用户名: 密码: 验证码:
三维共培养兔髓核细胞诱导骨髓间充质干细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分平面及三维培养髓核细胞的生物学特性
     目的运用藻酸钠微球(alginate beads)培养法和平面培养法对兔椎间盘髓核细胞进行体外培养,研究其体外生物学特性。
     方法4月龄健康新西兰大耳白兔6只,取髓核细胞(nucleus pulposus cells,NPCs)原代培养,传代后分为藻酸钠微球培养组(实验组)和平面培养组(对照组),通过倒置相差显微镜对髓核细胞进行形态学观察,MTT法测定两组髓核细胞增殖情况,运用RT—PCR技术检测两组髓核细胞中Ⅱ型胶原和聚集蛋白聚糖的表达。
     结果经过两周的培养,两组髓核细胞增殖率无明显差异,藻酸钠微球培养组在Ⅱ型胶原和聚集蛋白聚糖的表达上均高于平面培养组(P<0.05)。
     结论藻酸钠微球培养法能促进髓核细胞中Ⅱ型胶原和聚集蛋白聚糖的表达,在维持其表型稳定方面优于平面培养法。
     第二部分体外诱导标记绿色荧光蛋白兔骨髓间充质干细胞分化成骨及成脂的实验研究
     目的绿色荧光蛋白(green fluorescent protein,GFP)标记兔骨髓间充质干细胞(mesenchymal stem cells,MSCs),观察其诱导成骨及成脂多向分化的潜能。
     方法取四月龄新西兰大白兔6只,雌雄不限,实验过程中对动物处置符合动物伦理学标准。应用密度梯度离心法与贴壁培养法从兔股骨中分离、纯化骨髓间充质干细胞并在体外进行培养,以形态学及细胞表面标志的方法鉴定间充质干细胞,在倒置显微镜下观察细胞的形态特征。用脂质体介导法将绿色荧光蛋白质粒转染入骨髓间充质干细胞,经G418筛选得到稳定转染细胞株。利用成骨诱导剂和成脂诱导剂诱导稳定转染的骨髓间充质干细胞向成骨及成脂方向分化,采用茜素红染色及油红O染色检测MSCs分化的情况。
     结果经原代及传代培养的骨髓间充质干细胞多呈纺锤形或梭形,成纤维细胞样,流式细胞仪分析MSCsCD44表达阳性,CD34表达阴性。标记绿色荧光蛋白的骨髓间充质干细胞经成骨诱导21 d后有较多的钙盐沉积,茜素红染色呈红色。成脂诱导3天后,细胞内有小脂滴出现,2周后脂滴数量增加并相互融合,细胞由长梭形变为圆形或多边形,油红O染色显示细胞含有丰富的脂肪颗粒。
     结论通过密度梯度离心法与贴壁培养法可大量扩增、纯化MSCs,用脂质体介导法将绿色荧光蛋白质粒标记的骨髓间充质干细胞经诱导培养后具有多向分化潜能。
     第三部分三维共培养兔髓核细胞诱导骨髓间充质干细胞定向分化的实验研究
     目的研究髓核细胞(nucleus pulposus cells,NPCs)与骨髓间充质干细胞(mesenchymalstem cells,MSCs)在藻酸盐微球构建的三维环境下进行共培养时,髓核细胞与骨髓间充质干细胞的近距离接触后骨髓间充质干细胞表型的变化,为构建组织工程髓核提供种子细胞建立基础。
     方法自健康新西兰大耳白兔取髓核细胞与骨髓间充质干细胞原代培养;将传代分离纯化的骨髓间充质干细胞通过转染绿色荧光蛋白(GFP)进行标记并随机分为实验组与对照组;将转染后的骨髓间充质干细胞单独培养(对照组)或以1:1的比例和髓核细胞于海藻酸盐凝胶微球中进行共培养(实验组);共培养14天后,溶解海藻酸盐凝胶珠,通过流式分选收集骨髓间充质干细胞并分别利用RT—PCR技术和免疫组织化学技术检测骨髓间充质干细胞中Ⅱ型胶原(ⅡCollagen)和聚集蛋白聚糖(Aggrecan)的表达。
     结果实验组骨髓间充质干细胞经过14天在海藻酸盐凝胶微球中与髓核细胞共培养后,RT—PCR结果显示有Ⅱ型胶原和聚集蛋白聚糖表达,而对照组则无Ⅱ型胶原和聚集蛋白聚糖表达;免疫组织化学染色显示实验组Ⅱ型胶原表达阳性而对照组为阴性。
     结论通过三维共同培养,髓核细胞能够在体外诱导骨髓间充质干细胞向髓核样细胞方向分化,进一步支持利用未分化骨髓间充质干细胞治疗椎间盘退行性疾病。
PartⅠ
     Culture of rabbit nucleus pulposus cells in alginate beads andstudy the biological characteristics
     Objective To culture rabbit nucleus pulposus cells using alginate beads and plates, thendetected the biological character in vitro.
