脱硫脱硝技术手册[M].北京:化学工业出版社,2007.
    [2]吴忠标.大气污染控制技术[M].北京:化学工业出版社,2002.
    [3]杨剑.火电厂烟气脱硫过程石灰石活性研究[D].重庆:重庆大学,2005.
    [4] Chen Guifeng,Yu Zhufeng,Wu Lixin,et al.Present status and future prospect of clean coal technology in China[J].International Journal of Global Energy Issues,2005,24(3-4) :228-240.
    [5] Blankinship Steve.Looking for a good scrubbing: Today's FGD technology[J].Power Engineering ,2005,109(9) :19-24.
    [6] Zhao Yi,Sun Xiaojun,Fang Hua.Simultaneous removal of SO2 and NO from flue gas using "oxygen-enriched" highly reactive absorbent[J].Environmental Engineering Science,2007,24(3) :372-382.
    [7] Howard Anthony V,Booth Nicholas J.Flue gas desulphurisation on power plant in the United Kingdom[J].VGB PowerTech,2006,86(4) :78-83.
    [8] David G.Sloat, et al.. Options are increasing for reducing emissions of SO2 and NOX. Power Engineering. 1998, 12: 12.
    [9] Ruinian Li, Xin Liu. Main fundamental gas reactions in denitrification and desulfurization from flue gas by non-thermal plasmas. Chem. Engineering Sci.. 2000, (55): 2491-2506.
    [10] Hu Guilin , Kim Dam J , Wedel Stig . Review of the direct sulfation reaction of limestone[J].Progress in Energy and Combustion Science,2006,32(4) :386-407.
    [11] Carinci Gary M.Materials selection and optimization for wet flue gas desulfurization control systems[C].Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium 2006,2006,3:1424-1434.
    [12] Smith Kevin,Benson Lew,Schrock Michael.Magnesium enhanced lime FGD and so3, Hg and CO2 emissions[C].Electric Utilities Environmental Conference, EUEC 2005: 8th Annual Joint EPA, DOE, EEI, EPRI Conference on Air Quality, Global Climate Change and Renewable Energy,2006,2006:18.
    [13] Mo Jiansong,Wu Zhongbiao,Cheng Changjie.Experimental and theoretical studies on desulfurization efficiency of dual-alkali FGD system in a RST scrubber[J].The Chinese Journal of Process Engineering,2006,6(5) :718-723.
    [14] Li Yuzhong,Tong Huiling,Zhuo Yuqun,et al.Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of SO2 on selenium capture and kinetics study[J].EnvironmentalScience and Technology,2006,40(24) :7919-7924.
    [15] Lin RB, Shih SM, Liu CF. Characteristics and reactivities of Ca(OH)2/silica fume sorbents for low-temperature flue gas desulfurization. CHEMICAL ENGINEERING SCIENCE. 2003, 58(16): 3659-3668.
    [16] Hiroaki Tsuchiai, Tomohiro Ishizuka, et al. Highly Active Absorbent for SO2 Removal Prepared from Coal Fly Ash. Ind. Eng. Chem. Res.. 1995, 34(4): 1404-1411.
    [17] Jozewicz.w, et al. Fly ash recycle in dry scrubbing. Environmental Progress. 1986,5(4):219-223.
    [18] Anon.Wet-limestone scrubbing fundamentals[J].Power Engineering (Barrington, Illinois),2006,110(8) :32-37.
    [19] Ellis Dan,Ahluwalia Haminder.Selecting the right pumps and valves for flue gas desulfurization[J].Power Engineering(Barrington, Illinois) ,2006,110(7) :78-80.
    [20] Paolo.Davini. Investigation of SO2 adsorption properties of Ca(OH)2-Fly ash systems. Flue. 1996, 75(6): 712-716.
    [21] Kurl k.kind, et al. Effect of salts on preparation and use of Calcium Silicates for flue gas desulfurization. Environ.Sci.Techno. 1994, 18(2): 277-283.
    [22] Zhao Rongfang,Liu Haidi,Ye Shufeng.Ca-based sorbents modified with humic acid for flue gas desulfurization[J].Industrial and Engineering Chemistry Research,2006,45(21) :7120-7125.
    [23] Li Xuehui,Zhao Dongbin,Fei Zhaofu,et al.Applications of functionalized ionic liquids[J].Science in China,Series B:Chemistry,2006,49(5) :385-401.
    [24]周长丽,郭东萍,薛士科.燃煤电厂烟气脱硫技术进展[J].中国煤炭,2007,33(7) :64-65.
    [25] Liu ChiungFang,Shih ShinMin.Effects of flue gas components on the reaction of Ca(OH)2 with so2[J].Industrial and Engineering Chemistry Research,2006,45(26) :8765-8769.
    [26] Hrastel Iztok,Gerbec Marko,Stergarsek Andrej.Technology optimization of wet flue gas desulfurization process[J].Chemical Engineering and Technology,2007,30(2) :220-233.
    [27] Xuchang Xu, Changhe Chen, Haiyin Qi, et al.. Development of coal combustion pollution control for SO2 and NOX in China. Fuel Processing Technology. 2000,(62):153-160.
