用户名: 密码: 验证码:
沙子口湾及其邻近水域渔业生物多样性的调查研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据2006年5月~2007年5月逐月采集青岛沙子口近海作业的定置网具渔获物的分析与测定,记述了该海区出现的98种渔业生物,并进行了定置网渔获物组成的分析,分析了种类组成特点及生物多样性的季节化情况。结果表明,本调查区域渔获物以小型低值鱼类、经济无脊椎动物和经济幼鱼为主,渔获个体偏小。据此提出了保护近海生物多样性与合理利用近海渔业资源的一些建议。
     本研究的主要结果如下:
     (1)沙子口湾及其邻近水域共出现98种渔业生物,其中鱼类56种,甲壳类28种,头足类6种,其他种类8种。
     (2)调查中捕获56种鱼类全部为硬骨鱼类。其中暖温性种占47%,暖水性种占32%,冷温性种占21%;定居型鱼类占52%,洄游型鱼类48%;中上层鱼类占16%,底层、近底层鱼类占84%。共捕获甲壳类28种,主要以鹰爪虾、葛氏长臂虾、日本鼓虾、鲜明鼓虾和双斑蟳为主。共捕获头足类6种,主要以短蛸、长蛸和日本枪乌贼为主。
     (3)本调查区域优势种以小型低值鱼类(鳀鱼、赤鼻棱鳀、玉筋鱼、方氏云鳚等)、经济无脊椎动物(鹰爪虾、口虾蛄、葛氏长臂虾、短蛸、长蛸)和经济幼鱼(小黄鱼)为主,以上优势种交替出现构成渔汛季节的主要生产捕捞对象。
     (4)生物多样性指数的计算结果表明,2006年8月渔业生物种类数出现最多,为31种,2006年12月出现最少,为20种;以重量计Margalef种类丰富度指数D以2006年6月最高,之后为2007年1月和5月,2006年9月最低;以重量计均匀度J'以2006年12月最高,5月最低;以重量计多样性指数H' 2007年1月最高,2006年5月最低
     (5)对主要渔业生物体长组成和体重组成的分析结果表明,小黄鱼、叫姑鱼、绿鳍鱼、鹰爪虾、口虾蛄等渔获个体偏小,主要以当年生幼鱼和小虾为主。
The paper is based on the setnet catch data in ShaZiKou Bay and its neighbouring waters from May, 2006 to May, 2007. There were 99 species recorded. The catch composition of the setnet fishing gear were analyzed, the seasonal variations of biodiversity were analyzed. The results showed that the catches in the study area consisted of juveniles of the commercial fishes, small low-value fishes, and commercial invertebrates. The fish sizes were generally small. On the basis of the results, we made some suggestions to conserve the near-shore biodiversity and to rationally utilize the coastal fishery resources.
     The most important results are as follows:
     (1) There are 98 species recorded in the ShaZiKou Bay and its neighboring waters, including 56 fish species, 28 crustacean species , 6 cephalopod species and 8 other species.
     (2) In this investigation, 56 fish species are caught, with warm temperature species, warm water species and cold temperature species accounting for 47.0%, 32.0% and 21.0%. The settling species and the migratory species account for 52.0% and 48.0%. The pelagic species accounts for 16.0%, while the demersal species amounts to 84.0%. 28 crustacean species are caught, and the main species are Trachypenaeus curvirostris, Palaemon gravieri, Alpheus japonicus, Alpheus heterocarpus and charybdis bimaculata. 6 cephalopod species are caught, and the main species are Octopus ocellatus ,Octopus variabilis and Loligo japonica.
     (3) The dominant species in the study area consist of small low-value fishes (such as Engraulis japanicus, Thryssa kammalensis, Ammodytes personatus, Enedrias fangi etc.)、commercial invertebrates (such as Trachypenaeus curvirostris, Palaemon gravieri, Octopus ocellatus, Octopus variabilis) and juveniles of commercial fishes (such as Pseudosciaena polyactis, Argyrosomus argentatus). These dominant species appear by turns. They make up the most catches in the fishing seasons.
     (4) The number of species are the largest in August 2006, with the number of 31, while the number of species are the smallest in December 2006 with the number of 20. The species richness index (D) is highest in June 2006 (2.927) and lowest in September 2006 (2.200). When it comes to Shannon-Wiener index (H'), the highest value appears in January 2007 (2.479), and the lowest value appears in May 2006 (1.673). When the species evenness index (J') is concerned, it is highest in December 2006 (0.800) and lowest in May 2006 (0.533).
     (5) The length composition and weight composition of the catch are studied. The results show that the sizes of individuals of Pseudosciaena polyactis, Johnius belengeri, Chelidonichthys kumu, Trachypenaeus, Oratosquilla oratoria are very small, most of which are juveniles and small shrimps.
