用户名: 密码: 验证码:
高精度垂直摆倾斜仪及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地倾斜测量是研究地壳形变及其固体潮的一种重要手段,它对地球动力学研究和
    地震前兆观测都具有重要意义。高精度垂直摆倾斜仪是第三代具有数字化功能的地壳
    形变连续观测仪器,其特点是体积小、高精度、高稳定性和数字化。它完全可以取代
    传统的水平摆倾斜仪。
    本文围绕高精度垂直摆倾斜仪这一主题,对高精度电容测微传感器,倾斜仪机械
    本体的结构及其零部件,倾斜仪的调摆和标定,以及垂直摆倾斜仪的实际应用等一系
    列问题进行了较为深入的研究。主要研究结果分别为:
    (1)全面系统地论述了高精度电容测微器技术,并提出了数据采集系统和数据处
    理解决方案。
    (2)深入地研究了重要机械零部件和摆系结构,建立了摆系运动的多项数学模
    型。
    (3)首次提出并实现了利用空间多体中心构型概念进行倾斜仪机械整体结构的
    设计,从而最大限度地满足了倾斜仪稳定性要求。
    (4)分析并推导出垂直摆倾斜仪中单向摆体摆动和双向圆柱形单摆体摆动时的
    非线性误差特性。
    (5)首次提出并实现了重块标定的直接标定方法,设计了自动调摆和自动标定机
    构和控制电路。
    (6)建立了数采标定结果的程序自动识别和格值计算的数学模型。
    (7)研究了高精度垂直摆倾斜仪的工作环境和稳定过程,提出了相应技术要求,
    获得了大量有价值的原始记录。
    本文研究工作得到了中国地震局“九五”期间重点研究项目(95-04)的资助。
The measurement of earth tilt is an important method of studying earth crust deformation and its earth tide, which means much to Geodynamics and the observation of earthquake prognostic. Vertical pendulum tiltmeter , which is the third generation continuous observation instrument of earth crust deformation, processes digital function. Its features are small size high precision fine stability and digitize. It can replace traditional horizontal pendulum tiltmeter completely.
    This paper focuses on the subject of high precision vertical pendulum tiltmeter, and studies deeply a series of problems that involve in high precision capacity micrometry sensor, the mechanical structure of the tiltmeter and its parts, adjusting pendulum and calibration of tiltmeter, and practical application of the vertical pendulum tiltmeter. The main studying results are as follows:
    (1) The high precision capacity micrometry device is described all-sided and systematically. The solving scheme of data acquisition system and data processing are put forth.
    (2) The key mechanical parts and the pendulum series structure are deeply studied, and some mathematical models of the pendulum series motion are founded.
    (3) A design method, which applies spatial many-body center configuration concept to the mechanical structure of the tiltmeter, is first presented and realized.
    (4) The nonlinear error feature of unidirectional pendulum and two-way columnar single pendulum in vertical pendulum tiltmeter swinging has been analyzed and derived.
    (5) The direct calibration method of heavy block calibration is first presented and realized. The structures and controlling circuits of automatic adjusting pendulum and automatic calibration are designed.
    (6) The mathematical models, which are automatic program identification of the calibration results of data acquisition and lattice value calculation, are put forth.
    (7) The operating environment and stabilizing process of the high precision vertical pendulum tiltmeter are studied, corresponding technique demands are brought, and a lot of valuable first-hand record is gained.
    China Seismology Bureau "ninth-five" duration emphasis research item(95-04) has endowed the studying works in this paper
引文
1.P.梅尔基奥尔,行星地球的固体潮,科学出版社,北京,1984.
    2.孙其政,陈德福等,地震地形变观测技术,地震出版社,北京,1995.
    3.余瑞芬,传感器原理,航空工业出版社,北京,1995.
    4.王家桢,王俊杰,传感器与变送器,清华大学出版社,北京,1996.
    5.张福学,传感器电子学,国防工业出版社,北京,1991.
    6.金篆芷,王明时,现代传感技术,电子工业出版社,北京,1995.
    7.徐祥和,电子精密机械设计,国防工业出版社,北京,1995.