    [28] Rochelle G.T, King C.J. The Effect of Additives on Mass Transfer in CaCO3 or CaO Slurry Scrubbing of SO2 from Waste Gases. Ind. Eng. Chem. Fund.. 1977, 16(1): 67-75.
    [29] Paul S.Nolan, Kevin E.Redinger, Gerald T.Amrhein, et al.. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems. Fuel Processing Technology. 2004, (85): 587-600.
    [30]孙文寿.添加剂强化石灰石/石灰湿式烟气脱硫研究[D].浙江:浙江大学, 2002: 1-7.
    [31] Rustu Kalyoncu. Coal combustion products, COAL COM. PROD.. 1998: S1-S5.
    [32] Ravi K.Srivastava. Controlling SO2 emissions:A review of technologies. EPA. 2000:3-19.
    [33] David Rosenberg. Environmental pollution around the south China sea:developing a regional response[J]. Contemporary Southeast Asia. 1999, 21(1): 119-145.
    [34] Chung-shih, Chang, G.T.Rochelle. Effect of organic acid additives of SO2 absorption into CaO/CaCO3 slurries. SJChE Journal. 1982, 28(2): 261-265.
    [35]孙文寿,吴忠标,谭天恩.漩流板塔镁强化石灰脱硫过程研究.环境科学.2001, 22(3): 104-107.
    [36] A.A.Charles, et al.. The conemaugh station phase I compliance using wet scrubbers. EPPI, 1995 SO2 Control Symposium. Book 2, Session 4A.
    [37]郭瑞堂,高翔,王君等.湿法烟气脱硫石灰石的活性[J].燃烧科学与技术,2007,13(6) :485-491.
    [38]何伯述,郑显玉,常东武等.温度对氨法脱硫率影响的实验研究.环境科学学报. 2002, 22(3): 412-417.
    [39]晏玉清,范安祥.烟气脱硫技术及方案选择原则(四)——电子束氨法(EBA法)烟气脱硫技术.四川电力技术. 2000, (5): 41-43.
    [40] Chmielewski Andrzej G.Industrial applications of electron beam flue gas treatment-From laboratory to the practice[J].Radiation Physics and Chemistry,2007,76(8-9) :1480-1484.
    [41]李玉平,谭天恩.双碱法烟气脱硫的基础研究.重庆环境科学. 1999, 21(5): 49-52.
    [42] Rongfang Z,Shufeng Y,Yusheng X.Characteristics and reactivities of solid wastes sorbent for medium-temperature flue gas desulfurization[J].Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2007,29(9) :769-780.
    [43]张学才,陈明功.中小型锅炉烟气汽流喷雾干燥法脱硫的研究.环境工程. 1999, 17(4): 50-53.
    [44]吴忠标,刘越,谭天恩.双碱法烟气脱硫工艺的研究.环境科学学报. 2001, 21(5): 534-537.
    [45] Zhang Jie,You Changfu,Qi Haiying,et al.Effect of operating parameters and reactor structure on moderate temperature dry desulfurization[J]. Environmental Science and Technology,2006,40(13) :4300-4305.
    [46]李红英,周长丽,王海英.干法烟气脱硫技术的进展及其应用分析[J].辽宁化工,2007,36(8) :540-542.
    [47]王凤东,张卫江.石灰石为脱硫剂喷雾干燥法烟气脱硫实验研究.化学工程. 2003, 31(4): 61-63.
    [48] Li Yu-yan,Qi Haiying,You Changfu.Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures[J].Fuel,2007,86(5-6) :785-792.
    [49] Wang Fan , Wang Hongmei , Lin Jun . A new approach for semi-dry flue gas desulphurization[C].23rd Annual International Pittsburgh Coal Conference,2006:8.
    [50]贺亮,张少峰.半干法烟气脱硫技术研究现状及进展[J].天津化工,2007,21(2) :18-20.
    [51] Fabrizio Scala, Michele D.Ascenzo, Amedeo Lancia. Modeling flue gas desulfurization by spray-dry absorption. Separation and Purification Technology. 2004, (34): 143-153.
    [52]杜秋平.利用烟气脱硫技术控制大气污染.华北电力技术. 1999, (11): 29-32.
    [53]肖凌涛,谭永茂.烟气海水脱硫在深圳西部电厂的应用.广东电力. 2000, 13(5): 30-31.
    [54]严峻.海水烟气脱硫.华东电力. 2001, (4): 42-44.
    [55]白贤祥.海水脱硫系统及其与传统脱硫工艺的对比.华中电力. 2002, 15(4): 56-58.
    [56]黄国清.广东省几种烟气脱硫技术对比及经济分析.广东电力. 2002, 15(3): 72-75.
    [57] Khawaji Akili D,Wie Jong Mihn.Seawater scrubbing for the removal of sulfur dioxide in a steam turbine power plant[C].Proceedings of the ASME Power Conference,2005(A) :667-678.