引文
[1]王文海等.中国海湾志(第四分册).北京:科学出版社,1993. 6-7.
    [2]陈大刚.黄渤海渔业生态学.北京:海洋出版社,1991.99-111.
    [3]陈大刚.渔业资源生物学.北京:中国农业出版社,1997.
    [4]刘效舜.黄渤海区渔业资源调查与区划.北京:海洋出版社,1990.
    [5]赵传絪.刘效舜.中国海洋渔业资源.浙江科学技术出版社,1990年,第一版.4-23
    [6]成庆泰,郑葆珊.中国鱼类系统检索(上、下册).北京:科学出版社,1987.
    [7]程济生.东、黄海冬季底层鱼类群落结构及其多样性.海洋水产研究,2000,21(3):1-8.
    [8]邓景耀,赵传絪.海洋渔业生物学.北京:农业出版社,1991.
    [9]东海水道研究所《东海深海鱼类》编写组.东海深海鱼类.上海:学林出版社,1988. 156-157.
    [10]费鸿年,何宝全等.南海北部大陆架底栖鱼类群聚的多样性及优势种区域和季节化.水道学报,1981,5(1):1-20.
    [11]冯昭信.鱼类学.北京:中国农业出版社,1998.
    [12]古丽亚诺娃,E.Φ.,刘瑞玉等.黄海潮间带生态学研究.中国科学院海洋生物研究所丛刊,1958,1(2):1~41.
    [13]农业部水产局编.黄渤海区渔业资源调查与区划.海洋出版社.1990年,第一版.57-67
    [14]金显仕,邓景耀.莱州湾渔业资源群落结构和生物多样性的化.生物多样性,2000,8(1):65-72.
    [15]金显仕.黄东海渔业资源群落结构与优势种交替. //唐启升,苏纪兰.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000. 62-66.
    [16]金显仕.黄海小黄鱼生态和种群动态的研究.中国水产科学,1996,3(1):32-46.
    [17]李凡,张铭汉,宋怀龙.沉积环境. //刘瑞玉.胶州湾生态学和生物资源.北京:科学出版社,1992.4-19.
    [18]刘瑞玉.胶州湾生态学和生物资源.北京:科学出版社,1992.
    [19]马克平.生物群落多样性的测度方法. //中国科学院生物多样性委员会,生物多样性研究系列专著1生物多样性研究的原理与方法.北京:中国科学技术出版社出版,1994. 141-165.
    [20]孟庆闻,苏锦祥,缪学祖.鱼类分类学.北京:中国农业出版社,1995.
    [21]邱永松.广东沿岸海域鱼类群落排序.生态学报,1996,16(6):576-583.
    [22]曾晓起,朴成华,等。胶州湾及其邻近水域渔业生物多洋相的调查研究[J]。中国海洋大学学报,2004,34(6):977-982。
    [23]徐宾铎,金显仕,梁振林,2002。黄海夏季不同取样网具渔获物组成比较分析。中国海洋大学学报,32(2)224-230。
    [24]徐宾铎,金显仕,梁振林,2004。黄海鱼类群落分类学多样性的研究。中国海洋大学学报。
    [25]沈金鳌,程炎宏.东海深海底层鱼类群落及其结构的研究.水产学报,1987,11(4):294-306.
    [26]孙儒泳,李庆芬,牛翠娟等.基础生态学.北京:高等教育出版社,2002.
    [27]唐启升,苏纪兰等.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000.
    [28]唐启升,叶懋中.山东近海渔业资源开发与保护.北京:农业出版社,1990.
    [29]吴鹤洲,成贵书,王新成等.鱼类资源结构及生物学特征. //刘瑞玉.胶州湾生态学和生物资源.北京:科学出版社,1992. 352-379.
    [30]杜春梅。沙子口湾海水环境容量初步研究。海洋科学,2002年,第26卷,第10期。
    [31]杨德渐,王永良,马绣同等.中国北部海洋无脊椎动物.北京:高等教育出版社,1996.
    [32]郁尧山,张庆生等.浙江北部岛礁周围海域鱼类优势种及其种间关系的初步研究.水产学报,1986,10(2):137-149.
    [33]詹海刚.珠江口及邻近水域鱼类群落结构研究.海洋学报,1998,20(3):91-97.
    [34]张春霖,成庆泰,郑葆珊等.黄渤海鱼类调查报告.北京:科学出版社,1955.
    [35]赵传絪.中国海洋渔业资源.杭州:浙江科学技术出版社,1990.4-1
    [36]朱鑫华,吴鹤洲,徐凤山等.黄渤海沿岸水域游泳动物群落多样性及其相关因素的研究.海洋学报,1994,16(3):102-112.