    8.杨大地,涂光裕,数值分析,重庆大学出版社,重庆,1998.
    9.肖刚,机械CAD原理与实践,清华大学出版社,北京,1999.
    10.胡国庆,蔡亚先,一种高精度电容测微器,地壳变形与地震,Vol.4,No.2,1986.
    11.张勤耕,高精度重力仪的标定及数字化,博士学位论文,地震研究所,1999.
    12.罗俊,万有引力常数G的精确测定,博士学位论文,中科院测量与地球物理研究所,1999.
    13.罗峰,VS型垂直摆倾斜仪的设计及其智能化研究,硕士学位论文,地震研究所,1999.
    14.陈德福,我国地壳形变连续观测的发展和展望,形变学科通讯,Vol.6,No.2,2001.
    15.马鸿均,杨又陵,新疆竖直摆倾斜仪的观测与震兆异常分析,形变学科通讯,Vol.2,No.2,1999.
    16.孙和平,周江存,许厚泽,中国地壳网络基准站倾斜固体潮观测中海潮负荷信号改正问题,地球物理学进展,Vol.16,No.3,2001.
    17.许厚泽,蒋福珍,张赤军,我国动力大地测量学的进展,地球科学进展,Vol.15,No.2,2000.
    18.李旭东,吴静,吴翼麟,倾斜固体潮的响应比研究,地壳变形与地震,Vol.15,No.3,1995.
    19.蒋骏,张雁滨,固体潮理论值一阶微商的解析表达式及拟合检验,地球物理学报,Vol.37,No.6,1994.
    20.杨军,地倾斜的频率响应与潮汐因子,地震学报,Vol.20,No.4,1998.
    21.范淑华,吴书朝,蔡云霞,罗俊,地倾斜固体潮的折叠摆测量方法研究,科学通报,Vol.43,No.17,1998.
    22.罗荣祥,杨慧荣,地倾斜观测资料的归算,西北地震学报,Vol.17,No.1,1995.
    23.高立新,黄根喜,阎海滨,张北-尚义6.2级地震前倾斜与地电阻率异常,地壳变形与地震,Vol.19,No.4,1999.
    24.李辉,李瑞浩,固体潮观测数据的滤波预处理方法,地壳变形与地震,Vol.14,No.1,1994.
    25.任伟中,数字滤波在地裂缝和地形变研究中的应用,岩土力学,Vol.18,No.4,1997.
    26.李明,李珍照,用数字滤波法从大坝测值中分离出时效分量初探,武汉水利电
    
    力大学学报,Vol.28,No.2,1995.
    27.邹自立,蒋芬良,光纤传感器标定曲线拟合与误差分析,光通讯技术,Vol.18,No.1,1995.
    28.万鹏,朱洁,陈贻范,移动平均法的数字滤波特性分析,海洋技术,Vol.16,No.3,1997.
    29.戴逸松,非ARMA随机信号谱估计的数字滤波算法及性能分析,计量学报,Vol.15,No.2,1994.
    30.吕中荣,刘济科,摆的振动分析,暨南大学学报(自然科学版),Vol.20,No.1,1999.
    31.唐孟希,吴书朝,罗俊,单摆摆锤偏心引起的测量误差分析,中山大学学报(自然科学版),Vol.35,No.5,1996.
    32.伊继东,单摆的理论分析研究,云南大学学报(自然科学版),Vol.20,No.2,1998.
    33.谢柏松,单摆运动的同宿轨道分岔、次谐分岔和混沌,北京师范大学学报(自然科学版),Vol.36,No.5,2000.
    34.胡志兴,管克英,复杂双摆的KAM定理,高等应用数学学报,Vol.14,No.2,1998.
    35.李庆波,张树全,邹广平,测定金属丝杨氏模量的一种新方法,大学物理实验,Vol.9,No.3,1996.
    36.向裕民,摆球的二维摆动,重庆大学学报(自然科学版),Vol.23,No.6,2000.
    37.雷澜,刘学飞,一类平面四体的中心构型,重庆师范学院学报,Vol.18,No.3,2001.
    38.高小山,数学机械话进展综述,数学进展,Vol.30,No.5,2001.