     Method We got the primary nucleus pulposus cells (NPCs) from 6 healthy New Zealandrabbits of 4-month-old, and then divided the cells into the experiment group (culture inalginate beads) and the control group (culture on plates) after passage. Cell morphology ofNPCs was observed by inverted phase contrast microscope. MTT was used to determine thecells proliferation, and RT-PCR was applied to detect the expression of collagenⅡandaggrecan in NPCs.
     Results After two weeks cultivation, there was no significant difference in the cellsproliferation rate of NPCs between the experiment group and the control group. But theexpression of collagenⅡand aggrecan in the experiment group was superior to thecontrol(P<0.05).
     Conclusion Culturing NPCs in alginate beads can promote the expression of collagenⅡand aggrecan, it was better than that on plates to maintain phenotypic stability of NPCs.
     PartⅡ
     Experimental study on differentiation of the rabbit mesenchymal stem cells labeled by green fluorescent protein into osteoblasts andlipoblasts in vitro
     Objective To label rabbit mesenchymal stem cells (MSCs) by green fluorescentprotein(GFP), and then observe the potency of multi-directional differentiation byosteoblast and lipoblast formation induction.
     Method We got six New Zealand rabbits aged 4 months after birth, of either sex. Thedisposition of the rabbits met the ethics standards. MSCs were isolated from the femurs ofrabbits, then they were purified and cultured in vitro by density gradient centrifugation andadherent culture. MSCs were evaluated by morphology and surface marker. MSCs culturewas observed with an inverted microscope. Green fluorescent protein plasmid wastransfected into mesenchymal stem cells using Lipofectamine. The stable transfection cellswere obtained using G418 selection after transfection. The stable transfection MSCs wereinduced to osteoblasts and lipoblasts by osteogenic inductor and adipogenic inductor. Oilred O staining and alizarin red staining were used to determine the differentiation.
     Results The MCSs were mostly fusiform in shape, to be similar to fibroblast cell aftercultivation of primary and subcultured. The flow cytometer analysis showed that themembrane mark CD44 was positive, CD34 was negative. MSCs labeled by greenfluorescent protein were apparent calcium mineralization after 21 days osteogenic induction.Alizarin red staining showed positive with red. Intra-cellular lipid droplet appeared after 3days adipogenic induction. The quantity of lipid droplet increased and were fused eachother 2 weeks later. The morphous of fusiform shape became round or polygon, and oil redO staining showed a great quantity lipid deposited.
     Conclusion MSCs can be isolated and cultured by the method of density gradientcentrifugation and adherent culture in vitro. MSCs labeled by green fluorescent proteinusing Lipofectamine have the potency of multi-directional differentiation after induction.
     PartⅢ
     Study on rabbit nucleus pulposus cells induces thedifferentiation of mesenchymal stem cells byco-cultured in a 3-dimensional environment
     Objective To investigate the changes of mesenchymal stem cells phenotype afterco-cultured with nucleus pulposus cells in a 3-dimensional environment by alginate Beadsand find a new source of seed cells for constructing tissue engineered intervertebral disc.
     Method We got the primary nucleus pulposus cells (NPCs) and mesenchymal stem cells(MSCs) from healthy New Zealand rabbits. After passage and purification, the MSCs werelabeled by transduction with green fluorescent protein (GFP) and divided into theexperiment group and the control group. After transduction MSCs were cultured eitheralone (controls) or at a NPCs-to-MSCs ratio of 1:1 in alginate beads. The beads weredissolved after 14 days co-culture. Fluorescence-activated cell sorting was used to collectthe green-MSCs, and then RT-PCR and immunohistochemical staining were applied todetect the expression of collagenⅡand aggrecan in MSCs.
     Results The RT-PCR showed that the experiment group MSCs expressed collagen-Ⅱand aggrecan after 14 days co-culture with NPCs while the control group MSCs did not.Immunohistochemical staining of the experiment group MSCs for collagen-Ⅱwerepositive and the control group was negative.
     Conclusion MSC differentiation toward NP-like cells in vitro can be induced by co-culturewith NPCs in a 3-dimensional environment. These data support the use of undifferentiatedMSC for stem cell therapy for intervertebral disc degeneration treatment.
引文
1. Kadoya k, kotaniy ,Abumi k, et al. Biomechanical and morphologic evaluation of a three-dimensional fabric sheep artificial intervertebral disc: In Vitro and in Vivo analysis. Spine, 2001,26(14) :1562- 1569.
    2. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996; 98:996-1003.
    3.Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995;20:1307-1314.
    4.Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP,Chevrot A, Shyy JY. Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 2004;164:915-924.
    5.Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 1999;246:129-37.
    6.Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS. The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 2003; 28: 982-90.
    7.Nishimura K, Mochida J. Percutaneous reinsertion of the nucleus pulposus: an experimental study. Spine, 1998, 23: 1531-1538.