    [37]朱元鼎,金鑫波.中国杜父鱼类的地理分布和区系特征.海洋与湖沼,1965a,7(3):235-252.
    [38]朱元鼎,伍汉霖.中国鰕虎鱼类动物地理学的初步研究.海洋与湖沼,1965b,7(2):122-140.
    [39]朱元鼎,许成玉.中国鲀形目鱼类的地理分布和区系特征.动物学报,1965c,17(3):320-333.
    [40]朱元鼎,张春霖,成庆泰.东海鱼类志.北京:科学出版社,1963:59-60.
    [41] Bianchi, G.Demersal assemblages of the continental shelf and slope edge between the Gulf of Tehuantejpec (Mexico) and the Gulf of Papagayo (Costa Rica). Marine Ecology Progress Series, 1991, 73: 121-140.
    [42] Bianchi, G.Demersal assemblages of the continental shelf and upper slope of Angola. Marine Ecology Progress Series, 1992, 81: 101-120.
    [43] Bianchi, G., H. Gislason, K. Graham, L. Hill, X. Jin, et al. Impact of fishing on size composition and diversity of demersal fish communities. ICES Journal of Marine Science, 2000, 57: 558-571.
    [44] Blanchard, F. The effect of fishing on demersal fish community dynamics: a hypothesis. ICES Journal of Marine Science, 2001, 58: 711-718.
    [45] Bowering, W.R., Brodie, W.B. Distribution of commercial flatfishes in the Newfoundland-Labrador region of Canadian Northwest Atlantic and changes in certain biological parameters since exploitation. Netherlands Journal of Sea Research, 1991, 27(3/4): 407-422.
    [46] Chen, D.G., Shen, W., Liu, Q., et al. The geographical characteristics and fish species diversity in the Laizhou Bay and Yellow River estuary. Journal of Fisheries Science of China, 2000, 7(3):46-52.
    [47] Clarke, K.R., Warwick, R.M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition. Plymouth: PRIMER-E Ltd, 2001.
    [48] Colvocoresses, J.A., J.A. Musick. Species assemblages and community composition of Middle Atlantic Bight continental shelf demersal fishes. Fishery Bulletin, 1984,82 (2): 295-313
    [49] Day, D.S., W.G., Pearcy. Species associations of benthic fishes on the continental shelf and slope off Oregon. Journal of the Fisheries Research Board of Canada, 1968, 25: 2665-2675.
    [50] Demestre, M., Sanchez, P., Abello, P. Demersal fish assemblages and habitat characteristics on the continental shelf and upper slope of the north-western Mediterranean. Journal of the Marine Biological Association of the United Kingdom, 2000, 80: 981-988.
    [51] Fager, E.W., Longhurst, A.R. Recurrent group analysis of species assemblages of demersalfish in the Gulf of Guinea. Journal of the Fisheries Research Board of Canada, 1968, 25: 1405-1421.
    [52] Fisher, R.A., Corbet, A.S., Williams, C.B. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 1943, 12: 42-58.
    [53] Froese, R., Pauly, D. (Eds.) FishBase 1998: Concepts, Design and Data Sources. ICLARM, Philippines, 1998.
    [54] Froese, R., Pauly, D. (Eds.) Fishbase 2000: Concepts, Design and Data Sources. ICLARM, Philippines, 2000.
    [55] Gabriel, W.L., A.V. Tyler. Preliminary analysis of Pacific coast demersal fish assemblages. Marine Fisheries Review (March-April), 1980, 83-88.
    [56] Gomes, M.C., Serr?o, E., de F.Borges, M. Spatial patterns of groundfish assemblage on the continental shelf of Portugal. ICES Journal of Marine Science, 2001, 58: 633-647.
    [57] Greenstreet, S.P.R.,Spence, F.E., McMillan, J.A. Fishing effects in northeast Atlantic shelf seas: patterns in fishing effort, diversity and community structure. V. Changes in structure of the North Sea groundfish species assemblage between 1925 and 1996. Fisheries Research, 1999, 40: 153-183.
    [58] Haedrich, R.L., Barnes, S.M. Changes over time of the size structure in an exploited shelf fish community. Fisheries Research, 1997, 31: 229-239.
    [59] Heino, M. Management of evolving fish stocks. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55: 1971-1982.
    [60] Heino, M., God?, O.R. Fisheries-induced selection pressures in the context of sustainable fisheries. IIASA Interim Report, IR-02-022, 2002.
    [61] Hill, M.O. Diversity and eveness: a unifying notation and its consequences. Ecology, 1973, 54: 427-432.
