用户名: 密码: 验证码:
南极海洋微生物N2a鉴定、系统学及一种低温过氧化氢酶BNC纯化与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温过氧化氢酶(EC1.11.1.6)是好氧低温生物代谢必需的抗氧化酶。低温过氧化氢酶研究对于认识海洋微生物在低温下有氧代谢活动规律有重要意义。本研究从南极海水中筛选出高活性过氧化氢酶菌株,鉴定为芽孢杆菌属(Bacillus)细菌。详细研究了芽孢杆菌目(Bacillales)中产芽孢细菌尤其是芽孢杆菌属细菌的16S rDNA系统学,给出了新的分组结果。从海洋革兰氏阳性菌中分离纯化了过氧化氢酶并研究其性质,分析了低温酶和同源的中温酶差别不明显的现象。
     从南极表层海水中分离细菌并筛选高过氧化氢酶活性的菌株,获得的49株细菌用硫代硫酸钠滴定法初筛后,其过氧化氢酶活性都高于大肠杆菌的酶活。用紫外分光光度法复筛后有15株菌的过氧化氢酶活性高于藤黄微球菌的酶活。其中N2a菌株活性最高,超声破碎细胞后活性达1200 U/mg。49株细菌的形态与生理生化特征表明它们属于同种细菌。进一步测定N2a的脂肪酸含量与16S rDNA序列后将其鉴定为芽孢杆菌属的细菌。N2a是专性好氧,能运动,产芽孢的杆菌,主要脂肪酸为iso-C14:1,iso-C15:0,anteiso-C15:0和iso-C14:0。N2a与B. barbaricus、B. arsenicus,B. macauensis和B. gelatini的16S rDNA序列相似性分别为99.4%、97.9%、96.1%和95.3%。N2a的表型(4℃生长,7%NaCl生长)和脂肪酸含量(不饱和脂肪酸占40%以上)体现出低温海洋菌的特征,不同于和N2a的16S rDNA序列相近的菌株。所以N2a可能是Bacillus新种。
     好氧产芽孢的细菌的系统学长期以来研究较少,特别是Bacillus属及相近属的系统学存在问题。本文根据16S rDNA序列,用邻位连接法(NJ)、简约法(MP)、最小进化法(ME)、最大似然法(ML)和贝叶斯推断(BI)五种算法构建了181种芽孢杆菌属及相关属细菌的系统进化树。BI算法得到的进化树最理想,其次是ML。各种系统进化树都表明,Bacillus不是单系群,芽孢杆菌属及相关属细菌可以划分为9个组。芽孢杆菌属模式种B. subtilis属于组1。N2a菌株属于组7。组4,组6和组8的细菌在表型上有一致性,分别为嗜热菌、嗜盐菌和嗜碱菌,而其它各组内的细菌在表型上无一致性。组2,组4和组8是由芽孢杆菌属及相关属细菌组成的,说明目前芽孢菌的分类系统和16S rDNA系统进化树不完全一致。组9主要由芽孢杆菌科除Bacillus以外的属组成,其中的4种芽孢杆菌可能属于其它的属。还有4种芽孢杆菌位于9个组之外,应建立新属或划入其它属。
     从Bacillus sp. N2a菌体中分离纯化其过氧化氢酶(BNC),采用50 mmol/L pH7.5 Tris?Cl缓冲液。菌体超声波破碎并离心后加入硫酸铵粉末,收集40%至70%饱和度之间的沉淀,样品透析后使用?KTA FPLC进行离子交换和分子筛层析。DEAE-Sephadex A-25阴离子交换层析以NaCl梯度洗脱,在0.13 mol/L NaCl时收集活性峰。聚乙二醇20000浓缩样品后使用Sephacryl S200HR分子筛层析。得到的过氧化氢酶在变性和非变性条件下电泳均为单一条带,比活80000 U/mg。Sephacryl S200HR分子筛测定BNC分子量为230 kD,SDS-PAGE测得亚基分子量为56 kD,表明BNC是同源四聚体。Bio-Rad Rotofor等电聚焦电泳测得BNC的pI=4.2。BNC最适温度25℃,最适pH6-11,活性受叠氮钠、盐酸羟胺和巯基乙醇的抑制。这些性质表明BNC属于小亚基单功能过氧化氢酶。BNC的活化能13 kJ,表明它同其它小亚基单功能过氧化氢酶类似,属于非温度依赖性的酶。BNC在4℃和25℃的催化效率分别为3.6×106和4×106 M-1s-1。BNC低温下高催化效率保证代谢产生的过氧化氢被迅速清除。BNC的热稳定性低于来自中温芽孢杆菌的小亚基过氧化氢酶,可以认为BNC属于低温酶。BNC来自在自然环境中自由生活的细菌,可以作为低温小亚基单功能过氧化氢酶的代表。BNC和同源中温酶的活化能、催化效率及热稳定性差别不大,是低温酶的特例。
Catalase (EC1.11.1.6) is a kind of high-active house-keeping protein among all organisms surviving in oxic environments, which scavenges H2O2 produced by cellular metabolism of O2 to prevent H2O2 from oxidizing lipids, proteins and nucleic acids. Studies on psychrophilic catalases are of significance to understand the metabolism of aerobic psychrophiles. Cold-adaptive catalases also have potential applications in dairy and water treatment in paper, food, textile and semiconductor industries. Bacteria with high catalase activities from Antarctic seawater have never been studied directly. Thus, an investigation of Antarctic marine bacteria containing high-activity hydroperoxidases is conducted by isolation and characterisation of the bacteria. The isolates are identified as Bacillus. The phylogeny of the new Bacillus species and the new genera of Bacillaceae have not been thoroughly studied. Therefore phylogenetic relationships between Bacillus species and related genera by reconstructing 16S rDNA phylogenetic trees using several algorithms are established. To better understand psychrophilic catalases, a novel cold adapted catalase (BNC) from the Bacillus sp. N2a is purified and characterized, and its activation energy, thermostability and kcat / Km are compared with several psychrophilic and mesophilic homologous. This catalase is reported as the first characterized psychrophilic catalase from Gram-positive bacteria.