    [58] Vidal B F,Ollero P,Gutierrez Ortiz F J.Catalytic seawater flue gas desulfurization process: An experimental pilot plant study[J].Environmental Science and Technology,2007,41(20) :7114-7119.
    [59] Sun Xueyan,Meng Fangang,Yang Fenglin.Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor[J].Journal of Membrane Science,2008,312(1-2) :6-14.
    [60]黄军左,顾立军,刘宝生等.脱除工业烟道气中SOX和NOX的技术.现代化工. 2001, 21(12): 44-47.
    [61]王旭伟,鄢晓忠,陈彦菲等.国内外电厂燃煤锅炉烟气同时脱硫脱硝技术的研究进展[J].电站系统工程,2007,23(4) :5-8.
    [62]董冰岩,张大超.脉冲放电烟气脱硫脱硝技术研究进展[J].环境污染治理技术与设备,2006,7(9) :17-20.
    [63]杜黎明,刘金荣.燃煤锅炉同时脱硫脱硝技术工艺性分析[J].中国电力,2007,40(2) :71-74.
    [64]钟秦.亚硫酸钙非均相氧化动力学的研究[J].南京理工大学学报, 2000, 24(2): 172-176.
    [65] Amedeo Lancia, Dino Musmarra, Francesco Pepe. Uncatalyzed Heterogeneous Oxidation of Calcium Bisulfite.Chemical Engineering Science, 1996, 51(16): 3889-3896.
    [66] Amedeo Lancia, Dino Musmarra, Franceseo Pepe, et al. Model of oxygen absorption into calcium sulfite solutions, Chemical Engineering Journal, 1997, 66: 123-129.
    [67] Amedeo Lancia, Dino Musmarra, Marina Prisciandaro, et al. Catalytic oxidation of calcium bisulfite in the wet limestone-gypsum flue gas desulfurization process[J]. Chemical Engineering Science, 1999, 54: 3019-3026.
    [68] V Linek, V Vacek. Chemical Engineering Use of Catalyzed Sulfite Oxidation Kinetics for the Determination of Mass Transfer Characteristics of Gas-Liquid Contactors[J]. Chemical Engineering Science, 1981, 36(11): 1747-1768.
    [69] PENG Zhaohui, TONG Zhiquan. Study on the oxidation of calcium sulfite to gypsum[J]. Journal of China Institute of Metrology, 2002, 13: 139-143.
    [70]杜谦,吴少华,朱群益等.湿法烟气脱硫环境下亚硫酸钙的非催化氧化[J].化工学报,2003,54(10):1490-1493.
    [71]杜谦,吴少华,赛俊聪等.湿法烟气脱硫环境下亚硫酸钙强制催化氧化的研究[J].环境保护科学,2005,31(128):1-4.
    [72] Deborah Yoshida, Horacio D Moya, Rodrigo L Bonifacio, et al. Kinetic of copper(Ⅲ) /(Ⅱ) tetraglycine reactions with sulfite analytical potentialities[J]. Spectroscopy Letters, 1998, 31(7): 1495-1512.
    [73] Peter M Wilkinson, Bert Doldersum, Peter H M R. The kinetics of uncatalyzed sodium sulfite oxidation.Chemical Engineering Science, 1993, 48(5): 933-941.
    [74] C P J Bennington, G Owusu, D W Francis. Gas-liquid mass transfer in pulp suspension mixing operations[J]. The Canadian Journal of Chemical Engineering, 1997, 75: 53-61.
    [75] Mrako Gerbec, Andrej Stergarsek, Robert Kocjancic. Nonstationary simulation model of absorber with falling film of suspension[J]. Chem. Eng. Technol. 2003, 26(8): 890-901.
    [76] Maria V Alipazaga, Nina Coichev. Synergistic effect of some transition metal ions on the sulfite induced autoxidation of Cu(Ⅱ)/ tetraglycine complex.analytical application[J]. Analytical Letters, 2003, 36 (10): 2255-2275.
    [77] Charles H B, Harold A. Reaction Kinetics of Sodium Sulfite Oxidation by the Rapid-mixing Method.Chemical Engineering Science, 1966, 21: 397-404.
    [78] Abdullah A S, Javaid Zaidi S M. Kinetics of catalytic Oxidation of aqueous sodium sulfite[J]. React. Kinet. Catal. Lett., 1998, 64(2): 343-349.
    [79] N Coichev, K Bal Reddy, R van Eldik. The synergistic effect of manganese in the sulfite-induced autoxidation of metal ions and complexes in aqueous solution[J]. Atmospheric Environment, 1992, 26A(13): 2295-230.
    [80] Ggbor Lente, Istvan Fabian. Kinetics and mechanism of the oxidation of sulfur by iron at metal ion excess[J]. J. Chem. Soc., 2002: 778-784.
    [81] Robert E Hute, P Neta. Rate constants for some oxidations of S(Ⅳ) by radicals in aqueoussolutions[J]. Atmospheric Environment, 1987, 21(8): 1743-1747.
    [82] E Delplancq, P Casti, J Vanderschuren. Kinetics of oxidation of calcium sulphite slurries in aerated stirred tank reactors[J]. Trans IChemE, 1992, 70: 291-295.