    [62] Hurlbert, S.H. The nonconcept of species diversity: a critique and alternative parameters. Ecology, 1971, 52: 577-586.
    [63] Hutchings, J.A. Collapse and recovery of marine fishes. Nature, 2000, 406: 882-885.
    [64] Hutchings, J.A. Myers, R.A. What can be learned from the collapse of a renewable resource? Atlantic cod Gadus morhua of Newfoundland and Labrador. Canadian journalof Fisheries and Aquatic Sciences, 1994, 51: 2126-2146.
    [65] Jin, X. Seasonal changes of the demersal fish community of the Yellow Sea. Asian Fisheries Sciences, 1995, 8: 177-190.
    [66] Jin, X. Variations of fish community structure and ecology of major species in the Yellow/Bohai Sea. PhD thesis. University of Bergen, 1996. 160pp.
    [67] Jin, X., Tang, Changes in fish species diversity and dominant species composition in the Yellow Sea. Fisheries Research, 1996, 26: 337-352.
    [68] Jin, X., Xu, B., Tang, Q. Fish assemblage structure in the East China Sea and southern Yellow Sea during autumn and spring. Journal of Fish Biology, 2003, 62: 1194-1205.
    [69] Law, R. Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science, 2000, 57: 659-668.
    [70] Law, R.Gery, D.R. Evolution of yields from populations with age-specific cropping. Evolutionary Ecology, 1989, 3: 343-359.
    [71] Ludwing J A, Reynolds J F. Statistical Ecology. New York John Wiley & Sons, 1988.
    [72] Magurran, A.E. Ecological diversity and its measurement. London: Chapman & Hall, 1988.
    [73] Margalef, R. Information theory in ecology. General systematics, 1958, 3: 36-71.
    [74] Nelson J.S. Fishes of the World. New York: John Wiely and Sons Inc, 1984.
    [75] Overholtz, W.J., A.V.Tyler. Long-term responses of the demersal fish assemblages of Georges Bank. Fishery Bulletin, 1985, 83(4): 507-520.
    [76] Oviatt, C.A., Nixon, S.W. The demersal fish of Narraganset Bay: an analysis of community structure, distribution, and abundance. Estuarine, Coastal and Shelf Science, 1973, 1: 361-378.
    [77] Pauly, D. Beyond our original horizons: the tropicalization of Beverton and Holt. Reviews in Fish Biology and Fisheries, 1998a, 8: 307-334.
    [78] Pauly, D. Tropical fishes: patterns and propensityies. Journal of Fish Biology, 1998b, 53(suppl): 1-17.
    [79] Pauly, D., Froese, R., Christensen, V. Response to Caddy et al. How pervasive is fishing down marine food webs? Science, 1998, 282: 1384-1386.
    [80] Pielou, E.C. Ecological diversity. New York: Wiley, 1975. 165pp.
    [81] Pinkas, L., Oliphant, M.S., Iverson, I.L.K. Food habits of albacore, bluefin tuna, and bonito in California waters. Fishery Bulletin, 1971, 152: 1-105.
    [82] Rabenold, K.N. Foraging strategies, diversity and seasonality in bird communities of aooalachia spruce-fir forest. Ecological Monographs, 1978, 48: 397-424.
    [83] Sherman, K.L. Sustainability, biomass yields and health of coastal ecosystems: an ecological perspective. Marine Ecology Progress Series, 1994, 112 (3): 277-301.
    [84] Simpson, E.H. Measurement of diversity. Nature, 1949, 112 (3) :277-301.
    [85] Skud, B.E. Dominance in fishes: the relation between environment and abundance. Science, 1982, 216: 144-158
    [86] Stergiou, K.I. Overfishing, tropicalization of fish stocks, uncertainty and ecosystem management: resharpening Ockham’s razor. Fisheries Research, 2002, 55: 1-9.
    [87] Tang, Q., Jin, X. Ecology and variability of resources on economically important pelagic fish in the Yellow Sea and Bohai Sea. // Tang, Q., Sherman, K. (Ed). The large marine ecosystems of the Pacific rim. Switzerland, IVCN, 1996.
    [88] Tyler, A.V. Periodic and resident components in communities of Atlantic fishes. Journal of the Fisheries Research Board of Canada, 1971, 28: 935-946.
    [89] Washington, H.G. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research, 1984, 18(6): 653-694.
    [90] Wilhm J L. Use of biomass units in shannon’s formula. Ecology, 1968, 49: 153-156.
    [91] Yang, J. The dominant fish fauna in the North Sea and its determination. Journal of Fish Biology, 1982, 20: 635-643.
    [92] Zwanenburg, K.C.T. The effects of fishing on demersal fish community of the Scotian Shelf. ICES Journal of Marine Science, 2000, 57: 503-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700