     Forty-nine colonies are isolated from Antarctic surface seawater sample inoculated on Marine agar plates. After subcultured and identified by several morphological, biochemical and cultural methods, the Antarctic seawater isolates are all reciprocally similar. Cells are straight, Gram-variable, strictly aerobic and motile rods, 2.5–5 m long and 0.5–1 m wide. They form oval endospores subterminally. Cells grow on marine agar at pH 6–11 (optimally at pH 7.5–8) and tolerated up to 6% NaCl (w/v). Colonies are whitish, translucent, flat, smooth, and circular with regular margins and approximately 1 mm in diameter within 24 h when grown on marine agar at 20°C. Their cell extracts show high catalase activity of 1200±295 U/mg. High activity of the catalase at low temperatures is in accordance with the environmental conditions under which the microorganisms live. Identification of the Antarctic seawater isolates by several morphological, biochemical and cultural methods show that they belonged to the same species, among which the strain N2a is chosen as representative. This strain is determined to be a member of Bacillus according to its 16S rRNA gene and fatty acids profile. However, culturing properties (growth at 4°C and in 7% NaCl) and relatively high unsaturated fatty acids (>40%) of the strain N2a are different from those of the 16S rRNA gene phylogenetic relatives, exhibiting the characteristics of psychrotolerant marine bacteria. Thus these results support the hypothesis that the Antarctic isolates are novel species of the genus Bacillus.
     Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rRNA gene sequences from Genbank of 181 type strains of Bacillus species and related taxa manifest 9 phylogenetic groups, and the Bayesian tree is confirmed the best evolutionary tree, although the phylogeny of five species is uncertain. The phylogenetic analysis shows that Bacillus is not a monophyletic group. B. subtilis is in Group 1. Bacillus sp. N2a is in Group 7. Group 4, 6 and 8 respectively consist of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli, while the species in other groups differ much in the phenotype. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrate that the current taxonomic system does not agree well with the 16S rRNA gene evolutionary tree. The position of Caryophanaceae and Planococcaceae in Group 2 suggests that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implies that some Bacillus species in it might belong to several new genera. The close relationship between B. thermantarcticus and Geobacillus in Group 4 seem that B. thermantarcticus should be accommodated in Geobacillus. Group 9 is mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus are clearly placed outside the 9 groups. It is proposed to respectively elevate B. schlegelii and B. tusciae to the rank of genus, and B. edaphicus and B. mucilaginosus should be transferred into Paenibacillus.
     Catalase (BNC) from Bacillus sp. N2a is produced by the free-living bacterium from a cold habitat, rendering it more representative of cold-adapted catalases than any other reported psychrophilic catalases. After sonication of the harvested N2a strain cells, for the purification of BNC, a three-step protocol consisting of (NH4)2SO4 precipitation, anion exchange and gel filtration is developed. All purification steps are done at 4°C and chromatography was done by a Fast Protein Liquid Chromatography system (?KTA FPLC). The catalase is purified approximately 67-fold with a yield of about 26%. It shows a single protein band on SDS-PAGE and native PAGE. The purified catalase activity is about 80000 U/mg. The isoelectric point of the catalase is determined to be 4.2. BNC has a molecular mass of about 230 kD and is composed of four identical subunits of 56 kD. The catalase show optimal activity at 25°C and at pH range of 6-11. The enzyme could be inhibited by azide, hydroxylamine and mercaptoethanol. These characteristics suggest that BNC is a small-subunit monofunctional catalase. The activation energy of BNC is 13 kJ/mol and the apparent kcat/Km are 3.6×106 M-1 s-1 and 4×106 M-1 s-1 at 4°C and 25°C, respectively. High catalytic efficiency of BNC at low temperatures enables this bacterium to scavenge H2O2 efficiently. BNC can be categorized in psychrophilic enzymes according to its relatively low optimal temperature (25°C) and low thermostability. BNC exhibited activation energy, catalytic efficiency and thermostability comparable to some mesophilic homologues. Such similarity of enzymatic characteristics to mesophilic homologues, though uncommon among the cold-adapted enzymes in general, has also been observed in other psychrophilic small-subunit monofunctional catalases. The distinctive activation energy, thermostability and kcat / Km of small-subunit monofunctional catalases blur the boundary between psychrophilic and mesophilic catalases. The highly efficient mesophilic catalases with low activation energy have naturally adapted to the cold environment. In reverse, BNC exhibited cold-adapted characteristics not typical of psychrophilic enzymes.