    [83] Klaus Hjuler, Kim Dam-Johansen. Wet Oxidation of Residual Product from Spray Absorption of Sulphur Dioxide[J]. Chemical Engineering Science, 1994, 49(24A): 4515-4521.
    [84] Atsushi Tatani, Tetsuya Imai, Yukihisa Fujima. Crystallization of calcium sulfite and behavior of Mn2+[J]. Journal of Chemical Engineering of Japan, 2003, 36(9): 1057-1062.
    [85] Wanda Pasiuk-Bronkowka, Tadeusz Bronikowski. Kinetic model of sulphite autoxidation under heterogeneous conditions[J]. Chemical Engineering Science, 1989, 44(66): 1361-1368.
    [86] Gunther Kracker-Semler, Rolf Marr, Matthaus Siebenhofer. Experimental investigation and modeling of catalytically supported sulfite/bisulfite oxidation with oxygen[J]. Chem. Eng. Technol. 2004, 27(6): 630-633.
    [87] W L Weisnicht, J Overman, C C Wang, et al. Calcium sulfite oxidation in a slurry reactor[J]. Chemical Engineering Science, 1980, 35: 463-468.
    [88]汪黎东.烟气脱硫添加剂对正盐生成促进的实验研究[D].北电力大学工学博士学位论文, 2005.
    [89] Frank MaaB, Horst Elias, Klaus J Wannowius. Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution: ionic strength effects and temperature dependence[J]. Atmospheric Environment, 1999, 33: 4413~4419.
    [90] Wanda Pasluk-Bronlkowska, Tadeusz Bronlkowskl, Marek Ulejczyk. Mechanism and Kinetics of Autoxidation of Calcium Sulfite Slurries[J]. Environment Science Technology, 1992, 26: 1976-1981.
    [91]吴晓琴,吴忠标,汪大翚.均相/非均相体系中亚硫酸钙非催化氧化过程[J].环境科学学报, 2004, 24(3): 534-538.
    [92] Cheng Chinmin,Walker Harold W,Bigham Jerry M.Mechanisms controlling the leaching kinetics of fixated flue gas desulfurization (FGD) material under neutral and acidic conditions[J].Journal of Environmental Quality,2007,36(3) :874-886.
    [93] Hao Jiming,Wang Litao,Shen Minjia.Air quality impacts of power plant emissions in Beijing[J].Environmental Pollution,2007,147(2) :401-408.
    [94] Werther Joachim.Gaseous emissions from waste combustion[J].Journal of Hazardous Materials,2007,144(3) :604-613.
    [95] Fang Lijun,Song Hongpeng,Zhou QulLan,et al.Experimental study on the performance of heat transfer of a novel liquid-gas two-phase flow scrubber for flue gas desulfurization[C].Proceedings of the ASME Power Conference,2005(A) :775-778.
    [96] Zhao Yi,Xu Peiyao,Fu Dong,et al.Experimental study on simultaneous desulfurization and denitrification based on highly active absorbent[J].Journal of Environmental Sciences,2006,18(2) :281-286.
    [97] Zhou Qulan,Hui Shi'en,Xu Tongmo.Calculation of the multiphase equilibrium of the reaction in wet flue gas desulfuration[C].Proceedings of the ASME Power Conference,2005(A) :779-783.
    [98] Y Li, M Sadakata. Study of gypsum formation for appropriate dry desulfurization process of flue gas[J]. Fuel, 1999, 78: 1089–1095.
    [99]彭朝辉,童志权.亚硫酸钙氧化为石膏的研究[J].中国计量学院学报, 2002, 13(2): 139-143.
    [100]黄斌,姚强,项光明.液柱喷射湿法脱硫产物处理实验研究[J].环境科学学报, 2003, 23(1): 43-47.
    [101]杨玉发,赵建华.玻璃纤维增强石膏砌块的研究与应用[J].玻璃纤维, 2007, 6 : 18-20.
    [102]罗捷.湿法烟气脱硫过程亚硫酸钙氧化研究[D].重庆大学,2006.
    [103]胥桂萍.媒晶剂对制备α半水石膏的影响[J].能源与环境, 2008, 1: 23-24.
    [104]周利民.添加剂对硫酸钙结晶过程的影响[D].天津轻工业学院, 2000.
    [105]顾雪慈,赵虎奎,练礼财等.脱硫石膏代替天然石膏作水泥缓凝剂[J].水泥,2006, 12:32-35.
    [106]李守信,胡玉亭,纪立国.湿式石灰石-石膏法烟气脱硫中石膏质量的工艺控制因素[J].电力环境保护,2002,3:42-45.
    [107]赵毅,汪黎东,王小明等.烟气脱硫产物-亚硫酸钙非催化氧化的宏观反应动力学研究[J].中国电机工程学报, 2005, 25(8): 116-120..
    [108]曹莉莉,杨东,计永跃.石灰石/石膏湿法脱硫真空皮带机脱水效果的影响因素研究[J].中国电力,2005,1(38):73-75.