    39.李萍,张建平,勾清泉,H_5~-的正四面体中心和正方形中心构型能量的理论计算,原子与分子物理学报,Vol.15,No.2,1998.
    40. Xie Zhifu, Chen Qian, Pyramidal Central Configurations for Spatial 5-Body Problems, J. of Chongqing Univ. (Natural Science Edition), 24(1),122-126,2001.
    41. Liu Xuefei, On Double Pyramidal Central Configuration with Parallelogram Base. J.of Southwest China Normal Univ. (Natural Science Edition), 26(5),521-525,2001.
    42.何少林,郭永霞,李海亮,中国数字地震台网数字化地震数据的仿真处理,西北地震学报,Vol.19,No.3,1997.
    43.牛安福,张北6.2级地震前中短期倾斜形变的阶段性及其实验解释,地震学报,Vol.21,No.1,1999.
    44.宋朝辉,卢锷,吴清文,长条型非球面反射镜轻量化及支撑结构优化研究,高技术通讯,2001.
    45.雷明凯,李有宏,张仲麟,等离子体源离子渗氮1Cr18Ni9Ti奥氏体不锈钢磨损特性的试验研究,摩擦学学报,Vol.17,No.3,1997.
    46.江桂良,杜瑞青,高强度扁钢丝压扁开裂原因分析,金属制品,Vol.27,No.4,2001.
    47.吴海宏,念远征,高强度低松弛扁弹簧钢丝热处理工艺研究,金属制品,Vol.22,No.6,1996.
    48.李凡,复杂形体转动惯量复摆等效识别,机械工程师,No.2 1999.
    49.张效松,匀质几何体转动惯量计算的一种方法,力学与实践,Vol.22,No-2,2000.
    50.赵邦义,徐铭陶,识别复杂形体转动惯量的一种新方法,力学与实践,Vol.19,No.2,1997.
    51.杜为民,高平,吕宠吾,新型自动标定器,地壳变形与地震,Vol.20,No.3,2000.
    52. Beavan J., Bilbam R., Thermally induced errors in fluid tube tiltmeters. J. Geophys.
    
    Res., 82(5)669-704,1977.
    53. Benjamin B.C., Miller H.M., Omnidirectional Fiber Optic Tiltmeter., Patent Application., 12p, 1983.
    54. Biagi P.F., Palangio P. et al, Soil Tilt Measurement: First Results of the Comparative Analysis of the Response of Two Different Tiltmeters., Roma Univ. Ist. 1985.
    55. Bibee H.D., Comparison of Seismometer and Hydrophone Recordings of VLF Seismoacoustic Signals., Pub. In IEEE Oceans, p93-96, 1991.
    56. Bilham R., Transducers in Michelson Tiltmeters., Tceh. Rept., 12p, 1988.
    57. Blair D.G., Liu J.F. et al, Performance of an Ultra Low-frequency Folded Pendulem. Phys. Lett. A, 193:223-6, 1994.
    58. Duncan Carr Agnew, Strainmeters and Tiltmeters. Rev. of Geophys., 24:579-624, 1986.
    59. Gillies G.T., Ritter T.C., Torsion balance, Torsion pendulums, and Related Devices, Rev. Sci. Instrum., 64:283, 1993.
    60. Gimson C., Using the Capacitance Charge Transfer Principle for Water Content Measurement, Measurement & Control, Vol,22,1989.
    61. Goloranov A.G. et al, capacitance Linear Displacement to Frequency Converters. Meas. Tech. (USA),Vol.30,No.7,1987,639~642.
    62. Halliday, Resnick, Fundamentals of Physics, John Wiley & Sons, Ins. New York. 1981.
    63. Haneberg W.C., Friesen R.L., Tilting of Surficial Strta and Groundwater Fluctuations in the Subsiding Mimbres Basin., Tech. Rept. 94p, 1993..
    64. Harrison J.C., Levine J., Meertens C.M., Design of a deep Borehole Tiltmeter., Pub. In Proc. Ninth Int. Conf. Earth Tides, 11p, 1981.