引文
[1] Klotz M G, Loewen P C. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from Bacteria into Eukaryota. Mol Biol Evol, 2003, 20(7): 1098~1112
    [2] Salvi M, Battaglia V, Brunati A M, et al. Catalase takes part in rat liver mitochondria oxidative stress defense. J Biol Chem, 2007, 282(33): 24407~24415
    [3] Schriner S E, Linford N J, Martin G M, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science, 2005, 308(5730): 1909~1911
    [4] Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci, 2004, 61(2): 192~208
    [5] Loewen P C, Carpena X, Rovira C, et al. Structure of Helicobacter pylori catalase, with and without formic acid bound, at 1.6 ? resolution. Biochemistry, 2004, 43(11): 3089~3103
    [6] Kirkman H N, Rolfo M, Ferraris A M, et al. Mechanisms of protection of catalase by NADPH-kinetics and stoichiometry. J Biol Chem, 1999, 274(20):13908~13914
    [7] Switala J, Loewen P C. Diversity of properties among catalases. Arch Biochem Biophys, 2002, 401(2): 145~154
    [8] Brown-Peterson N J, Salin M L. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium. J Bacteriol, 1995, 177(2): 378~384
    [9] Shima S, Sordel-Klippert M, Brioukhanov A, et al. Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus. Appl Environ Microbiol, 2001, 67(7): 3041~3045
    [10] Shima S, Netrusov A, Sordel M, et al. Purification, characterization, and primary structure of a monofunctional catalase from Methanosarcina barkeri, Arch Microbiol, 1999, 171(5): 317~323
    [11] Hicks D B. Purification of three catalase isozymes from facultatively alkaliphilic from Bacillus firmus OF4. Biochim Biophys Acta, 1995, 1229: 347~355
    [12] Zámocky M, Godo?íkováJ, Ga?perík J, et al. Expression, purification, and sequence analysis of catalase-1 from the soil bacterium Comamonas terrigena N3H. Protein Expres Purif, 2004, 36(1): 115~123
    [13] Kobayashi I, Tamura T, Sghaier H, et al. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng, 2006, 101(4): 315~321
    [14] Dos Santos W G, Pacheco I, Liu M Y, et al. Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol, 2000, 182(3): 796~804
    [15] Phucharoen K, Hoshino K, Takenaka Y, et al. Purification, characterization, and gene sequencing of a catalase from an alkali- and halo-tolerant bacterium, Halomonas sp. SK1. Biosci Biotechnol Biochem, 2002, 66(5): 955~962
    [16] Brown S M, Howell M L, Vasil M L, et al. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: Purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen. J Bacteriol, 1995, 177(22): 6536~6544
    [17] Terzenbach D P, Blaut M. Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 and its role in the oxidative stress response. Arch Microbiol, 1998, 169(6): 503~508
    [18] Kang Y-S, Lee D-H, Yoon B-J, et al. Purification and characterization of a catalase from photosynthetic bacterium Rhodospirillum rubrum S1 grown under anaerobic conditions. J Microbiol, 2006, 44(2): 185~191
    [19] Ardissone S, Frendo P, Laurenti E, et al. Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti. Biochemistry, 2004, 43(39): 12692~12699
    [20] Thompson V S, Schaller K D, Apel W A. Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus, Biotechnol Prog, 2003, 19(4): 1292~1299
    [21] Yumoto I, Ichihashi D, Iwata H, et al. Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1T exhibiting high catalase activity. J Bacteriol,2000, 182(7): 1903~1909
    [22] Lorentzen M S, Moe E, Jouve H M, et al. Cold adapted features of Vibrio salmonicida catalase: characterization and comparison to the mesophilic counterpart from Proteus mirabilis. Extremophiles, 2006, 10(5): 427~440
    [23] Chauvatcharin N, Vattanaviboon P, Switala J, et al. Cloning and characterization of katA, encoding the major monofunctional catalase from Xanthomonas campestris pv. phaseoli and characterization of the encoded catalase KatA. Curr Microbiol, 2003, 46(2): 83~87
    [24] Díaz A, Rangel P, Montes de Oca Y, et al. Molecular and kinetic study of catalase-1, a durable large catalase of Neurospora crassa. Free Radic Biol Med, 2001, 31(11): 1323~1333
    [25] Wang H, Tokusige Y, Shinoyama H, et al. Purification and characterization of a thermostable catalase from culture broth of Thermoascus aurantiacus. J Ferment Bioeng, 1998, 85(2):169~173
    [26] Monti D, Baldaro E, Riva S. Separation and characterization of two catalase activities isolated from the yeast Trigonopsis variabilis. Enzyme Microb Tech, 2003, 32(5): 596~605
    [27]刘昌玲,王国庆.细菌过氧化氢酶的分离、结晶及性质.生物化学与生物物理进展,1990,17(5): 380~383
    [28]周一,严自正,张树正.嗜热链霉菌过氧化氢酶的纯化及性质研究.微生物学报,1990,30(5): 336~343
    [29]张心齐,薛燕芬,赵爱民,等.嗜碱芽孢杆菌Bacillus sp F26过氧化氢酶的分离纯化及性质研究.生物工程学报,2005,121(1): 71~77
    [30]田荟琳,张坤生.猪血中过氧化氢酶提取及其性质研究.食品科学, 2006, 27(12): 311~314
    [31]张尔贤,吴丹奇,俞丽君,等.猪血过氧化氢酶的纯化及其某些性质研究.药物生物技术,1994,1(2): 5~8
    [32]邓向军,余筱洁.苹果过氧化氢酶的纯化及性质研究.食品科技,2006,31(11): 66~68
    [33]肖湘,邓瑞鹏,陈芝兰,等.牡蛎和泥蚶过氧化氢酶的性质比较.食品科学,2003,24(9): 32~34
    [34]林少琴,兰瑞芳,余萍,等.贻贝过氧化氢酶的纯化及部分性质.食品科学, 2000, 21(11): 22~24
    [35]徐炜虹,杨齐衡,路英华,等.蚯蚓过氧化氢酶纯化及性质.华东师范大学学报(自然科学版),1996,4: 95~101
    [36]耿风廷,赵晓瑜,高珊.人过氧化氢酶基因在大肠杆菌中的克隆与表达.科技信息(学术研究),2007,15: 77~78