    [109]胡秀丽.脱硫石膏含水率超标原因分析及控制措施[J].电力设备,2005,7(6):50-53.
    [110]詹道庸.传输原理[M].西安:西安交通大学出版社, 1995.
    [111] Demirbas Ayhan.Adsorption of sulfur dioxide from coal combustion gases on natural zeolite[J].Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2006,28(14) :1329-1335.
    [112]钟秦.湿法烟气脱硫的理论和实验研究(IV)[J].南京理工大学学报,1999,23(3) :257-260.
    [113]赵健植,金保升,仲兆平等.湿法烟气脱硫喷淋塔的实验与反应模型研究[J].热能动力工程,2007,22(4) :457-462.
    [114]姜雪梅,董守平,张红光等.牛顿型液-液两相流中分散相液滴碰撞模型及实验研究[J].流体机械,2007,35(9) :5-8.
    [115]魏明锐,文华,刘永长等.喷雾过程液滴碰撞模型研究[J].内燃机学报,2005,23(6) :518-522.
    [116]蒋勇,廖光煊,王清安等.喷雾过程液滴碰撞-聚合模型研究[J].火灾科学,2000,9(2) :27-30.
    [117]赵健植,金保升,仲兆平等.喷淋塔内塔壁液膜脱硫的模型研究[J].锅炉技术,2007,38(3) :67-71.
    [118]李强,蔡体敏,何国强等.液滴碰撞和聚合模型研究[J].应用数学和力学,2006,27(1) :60-66.
    [119] Hansen Brian B,Kiil Soren,Johnsson Jan E.Foaming in wet flue gas desulfurization plants: The influence of particles, electrolytes and buffers[J].Industrial and Engineering Chemistry Research,2008,47(9) :3239-3246.
    [120]刘道德.化工设备的选择与工艺设计[M].长沙:中南工业大学出版社, 1996.
    [123]胡满银,李立锋,赵毅等.湿式石灰石/石膏法烟气脱硫仿真数学模型的研究[J].华北电力大学学报,2005,32(6) :84-88.
    [124]刘俊,彭炯,陈晋南.湿式脱硫除尘装置内非等温流场的数值研究[J].中国科技信息,2007,13:19-21.
    [125]杨柳,王世和,王小明等.石灰石/石膏法烟气脱硫系统吸收塔传质特性分析[J].山东电力技术,2004,2:70-72.
    [126] Antonio C M,Liliana F S,Eduardo P M,et al.Dynamic simulation model of a coal thermoelectric plant with a flue gas desulphurisation system[J].Energy Policy,2006,34(18) :3812-3826.
    [127] Shi Yuntao,Sun Dehui,Li Zhijun.Hybrid modelingand control of nonlinear wet flue gas desulphurization process[C].Proceedings of the Sixth International Conference on Machine Learning and Cybernetics,2007,2:726-730.
    [128] Gomez Antonio,Fueyo Norberto,Tomas Alfredo.Detailed modelling of a flue-gas desulfurisation plant[J].Computers and Chemical Engineering,2007,31(11) :1419-1431.
    [129] Pak Haeyang,Kobayashi Noriyuki,Hasatani Masanobu.Characteristics of flue gases and ash in oxygen-blown pulverized coal combustion[J].Journal of Chemical Engineering of Japan,2007,40(7) :550-555.
    [130]魏星,李伟力,凡凤仙.脱硫塔气固两相流场优化的数值模拟研究[J].中国电机工程学报,2006,26(7) :12-18.
    [131]颜岩,彭晓峰,李笃中等.烟气脱硫传质-反应阻力特性分析[J].化工学报,2003,54(5) :633-638.
    [132]陈鸿伟,牛治国,高建强.烟气脱硫喷淋塔实时仿真模型研究[J].电站系统工程,2006,22(4) :4-6.
    [133]王梅杰,狄卫民,刘秉涛.烟气脱硫技术综合评价改进模型[J].中国电力,2006,38(12) :72-75.
    [134]李荫堂,黄卓,刘艳华.烟气脱硫吸收塔中的传质参数及其关系[J].环境技术,2004,3:9-11.
    [135] Zhao Yi,Xu Peiyao,Sun Xiaojun.Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed[J].Science in China,Series B:Chemistry,2007,50(1) :135-144.
    [136] Liu Shengyu,Xiao Wende.New wet flue gas desulfurization process using granular limestone and organic acid additives[J].International Journal of Chemical Reactor Engineering,2006,4:1-16.
    [137] Xiang Jun,Zhao Qingsen,Hu Song.Experimental research and characteristics analysis of alumina-supported copper oxide sorbent for flue gas desulfurization[J].Asia-Pacific Journal of Chemical Engineering,2007,2(3) :182-189.
    [138] Siagi Zachary O,Mbarawa Makame.Experimental investigation of the SO2 abatement capacity of South African calcium - Based materials[C].Proceedings of the Energy Sustainability Conference 2007,2007:121-126.
    [139] Feldkamp Markus,Moser Christian.The influence of nozzle arrangements in wet FGD scrubbers[C].Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium 2006,2006,3:1304-1323.