    65. Huang S.M., A New Capacitance Transducer for Industrial Application, J. of Phys. E,1988(6):251~256.
    66. Janes R V, Richards J., The Design and Some Applications of Sensitive Capacitance Micromettes. J. of Phys. E,1973(6):589~594.
    67. Klaus Firtsch, Linear Capacitance Displacement Sensor with Frequence Readout. Rev. Sci. Instrum,58(5)1987.
    68. Kohl M.L., Levine J., Measuring Low Frequency Tlits., Included in Jnl. Of research of the National Inst. of Standards and Technology., V98:191-202, 1993.
    69. Kohl M.L., Levine J., Measurement and Interpretation of Tidal Tilts in a Small Array., J. of Geophysical Research, 100:3929-3941,1995.
    70. Levine J., Measurements of Tilt Using a Borehole Tiltmeter., Tech. Rept., 8p, 1989.
    71. Levine J., Study of Secular and Tidal Tilt in Wyoming and Utah., Technical Rept. 1983.
    72. Levine J., Study of Secular and Tidal Tilt in Wyoming and Utah., Technical Final Rept., 97p, 1985.
    73. Levine J., Harrison J.C., Meertens C.M., Performance of a Deep Borehole Tiltmeter., Pub. In Proc. Ninth Int. Conf. Earth Tides, 11p, 1981.
    74. Levine J., Harrison J.C., A Study of Secular and Tidal Tilt in Wyoming and Utah., Sci. rept. No. 1., 20p, 1982.
    75. Levine J., Meerten C., Busbv R., Tilt Observations Using Borehole Tiltmeters 1. Analysis of Tidal and Secular Tilt., Tceh. Rept., 13p, 1989.
    
    
    76. Limeil B., Micromechanisms for Optimism Seismometer., The 29th Aerospace Mechanisms Symposium. P393-400, 1995.
    77. Meerten C., Levine J., Busbv R., Tilt Observations Using Borehole Tiltmeters 2. Analysis of Data from Yellowstone National Park., Tceh. Rept., 15p, 1989.
    78. Melchior. P., Flick J.A.,et al, Earth Tides Results Obtained with Gravimeters, Clinometers, and Strainmeters in Belgium and in Grand Duchy of LuXembourg., Pub. In the Eleventh International Symposium on Earth Tides., p197-210, 1991.
    79. Miller G.L., Boie R.A. et al., A Capacitance-based Microposition System for X-ray Rocking Curve. Measurement. Rev. Sci. Instrum, 50(5) 1979.
    80. NASA, Tiltmeter Indicates Sense of Slope: The Output of a DC Bridge Circuit Depends on the Tilt Angle. 10p, 1985.
    81. Peters J., Beaumont C., Boutilier R., Borehole Tilt Measurements at the Charlevoix Observatory, Quebec., Technical rept., 135p,1985.
    82. Peters J., Kumpel J., Boutilier R., Borehole Tilt Results from Charlevoix, Quebec., Technical rept., 26p, 1987.
    83. Peters J., Beaumont C., Report on Results of Borehole Tilt Measurements from the Charlevoix Observatory, Quebec., Technical rept., 77p, 1986.
    84. Peters J., Beaumont C., Borehole Tilt Measurements from the Charlevoix Observatory, Quebec., Technical rept., 77p,1984.
    85. Pohlig K.O., Kirchoff S., Design of the AFGL Prototype Long Baseline Tiltmeter., Technical rept., 33p, 1985.
    86. Roberts E.W., Golding F., European Space Tribology Laboratory Pointing Mechanism Test Facility., Technical rept., 52p,1985.
    87. Vanruymbeke M., Kaeriaeinen J. et al, Long Baseline Watertube Tiltmeter., Pub. In the Eleventh International Symposium on Earth Tides., 10p., 1991.
    88. Variable Capacitance Sensor, U.S. Patents, 1975,859~875.
    89. Wesphal J.A., Carr M.A., Miller W.F., Expendable hubble Tiltmeter for Geophysical Monitoring. Rev. Sci. Instrum., 54:418-418, 1983.
    90. Xing Y., Electronic Spirit Level Tilt Sensor., Ph.D. Thesis, 152p, 1989..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700