    [37]王凡强,王正祥,邵蔚蓝,等.重组大肠杆菌热稳定性过氧化氢酶的纯化及性质研究.微生物学报,2002,42(3): 348~353
    [38]白杨,张亚历,王继德,等.幽门螺杆菌过氧化氢酶基因的克隆、高效表达及活性评价.中华消化杂志,2002,22(4): 203~205
    [39]华兆哲,燕国梁,堵国成,等.枯草杆菌Bacillus sp F26产过氧化氢酶的发酵条件.食品与生物技术学报,2007,26(1): 77~83
    [40]段绪果,沈微,李艳丽,等.耐热过氧化氢酶基因工程菌的构建及其发酵条件.食品与生物技术学报,2006,25(2): 74~78
    [41]曹翔宇,华兆哲,燕国梁,等.过氧化氢酶发酵生产条件优化及在染整清洁生产中的应用研究.工业微生物,2006,36(4): 7~12
    [42]方芳,李寅,堵国成,等.一株嗜热子囊菌产生的碱性耐热过氧化氢酶及其应用潜力.生物工程学报,2004,20(3): 423~428
    [43]洪海军,许赣荣.产过氧化氢酶菌株培养条件的优化.无锡轻工大学学报, 2004, 23(6): 85~89
    [44]陆挺,汪成富,戴英,等.过氧化氢酶发酵性能的研究.苏州大学学报(自然科学版),2001,17(3): 95~97
    [45]刘建忠,翁丽萍,计亮年.表面响应法优化黑曲霉过氧化氢酶的发酵工艺.微生物学通报,2O02,29(5): 17~21
    [46]王凡强,王正祥,邵蔚蓝,等.热稳定性过氧化氢酶工程菌株发酵条件的研究.食品与发酵工业,2002,28(2): 11~14
    [47]周一,严自正,卢运玉,等.耐热过氧化氢酶产生菌的筛选和发酵条件的研究.微生物学报,1990,30(3): 223~227
    [48] Carpena X, Soriano M, Klotz M G, et al. Structure of the clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 ? resolution. Proteins Struct Funct Genet, 2003, 50(3): 423-436
    [49] Hara I, Ichise N, Kojima K, et al. Relationship between the size of the bottleneck 15 ? from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates. Biochemistry, 2007, 46(1): 11~22
    [50] Alfonso-Prieto M, Borovik A, Carpena X, et al. The structures and electronic configuration of compound I intermediates of Helicobacter pylori and Penicillium vitale catalases determined by X-ray crystallography and QM/MM density functional theory calculations. J Am Chem Soc, 2007, 129 (14): 4193~4205
    [51] Melik-Adamyan W, Bravo J, Carpena X, et al. Substrate flow in catalases deduced from the crystal structures of active site variants of HPII from Escherichia coli. Proteins Struct Funct Genet, 2001, 44(3): 270~281
    [52] Díaz A, Horjales E, Rudino-Pinera E, et al. Unusual Cys-Tyr covalent bond in a large catalase. J Mol Biol, 2004, 342(3): 971~985
    [53] Ko T-P, Day J, Malkin A J, et al. Structure of orthorhombic crystals of beef liver catalase. Acta Crystallogr, 1999, D55(8): 1383~1394
    [54] Murshudov G N, Grebenko A I, Brannigan J A, et al. The structures of Micrococcus lysodeikticus catalase, its ferryl intermediate (compound II) and NADPH complex. Acta Crystallogr, 2002, D58(12): 1972~1982
    [55] Andreoletti P, Pernoud A, Sainz G, et al. Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid. Acta Crystallogr, 2003, D59(12): 2163~2168
    [56] MatéM J, Zamocky M, Nykyri L M, et al. Structure of catalase-A from Saccharomyces cerevisiae. J Mol Biol, 1999, 286(1): 135~149
    [57] Putnam C D, Arvai A S, Bourne Y, et al. Active and inhibited human catalase sturctures: ligand and NADPH binding and catalytic mechanism. J Mol Biol, 2000, 296(1): 295~309
    [58] H?kansson K O, Brugna M, Tasse L. The three-dimensional structure of catalase from Enterococcus faecalis. Acta Crystallogr, 2004, D60(8): 1374~1380
    [59] Riise E K, Lorentzen M S, Helland R, et al. The first structure of a cold-active catalase from Vibrio salmonicida at 1.96 ? reveals structural aspects of cold adaptation. Acta Crystallogr, 2007, D63(2): 135~148
    [60] Yamada Y, Fujiwara T, Sato T, et al. The 2.0 ? crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat Struct Biol, 2002, 9(9): 691~695
    [61] Carpena X, Loprasert S, Mongkolsuk S, et al. Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7 ? resolution. J Mol Biol, 2003, 327(2): 475~489
    [62] Bertrand T, Eady N A J, Jones J N, et al. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J Biol Chem, 2004, 279(37): 38991~38999
    [63] Wada K., Tada T, Nakamura Y, et al. Crystallization and preliminary X-ray diffraction studies of catalase-peroxidase from Synechococcus PCC 7492. Acta Cryst, 2002, D58(1): 157~159
    [64] Barynin V V, Whittaker M M, Antonyuk S V, et al. Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 2001, 9(8): 725~738
    [65] Antonyuk S V, Melik-Adamyan V R, Popov A N, et al. Three-dimentional structure of the enzyme dimanganese catalase from Thermus thermophilus at 1 angstrom resolution. Crystallogr Rep, 2000, 45(1): 105~116
    [66] Bravo J, MatéM J, Schneider T, et al. Structure of catalase HPII from Escherichia coli at 1.9 ? resolution. Proteins Struct Funct Genet, 1999, 34(2): 155~166
    [67] Ueda M, Kinoshita H, Maeda S I, et al. Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding and activity expression. Appl Microbiol Biotechnol, 2003, 61(5-6): 488~494
    [68] Chelikani P, Donald L J, Duckworth H W, et al. Hydroperoxidase II of Escherichia coli exhibits enhanced resistance to proteolytic cleavage compared to other catalases. Biochemistry, 2003, 42(19): 5729~5735
    [69] Chelikani P, Carpena X, Perez-Luque R, et al. Characterization of a large subunit catalase truncated by proteolytic cleavage. Biochemistry, 2005, 44(15): 5597~5605
    [70] Loewen P C, Switala J, von Ossowski I, et al. Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry, 1993, 32(38): 10159~10164
    [71] Andreoletti P, Sainz G, Jaquinod M, et al. High resolution structure and biochemical properties of a recombinant Proteus mirabilis catalase depleted in iron. Proteins, 2003, 50(2): 261~271