    [140]林永明,高翔,施平平等.300MW机组湿法烟气脱硫(WFGD)吸收塔内气液流场模拟[J].热力发电,2006,7:21-24.
    [141]王晓瑾,彭炯,陈晋南等.除尘脱硫装置气液两相流场的数值模拟[J].北京理工大学学报,2006,26(4) :356-360.
    [142] Santavicca J W.Wet Flue Gas Desurfurization (WFGD) slurry spray header design system[C].Proceedings of the ASME Power Conference,2005(B) :1099-1105.
    [143] Bandyopadhyay Amitava,Biswas Manindra N.Prediction of the removal efficiency of a novel two-stage hybrid scrubber for flue gas desulfurization[J].Chemical Engineering and Technology,2006,29(1) :130-145.
    [144]耿萍,侯庆伟,路春美.湿法脱硫喷淋空塔流场数值分析[J].山东大学学报,2005,35(5) :24-29.
    [145]唐志永,仲兆平,孙克勤等.湿法脱硫喷淋塔空塔流场数值模拟[J].能源研究与利用,2003,2:10-12.
    [146]耿萍,侯庆伟,路春美.湿法脱硫塔流场温场的数值模拟分析[J].山东建筑工程学院学报,2005,20(5) :43-45.
    [147] Liu Shengyu,Xiao Wende.Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive[J].Chemical Engineering and Technology,2006,29(10) :1167-1173.
    [148] Handlos A E, Baron T. Mass and heat transfer from drops in liquid-liquid extraction[J]. AIChE J, 1957, 3(1): 127-136
    [149] Ruckenstein E. Mass transfer between a single drop and a continuous phase[J]. Int J Heat Mass Trans, 1967,10: 1785-1792.
    [150] Laddha G S, Degaleesan T E. Transport phenomena in liquid extraction[D]. New York: McGraw-Hill, 1978.
    [151] Amokrane H, Saboni A, Caussade B. Experimental study and parameterization of gas absorption by water drops[J]. AIChE J, 1994, 40(12): 1950-1960.
    [152]侯庆伟,石荣桂,高善彬.湿法脱硫塔内流场温场的CFD分析[J].电力环境保护,2006,22(3) :18-21.
    [153]林永明,高翔,施平平等.湿法烟气脱硫(WFGD)喷淋塔内烟气流场的数值模拟研究[J].热力发电,2006,4:6-9.
    [154] Angelo J B, Lightfoot E N, Howard D W. Generalization of the penetration theory for surface stretch: application to forming and oscillating drops[J]. AIChE J, 1966, 12(4): 751-760.
    [155] Walcek C J, Pruppacher H R, Topalian J H, et al. On the scavenging of so2 by cloud and raindrops: II[J]. J Atm Chem, 1984, 1: 291-306.
    [156] Kronig R, Brink J C. On the theory of extraction from falling droplets[J]. Applied scientific research, 1950, (A2): 142-154.
    [157]过小玲,金保升,沈丹.装有多孔板的脱硫喷淋塔流场数值模拟研究[J].锅炉技术,2007,38(6) :5-9.
    [158] Zhao Yi,Sun Xiaojun,Xu Peiyao,et al.Mechanism of flue gas simultaneous desulfurization and denitrification using the highly reactive absorbent[J].Science in China,Series E:Technological Sciences,2005,48(6) :692-705.
    [159]杨大地,涂光裕.数值分析[M].重庆:重庆大学出版社, 2000.
    [160] Li Hua,Chen Wanren.Solubility of SO2, CO2 in desulfuration solution from 293.15 to 313.15 K[J].Physics and Chemistry of Liquids,2007,45(1) :57-65.
    [161]高允彦著.正交及回归实验设计方法.北京:冶金工业出版社. 1988: 26-32.
    [162]孙荣恒,伊亨云,刘琼荪等.概率论和数理统计.重庆:重庆大学出版社. 2000: 198-250.
    [163]杨剑,文娟,董凌燕.烟气脱硫过程锰催化氧化亚硫酸钙的研究[J].环境工程学报, 2007, 1(9): 109-112.
    [164]张丹.分散颗粒增强气液传质机理及模型研究[D].天津大学博士学位论文,2006.
    [165] Stankiewicz A I, Moulijin J A. Process intensification transforming chemicalengineering[J] . Chemical Engineering Progress, 2000, 1: 22-23.
    [166] Gredye R N, Smith F E, Westaway K C. The rapid synthesis of organiccompounds in microwave ovens[J]. Canadian Journal of Chemical Engineering, 1998, 66: 17-26.
    [167] Green A, Johnson B, John A. Process intensification magnifies profits[J]. Chemical Engineering, 1999, 12: 66-73.
    [168] Keller G E, Bryan P F. Process engineering moving in new directions[J]. Chemical Engineering Progress, 2000, 1: 41-50.
    [169] Chen J F, Wang Y H, Zheng C, et al. Synthesis of nano-particles of CaCO3 in a novel reactor[J]. Proceddings 2nd Int. Conf. Proc. Intensif. In Pract., London, 1997: 157-161.