    [72] Hillar A, Nicholls P, Switala J, et al. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Biochem J, 1994, 300(2): 531~539
    [73] Kirkman H N, Gaetani G F. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci, 2007, 32(1): 44~50
    [74] Heck D E, Vetrano A M, Mariano T M, et al. UVB light stimulates production of reactive oxygen species: Unexpected role for catalase. J Biol Chem, 2003, 278(25): 22432~22436
    [75] Vetrano A M, Heck D E, Mariano T M, et al. Characterization of the oxidase activity in mammalian catalase. J Biol Chem, 2005, 280(42): 35372~35381
    [76] Kalko S G, Gelpi J L, Fita I, et al. Theoretical study of the mechanisms of substrate recognition by catalase. J Am Chem Soc, 2001, 123(39): 9665~9672
    [77] Chelikani P, Carpena X, Fita I, et al. An electrical potential in the access channel of catalases enhances catalysis. J Biol Chem, 2003, 278(33): 31290~31296
    [78] Chelikani P, Ramana T, Radhakrishnan T M. Catalase: a repertoire of unusual features. Indian J Clin Biochem, 2005, 20(2): 131~135
    [79] Huang X, Holden H M, Raushel F M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem, 2001, 70: 149~180
    [80] Smulevich G, Jakopitsch C, Droghetti E, et al. Probing the structure and bifunctionality of catalase-peroxidase (KatG). J Inorg Biochem, 2006, 100 (4): 568~585
    [81] Passardi F, Zamocky M, Favet J, et al. Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos? Gene, 2007, 397(1-2): 101~113
    [82] Baker R D, Cook C O, Goodwin D C. Properties of catalase–peroxidase lacking its C-terminal domain. Biochem Biophys Res Commun, 2004, 320(3): 833~839
    [83]陈祥勤,袁人星.生物酶除氧剂在棉针织物精练氧漂一浴工艺中的应用探讨.针织工业, 1997, 3: 43~46
    [84]范梅,王学福.脱氧酶在棉针织物前处理工艺中的应用.针织工业, 2000,6: 61
    [85]张瑞萍.过氧化氢酶在棉针织物漂染工艺中的应用研究.印染, 2000, 26(8): 12~14
    [86]何照兴,袁军.过氧化氢酶的应用与实践.印染,2001,27(5): 29~30
    [87]王天淼.棉针织物漂染清洁生产工艺措施探讨.针织工业,2001,6: 46~48
    [88]吴学君,程志斌,王宜田.特白棉针织物生产工艺研究.印染助剂,2002,19(5):43~45
    [89]冷晒祥,钱国坻,华兆哲,等.过氧化氢酶的棉针织物漂染工艺研究.印染,2006,32(19): 1~3
    [90]徐刚.过氧化氢酶在染纱生产中的应用.纺织科技进展,2005,2: 29~30
    [91]董颀,张利英,何鹰.除氧酶G在棉纱线染整中的应用.印染,2006,32(15): 33~35
    [92] Amorim A M, Gasques M D G, Andreaus J, et al. The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. An Acad Bras Cienc, 2002, 74(3): 433~436
    [93] Aehle W主编,工业酶——制备与应用(林章凛,李爽译).北京:化学工业出版社,2005. 209~210
    [94] Paar A, Costa S, Tzanov T, et al. Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. J Biotechnol, 2001, 89(2-3): 147~153
    [95] Fruhwirth G O, Paar A, Gudelj M, et al. An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Appl Microbiol Biotechnol, 2002, 60(3): 313~319
    [96] Costa S A, Tzanov T, Paar A, et al. Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme Microbial Technol, 2001, 28(9-10): 815~819
    [97] Paar A, Raninger A, de Sousa F, et al. Production of catalase-peroxidase and continuous degradation of hydrogen peroxide by an immobilised alkalothermophilic Bacillus sp.. Food Technol Biotechnol, 2003, 41(2): 101~104
    [98] Oh S-H, Yu H-J, Kim M-S, et al. Biodegradation of hydrogen peroxide in semiconductor industrial wastewater with catalase from Micrococcus sp. J Food Sci Nutr, 2002, 7(1): 33~36
    [99] Yoon D S, Won K, Kim Y H, et al. Continuous removal of hydrogen peroxide with immobilised catalase for wastewater reuse. Water Sci Technol, 2007, 55(1-2): 27~33
    [100]王璋主编.食品酶学.北京:中国轻工业出版社,1990. 17
    [101]何国庆,丁立孝主编.食品酶学.北京:化学工业出版社,2006. 218~272
    [102] Tarhan L. Use of immobilized catalase to remove H2O2 used in the sterilization of milk. ProcessBiochem, 1995, 30(7): 623~628
    [103]范孝用,戴平.葡萄糖氧化酶和过氧化氢酶体系在牛奶保鲜中的应用.中国食品工业,1999,2:24~27
    [104]相沢孝亮,小野正之,手塚隆久,等.酶应用手册(黄文涛,胡学智译).上海:上海科学技术出版社,1989. 385~387
    [105]薛细平,陈荣,赵一兵,等.过氧化氢酶的荧光法测定及其在海洋环境污染评估中的应用.厦门大学学报:自然科学版,2003,42(1): 83~86
    [106]东秀珠,蔡妙英,等编.常见细菌系统鉴定手册.北京:科学出版社,2001. 353~388
    [107] Fukui M, Kanoh M, Takamatsu Y, et al. Analysis of serum catalase activities in pancreatic diseases. J Gastroenterol, 2004, 39(5): 469~474
    [108] Ala?am A, Tulunoglu ?, Oygür T, et al. Effects of topical catalase application on dental pulp tissue: a histopathological evaluation. J Dent, 2000, 28(5): 333~339
    [109] Gu J S, Wang Y X, Jiao Q. Effect of catalase on biocatalytic synthesis of pyruvate by enzymes from Pseudomonas sp. Chinese Chem Lett, 2004, 15(11): 1299~1302
    [110] Shi X, Feng M, Zhao Y, et al. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis. Biotechnol Lett, 2008, 30(1): 181~186
    [111] Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol, 2003, 1(12): 200~208
    [112] Auman A J, Breezee J L, Gosink J J, et al. Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol, 2006, 56(5): 1001~1007
    [113] Morita R Y. Psychrophilic bacteria. Bacteriol Rev, 1975, 39(2): 144~167
    [114] Cavicchioli R. Cold-adapted archaea. Nat Rev Microbiol, 2006, 4(5): 331~343
    [115] Morgan-Kiss R M, Priscu J C, T Pocock, et al. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev, 2006, 70(1): 222~252
    [116] Margesin R. Neuner G, Storey K. B. Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften, 2007, 94(2): 77~99
    [117] Saunders N F, Thomas T, Curmi P M, et al. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res, 2003, 13(7): 1580~1588
    [118] Noon K R, Guymon R, Crain P F, et al. Influence of temperature on tRNA modification in Archaea: Methanococcoides burtonii (optimum growth temperature [Topt], 23°C) and Stetteria hydrogenophila (Topt, 95°C). J Bacteriol, 2003, 185(18): 5483~5490
    [119] Giaquinto L, Curmi P M, Siddiqui K S, et al. Structure and function of cold shock proteins in archaea. J Bacteriol, 2007, 189(15): 5738~5748
    [120] Georlette D, Blaise V, Collins T, et al. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev, 2004, 28(1): 25~42
    [121] Ruisi S, Barreca D, Selbmann L, et al. Fungi in Antarctica. Rev Environ Sci Biotechnol, 2007, 6(1-3): 127~141
    [122] Marx J C, Collins T, D’Amico S, et al. Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol, 2007, 9(3): 293~304
    [123] Feller G, Narinx E, Arpigny J L, et al. Enzymes from psychrophilic organisms. FEMS Microbiol Rev, 1996, 18(2-3): 189~202
    [124] Siddiqui K S, Cavicchioli R. Cold-adapted enzymes. Annu Rev Biochem, 2006, 75: 403~433
    [125] Hoyoux A, Blaise V, Collins T, et al. Extreme catalysts from low-temperature environments. J Biosci Bioeng, 2004, 98(5): 317~330
    [126] Lonhienne T, Gerday C, Feller G. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta, 2000, 1543(1): 1~10
    [127] Feller G. Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci, 2003, 60(4): 648~662
    [128] D’Amico S, Collins T, Marx J-C, et al. Psychrophilic microorganisms: challenges for life. EMBO reports, 2006, 7(4): 385~389
    [129] Gillis M, Vandamme P, De Vos P, et al. Polyphasic Taxonomy. In: Brenner D J, Krieg N R, Staley J T, eds. Bergey’s Manual Of Systematic Bacteriology, 2nd ed. Vol. 2. The Proteobacteria, Part A Introductory Essays. New York: Springer Science Business Media, Inc., 2005. 43~48
    [130] Keller M, Zengler K. Tapping into microbial diversity. Nat Rev Microbiol, 2004, 2(2): 141~150
    [131] L'Haridon S, Reysenbach A.-L, Tindall B J, et al. Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 2006, 56(12): 2843~2852
    [132] Nunoura T, Oida H, Miyazaki M, et al. Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol, 2007, 57(3): 467~471
    [133] Moussard H, L'Haridon S, Tindall B J, et al. Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol, 2004, 54(1): 227~233
    [134] Mori K, Kakegawa T, Higashi Y, et al. Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. Int J Syst Evol Microbiol, 2004, 54(5): 1561~1566
    [135] Miroshnichenko M L, Slobodkin A I, Kostrikina N A, et al. Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol, 2003, 53(5): 1637~1641
    [136] Nunan L M, Lightner D V, Oduori M A, et al. Spiroplasma penaei sp. nov., associated with mortalities in Penaeus vannamei, Pacific white shrimp. Int J Syst Evol Microbiol, 2005, 55(6): 2317~2322
    [137] Cho J C, Vergin K L, Morris R M, et al. Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol, 2004, 6(6): 611~621
    [138] Schlesner H, Rensmann C, Tindall B J, et al. Taxonomic heterogeneity within the Planctomycetales as derived by DNA-DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol, 2004, 54(5): 1567~1580
    [139] Yoon J, Oku N, Matsuda S, et al. Pelagicoccus croceus sp. nov., a novel marine member of the family Puniceicoccaceae within the phylum‘Verrucomicrobia’isolated from seagrass. Int J Syst Evol Microbiol, 2007, 57(12): 2874~2880
    [140] Rappe M S, Giovannoni S J. The uncultured microbial majority. Annu Rev Microbiol, 2003, 57: 369~394
    [141] Taylor M W, Radax R, Steger D, et al. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev, 2007, 71(2): 295~347
    [142] Tindall B J. Prokaryotic diversity in the Antarctic: The tip of the iceberg. Microb Ecol, 2004, 47(3): 271~283
    [143] Murray A E, Grzymski J J. Diversity and genomics of Antarctic marine micro-organisms. Phil Trans R Soc B, 2007, 362(1488): 2259~2271
    [144] Abele D, Ferreyra G A, Schloss I. H2O2 accumulation from photochemical production and atmospheric wet deposition in Antarctic coastal and off-shore waters of Potter Cove, King George Island, South Shetland Islands. Antarct Sci, 1999, 11(2): 131~139
    [145] Hernandez E, Ferreyra G A, MacCormack W P. Effect of solar radiation on two Antarctic marine bacterial strains. Polar Biol, 2002, 25(6): 453~459
    [146]施特尔马赫B.酶的测定方法(钱嘉渊译).北京:中国轻工业出版社,1992. 186~193
    [147] Beers R F Jr., SizerI W. A spectrophotometric method for measuring the break down of hydrogen peroxide by catalase. J Biol Chem, 1952, 195 (1): 276~287
    [148] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding. Anal Biochem, 1976, 72 (1-2): 248~254
    [149] Gerhardt P主编.普通细菌学方法手册(厦门大学生物系微生物学教研室译).厦门:厦门大学出版社,1989. 511~545
    [150] Halebian S, Harris B, Finegold S M, et al. Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clinical Microbiol, 1981, 13(3): 444~448
    [151] Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Microbial ID, Inc., Newark, DE, USA. 2006.