    [170] Sololkhin A V, Blagov S A. Reactive-distillation is an advanced technique of reaction operation[J]. Chemical Engineering Science, 1996, 51: 2559-2564.
    [171] Lawson K W, Lioyd D R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124: 1-25.
    [172] Poddar T K, Majumdar S, Sirkar K K. Removal of VOCs from air by membrane-based adsorption and stripping[J]. Journal of Membrane Science, 1996, 120: 221-237.
    [173] Lei Z G, Zhou R Q, Duan Z T. Process improvement on separating C4 by extractive distillation[J]. Chemical Engineering Journal, 2002, 85: 379-386.
    [174] Sirkar K K, Shanbhag P V, Kovvali A S. Membrane in a reactor: a functional perspective[J]. Industrial and Engineering Chemistry Research, 1999, 38: 3715-3737.
    [175] Gobina E, Hughes R. Reaction coupling in catalytic membrane reactors[J]. Chemical Engineering Science, 1996, 51: 3045-3050.
    [176] Lang Q Y, Wai C M. Supercritical fluid extraction in herbal and natural product studies–a practical review[J]. Talanta, 2001, 53: 771-782.
    [177] Savage P E, Gopalan S, Mizan T I, et al. Reactions at supercritical conditions: applications and fundamentals[J]. AIChE Journal, 1995, 41: 1723-1778.
    [178] Schumpe A, Saxena A K, Fang L K. Gas-liquid mass transfer in a slurry bubble column[J]. Chemical Engineering Science, 1987, 42: 1787-1796.
    [179] Sada E, Kumazawa H, Lee C H. Chemical absorption in a bubble column loading concentrated slurry[J]. Chemical Engineering Science, 1983, 38: 2047-2051.
    [180] Godbole S P, Schumpe A, Shah Y H. Effect of solid wettability on gas-liquid mass transfer in a slurry bubble column[J]. Chemical Engineering Science, 1990, 45: 3593-3595.
    [181] Schmitz M, Steiff A, Weinspach P M. Gas-liquid interfacial area per unit volume andvolumetric mass transfer coefficient in stirred slurry reactors[J]. Chemical Engineering and Technology, 1987, 10: 204-215.
    [182] Quicker G, Alper E, Deckwer W D. Gas absorption rates in a stirred cell with plane interface in the presence of fine particles[J]. Canadian Journal of Chemical Engineering, 1989, 67: 32-38.
    [183] Kawase Y, Moo Young M. Liquid-phase mass transfer coefficient in slurry bubble column reactors: theory and experimental data in simulated fermentation media[J]. Chemical Engineering Communication, 1990, 96: 177-192.
    [184] Ozturk S S, Schumpe A. The influence of suspended solids on oxygen transfer to organic liquids in a bubble column[J]. Chemical Engineering Science, 1987, 42: 1781-1785.
    [185] Schumpe A, Saxena A K, Nigam K D P. Gas-liquid mass transfer in a bubble column with suspended non-wettable solids[J]. AIChE Journal, 1987, 33: 1916-1920.
    [186] Nguyen Tien K, Patwari A N, Schumpe A, et al. Gas-liquid mass transfer in fluidized particles beds[J]. AIChE Journal, 1985, 31: 194-201.
    [187]张俊梅.浆料反应体系中催化剂微粒增强气液传质研究[D].天津大学博士学位论文,2005.
    [188] Sada E, Kumazawa H, Lee C, et al. Gas holdup and mass transfer characteristics in a three phase bubble column[J]. Industrial and Engineering Chemistry, Process Design and Development, 1986, 25: 472-476.
    [189] Wilkinson P M. Physical aspects and scale-up of high pressure bubble columns[D]. Ph.D. thesis, Groningen University, Groningen, 1991.
    [190] Sauer T, Hempel D C. Fluid dynamics and mass transfer in a bubble column with suspended particles[J]. Chemical Engineering and Technology, 1987, 10: 180-189.
    [191] Kato Y, Nishiwaki A, Fukuda T, et al. The behavior of suspended solid particles and liquid in bubble columns[J]. Journal of Chemical Engineering of Japan, 1972, 5: 112-118.
    [192] Kawase Y, Moo-Young M. Oxygen transfer in slurry bioreactors[J]. Biotechnology and Bioengineering, 1991, 37: 960-966.
    [193] Kojima H, Uchida Y, Ohsawa T, et al. Volumetric liquid phase mass transfer coefficient in gas sparged three phase stirred vessel[J]. Journal of Chemical Engineering of Japan, 1987, 20: 104-106.
    [194] Albal R S, Shah Y T, Schumpe A. Mass transfer in multiphase agitated contactors[J]. Chemical Engineering Journal, 1983, 27: 61-80.
    [195] Schweizer J M, Bayle J, Gauthier T. Local gas holdup in fluidized bed and slurry bubble column[J]. Chemical Engineering Science, 2001, 56: 1103-1110.
    [196] Pandit A B, Joshi J B. Mass and heat transfer characteristics of three phase sparged reactors[J]. Chemical Engineering Research and Design, 1986, 64: 125-157.
    [197] Nagaraj N, Gray D J. Interfacial area and coalescence frequency in gas-slurry stirred reactors[J]. AIChE Journal, 1987, 33: 1563-1566.
    [198] Joshi J B, Sharma M M. Mass transfer characteristics in horizontal sparged contactors[J]. Transactions of the Institution of Chemical Engineers, 1976, 54: 42-53.
    [199] Dumont E, Delmas H. Mass transfer enhancement of gas absorption in oil-in-water systems: a review[J]. Chemical Engineering and Processing, 2003, 42: 419-438.
    [200] Dagaonkar M V, Beenackers A A C M, Pangarkar V G. Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirre cell[J]. Chemical Engineering Science, 2001, 56: 1095-1101.
    [201] Ruthiya Keshav C, van der Schaaf J, Kuster B F M, et al. Model to describe mass-transfer enhancement by catalyst particles adhering to a gas-liquid interface[J]. Industrial and Engineering Chemistry Research, 2005, 44: 6123-6140.
    [202] van der Zon M, Hamersma P J, Poels E K, et al. Gas-solid adhesion and solid-solid agglomeration of carbon-supported catalysts in 3-phase slurry reactors[J]. Catal. Today, 1999, 48: 131-138.
    [203] Muginsten A, Fichman M, Gutfinger C. Gas absorption in a moving drop containing suspended solids[J]. International Journal of Multiphase Flow, 2001, 27: 1079-1094.
    [204] Ruthiya K C, Kuster B F M, Schouten J C. Gas-liquid mass transfer enhancement in a surface aeration stirred slurry reactor[J]. Canadian Journal of Chemical Engineering, 2003, 81: 632-639.
    [205] Scala F. Gas absorption with instantaneous irreversible chemical reaction in a slurry containing sparingly soluble fine reactant particles[J]. Industrial and Engineering Chemistry Research, 2002, 41: 5187-5195.
    [206] Dagaonkar M V, Beenackers A A C M, Pangarkar V G. Enhancement of gas-liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: absorption of sulfur dioxide into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles[J]. Chemical Engineering Journal, 2001, 81: 203-212.
    [207]曲英,刘今.冶金反应工程学导论[M].北京:冶金工业出版社,1988.
    [208] Ruthiya K C, van der Schaaf J, Kuster B F M, et al. Mechanisms of Physical and Reaction Enhancement of Mass Rransfer in a Gas Inducing Stirred Slurry Reactor[J]. Chemical Engineering Journal, 2003, 96: 55-69.
    [209] Dagaonkar M V, Beenackers A A C M, Pangarkar V G. Gas absorption into aqueous reactiveslurries of calcium and magnesium hydroxide in a multiphase reactor[J]. Catal. Today, 2001, 66: 495-501.
    [210] Ozkan O, Calimli A, Berber R, et al. Effect of inert solid particles at low concentrations on gas-liquid mass transfer in mechanically agitated reactors[J]. Chemical Engineering Science, 2000, 55: 2737-2740.
    [211] Kluytmans J H J, van Wachem B G M, Kuster B F M, et al. Mass transfer in sparged and stirred reactors:influence of carbon particles and electrolyte[J]. Chemical Engineering Science, 2003, 58: 4719-4728.
    [212] Kluytmans J H J, van Wachem B G M, Kuster B F M, et al. Gas holdup in a slurry bubble column:influence of electrolyte and carbon particles[J]. Industrial and Engineering Chemical Research, 2001, 40: 5326-5333.
    [213] Moghadasi J, Muller-Steinhagen H, Jamialahmadi M, et al. Theoretical and experimental study of particle movement and deposition in porous media during water injection[J]. Journal of Petroleum Science and Engineering, 2004, 43: 163-181.
    [214] Demmink J F, Mehra A, Beenackers A A C M. Absorption of hydrogen sulfide into aqueous solutions of ferric nitrilotriacetic acid:local auto-catalytic effects[J]. Chemical Engineering Science, 2002, 57: 1723-1734.
    [215] Liu C I. Micromixing effects in a couette flow reactor[J]. Chemical Engineering Science, 1999, 54: 2883-2888.
    [216] Nigam K D P, Schumpe A. Gas-liquid mass transfer in a bubble column with suspended particles[J]. AIChE Journal, 1987, 33: 328-330.
    [217]蔡旺锋.浆料体系中细颗粒增强气液传质研究[D].天津大学博士学位论文,2003.
    [218] Brilman D, Goldschmidt M J V, Versteeg G F, et al. Heterogeneous mass transfer models for gas absorption in multiphase systems[J]. Chemical Engineering Science, 2000, 55: 2793-2812.
    [219]罗谷风.结晶学导论[M].北京:地质出版社,1985.
    [220]北京矿业学院矿物岩石教研室编.结晶学[M].北京:中国工业出版社,1963.
    [221]南京大学地质学系岩矿教研室编.结晶学与矿物学[M].北京:地质出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700