    [152] Stránsky K, Jursík T, Vitek A. Standard equivalent chain length values of monoenic and polyenic (methylene interrupted) fatty acids. J High Resol Chromatogr, 1997, 20(3): 143~158
    [153] Stránsky K, Jursík T, Vitek A, et al. An improved method of characterizing fatty acids by equivalent chain length values. J High Resol Chromatogr, 1992, 15(11): 730~740
    [154]奥斯伯F M,布伦特R,金斯顿R E,等.精编分子生物学实验指南(颜子颖,王海林译).北京:科学出版社,1998. 39~42
    [155] Chun J, Lee J-H, Jung Y, et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol, 2007, 57(10): 2259~2261
    [156] Thompson J D, Gibson T J, Plewniak F, et al. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25(24): 4876~4882
    [157] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24(8): 1596~1599
    [158] Tavares F, Bernardo L, Sellstedt A. Identification and expression studies of a catalase and a bifunctional catalase-peroxidase in Frankia strain R43. Plant Soil, 2003, 254(1): 75~81
    [159] T?ubel M, K?mpfer P, Buczolits S, et al. Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int J Syst Evol Microbiol, 2003, 53(3): 725~730
    [160] Shivaji S, Suresh K, Chaturvedi P, et al. Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int J Syst Evol Microbiol, 2005, 55(3): 1123~1127
    [161] Zhang T, Fan X, Hanada S, et al. Bacillus macauensis sp. nov., a long-chain bacterium isolated from a drinking water supply. Int J Syst Evol Microbiol, 2006, 56(2): 349~353
    [162] De Clerck E, Rodríguez-Díaz M, Vanhoutte T, et al. Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol, 2004, 54(3): 941~946
    [163] Karentz D, Bosch I. Influence of ozone-related increases in ultraviolet radiation on Antarctic marine organisms. Am Zool, 2001, 41(1): 3~16
    [164]唐丹玲,唐文胜.产过氧化氢酶的乳酸菌的筛选和产酶条件的研究.食品与发酵工业,1992,6:30~33
    [165] Knauf H J, Vogel R F, Hammes W P. Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol, 1992, 58(3): 832~839
    [166] Yoon J H, Kim I G, Kang K H, et al. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol, 2003, 53(5): 1297~1303
    [167] Yoon J H, Kim I G, Kang K H, et al. Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. Int J Syst Evol Microbiol, 2004, 54(3): 803~808
    [168] Rodrigues D F, Tiedje J M. Coping with our cold planet. Appl Environ Microbiol, 2008, 74(6): 1677~1686
    [169] Nedashkovskaya O I, Vancanneyt M, Dawyndt P, et al. Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov. Int J Syst Evol Microbiol, 2005, 55 (3): 1033~1038
    [170] Van Trappen S, Tan T-L, Yang J, et al. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol, 2004, 54 (4): 1157~1163
    [171] Logan N A, Lebbe L, Hoste B, et al. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol, 2000, 50(5): 1741~1753
    [172] Logan N A, Lebbe L, Verhelst A, et al. Bacillus luciferensis sp.nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol, 2002, 52(6): 1985~1989
    [173] Logan N A, Lebbe L, Verhelst A, et al. Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol, 2004, 54(2): 373~376
    [174] Euzéby J P. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol, 1997, 47(2): 590~592 (List of Prokaryotic names with Standing in Nomenclature. Full update September 04, 2007. URL: http://www.bacterio.net)
    [175] Ash C, Farrow J A E, Wallbanks S, et al. Phylogenetic heterogeneity of the genus Bacillus as revealed by comparative analysis of small-subunit ribosomal-RNA sequences. Lett Appl Microbiol, 1991, 13(4): 202~206
    [176] Priest F G, Goodfellow M, Todd G. A numerical classification of the genus Bacillus. J Gen Microbiol,1988, 134(7): 1847~1882
    [177] Garrity G M, Lilburn T G, Cole J R, et al. Taxonomic outline of the Bacteria and Archaea, release 7.7. Michigan State University Board of Trustees, 2007. 333~398
    [178] Goto K, Omura T, Hara Y, et al. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol, 2000, 46(1): 1~8
    [179] Xu D, C?téJ-C. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S–23S ITS nucleotide sequences. Int J Syst Evol Microbiol, 2003, 53(3): 695~704
    [180] Stamatakis A. RAxML-VI-HPC maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006, 22(21): 2688~2690
    [181] Ronquist F, Huelsenbeck J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19(12): 1572~1574
    [182] Holder M, Lewis P O. Phylogeny estimation, traditional and bayesian approaches. Nat Rev Genet, 2003, 4(4): 275~284
    [183] Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser, 1999, 41: 95~98
    [184] Posada D, Crandall K A. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817~818
    [185] Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 1993, 10(3): 512~526
    [186] TavaréS. Some probabilistic and statistical problems in the analysis of DNA sequences. Lec Math Life Sci, 1986, 17: 57~86
    [187] Moreira D, von der Heyden S, Bass D, et al. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol, 2007, 44(1): 255~266
    [188] Zhang L, Xu Z, Patel B K C. Bacillus decisifrondis sp. nov., isolated from soil underlying decaying leaf foliage. Int J Syst Evol Microbiol, 2007, 57(5): 974~978
    [189] La Duc M T, Satomi M, Venkateswaran K. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol, 2004, 54(1): 195~201
    [190] Rheims H, Fruhling A, Schumann P, et al. Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol, 1999, 49(2): 795~802
    [191] Nicolaus B, Lama L, Esposi E, et al. "Bacillus thermoantarcticus" sp. nov., from Mount Melbourn, Antarctica: a novel thermophilic species. Polar Biol, 1996, 16(2): 101~104
    [192] Nielsen P, Rainey F A, Ottrup H, et al. Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett, 1994, 117(1): 61~65
    [193] Santini J M, Streimann I C A, vanden Hoven R N. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol, 2004, 54(6): 2241~2244
    [194] Ghosh A, Bhardwaj M, Satyanarayana T, et al. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol, 2007, 57(2): 238~242
    [195] Nowlan B, Dodia M S, Singh S P, et al. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol, 2006, 56(5): 1073~1077
    [196] Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol, 2005, 55(6): 2309~2315
    [197] Lim J-M, Jeon C O, Kim C-J. Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol, 2006, 56(12): 2903~2908
    [198] Lim J-M, Jeon C O, Lee S-M, et al. Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol, 2006, 56(2): 373~ 377
    [199] Wang Q, Li W, Liu Y, et al. Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol, 2007, 57(5): 1143~1147
    [200] Bonjour F, Aragno M. Bacillus tusciae, a new species of thermoacidophilic, facultativelychemolithoautotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch Microbiol, 1984, 139(4): 397~401
    [201] Kitahara K, Suzuki J. Sporolactobacillus nov. subgen. J Gen Appl Microbiol, 1963, 9(1): 59~71
    [202] Boone D R, Liu Y, Zhao Z-J, et al. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol, 1995, 45(3): 441~448
    [203] Combet-Blanc Y, Ollivier B, Streicher C, et al. Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol, 1995, 45(1): 9~16
    [204] Yoon J-H, Kang S S, Lee K C, et al. Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evol Microbiol, 2001, 51(4): 1511~1520
    [205] Cavicchioli R, Siddiqui K S, Andrews D, et al. Low-temperature extremophiles and their applications. Curr Opin Biotechnol, 2002, 13(3): 253~261
    [206] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680~685
    [207] Woodbury W, Spencer A K, Stahman M A. An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem, 1971, 44 (1): 301~305
    [208] Klassen G R, Loewen P C, Klotz M G. Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol, 1997, 14 (9): 951~958
    [209] Lopez-Medrano R, Ovejero M C, Calera J A, et al. An immunodominant 90-kilodalton Aspergillus fumigatus antigen is the subunit of a catalase. Infect Immun, 1995, 63(12): 4774~4780
    [210] Calera J A, Sanchez-Weatherby J, Lopez-Medrano R, et al. Distinctive properties of the catalase B of Aspergillus nidulans. FEBS Lett, 2000, 475(2): 117~120
    [211] Wasserman B P, Hultin H O. Effect of deglycosylation on the stability of Aspergillus niger catalase. Arch Biochem Biophys, 1981, 212(2): 385~392
    [212] Switala J, O'Neil J O, Loewen P C. Catalase HPII from Escherichia coli exhibits enhanced resistance to denaturation. Biochemistry, 1999, 38(13): 3895~3901
    [213] D’Amico S, Marx J C, Gerday C, et al. Activity stability relationships in extremophilic enzymes. J Biol Chem, 2003, 278(10): 7891~7896
    [214] Aydemir T, Kuru K. Purification and partial characterization of catalase from chicken erythrocytes and the effect of various inhibitors on enzyme activity. Turk J Chem, 2003, 27(1): 85~97
    [215] Jacob G S, Orme-Johnson W H. Catalase of Neurospora crassa. 1. Induction, purification, and physical properties. Biochemistry, 1979, 18(14): 2967~2975
    [216] Latyshko N V, Gudkova L V. The kinetic and catalytic properties of Penicillium vitale catalase. Ukr Biokhim Zh, 1996, 68(2): 69~73
    [217] Fusho Y, Yajima Y. Catalase from Bacillus subtilis IAM 1026 (Ferm BP-4844). US Patent 5486467, 1996
    [218] Ni J, Tokuyama S, Sogabe A, et al. Cloning and high expression of catalase gene from bacillus sp. TE124. J Biosci Bioeng, 2001, 91(4): 422~424
    [219] Seaver L C, Imlay J A. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol, 2001, 183(24): 7182~7189
    [220] Egidius E, Wiik R, Andersen K, et al. Vibrio salmonicida sp. nov., a new fish pathogen. Int J Syst Bacteriol, 1986, 36(4): 518~520

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700