    8.Okuma M, Nishimura K, Nishimura K et al. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration:an in vitro and in vivo experimental study.Journal of Orthopaedic Research. 2000; 18: 988-997.
    9.Gruber HE, Hanley EN Jr. Human disc cells in monolayer vs 3D differences in gene expression in alginate and monolayer culture.Spine,2001,26:1747-1751.
    10.Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 2003;24:3531-41.
    11.Risbud MV, Albert TJ, Guttapalli A, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 2004;29:2627-32.
    12.Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 2005; 23:403-11.
    13.Yamamoto Y, Mochida J, Sakai D, et al. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine 2004; 29:1508-14.
    14.Zhang YG, Guo X, Xu P, Kang LL, Li J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 2005 ;219-26.
    15.Le Visage C, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW. Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis.Spine 2006; 31:2036-42.
    16.Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J 2008; 8(6):888-96.
    17.Chen EH, Olson EN. Unveiling the mechanisms of cell-cell fusion. Science 2005;308:369-73.
    18.Spees JL, Olson SD, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma.Proc Natl Acad Sci U S A 2003;100:2397-402.
    1 Boni M, Denaro V. Anatomo-Clinical Correlations in Cervical Spondylosis. In Kehr P, Weidner A, eds. Cervical Spine I. New York: Springer-Verlag, 1987:3-20.
    2 Alini M , Li W, Markovic P ,et al . The potential and limitations of a cell-seeded collagen/ hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine, 2003,28 (5) :446-454
    3 Giles NC ,Berlemann U ,Moore RJ ,et al . Early histologic changes in lower lumber discs and facet joint s and their correlation. Eur Spine, 2000,9(1) :23-29.
    4 Karasek M, Bogduk N. Twelve-month follow-up of a controlled trial of intradiscal thermal anuloplasty for back pain due to internal disc disruption. Spine 2000;25:2601-7.
    5 Roughleya P, Hoemann C, DesRosiers E, et al. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006, 27(3): 388-396.
    6 张传志,周跃,李长青.兔髓核细胞体外最佳培养条件的探索.中国矫形外科杂志.2005,13(14):71-74.
    7 Gan JC, Ducheyne P, Vresilovic EJ, et al. Intervertebral disc tissue engineering Ⅱ cultures of nucleus pulposus cells. Clin Orthop Relat Res, 2003, (411): 315-324.
    8 孟壮志,朱青安,范真,等.腰骶部椎间盘髓核摘除对脊柱稳定性影响的生物力学研究.中国临床解剖学杂志.1999,17(1):75-76.
    9 Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo award in basic science. Spine 2002; 27(23):2631-2644
    10 赵勇,工文波,卢宇,等.白细胞介素1对椎间盘细胞软骨特异性基因Sox9 mRNA的调节作用[J].中华外科杂志,2006,44(24):1704-1707
    11 李小川,原泉,王艺漩,等.血小板衍生生长因子对体外培养人椎间盘细胞功能的影响[J].中国临床康复,2006,10(21):60-62
    12 Sun M, Li W, Markovic P, et al. The potential and limitations of a cell-seeded colla- -gen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2001; 28:446-54
    13 Nomura T, Mochida J, Okuma M, et al. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 2001; 389(2) :94-101
    14 Anderson DG, Risbud MV, Shapiro IM, et al. Cell-based therapy fordisc repair. Spine J, 2005, 5(6 Suppl): 297S-303S.
    15 Sobajima S, Vadala G, Shimer A, et al. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J, 2007. [Epub ahead of print]
    16 陈岩,胡有谷,刘勇.椎间盘细胞培养过程中的反分化研究.中国脊柱脊髓杂志.2000,10(3):188-189.
    17 H(a|¨)uselmann HJ, Femandes RJ, Mok S S, et al. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994, 107 (Pt 1): 17-27.
    18 Thomas S, Alginate dressings in surgery and wound management-Part 1 [J]. J Wound Care, 2000, 9 (2): 56 - 60.
    19 Ueng SW, Lee S S, Lin S S, et al. Biodegradable alginate antibiotic beads[J]. Clin Orthop Relat Res, 2000, (380): 250 - 259.
    20 Mok SS, Masuda K, H(a|¨)uselmann HJ, et al. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 1994 Dec 30;269(52):33021-7 (1994) J. Biol. Chem. 269, 33021-33027.
    21 H(a|¨)uselmann HJ, Aydelotte MB, Schumacher BL, et al. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix. 1992 Apr;12(2):116-29.
    1.Lee HS, Huang GT, Chiang H, Chiou LL, et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells. 2003; 21(2):190-9.
    2.Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418 (6893 ): 41-49.
    3.Gojo s , Umezawa A. Plasticity of mesenchymal stem cells-regenerative medicine for diseased hearts. Hum Cell 2003; 16 (1) :23-30.
    4.Zhang H, Huang Z, Xu Y, et al. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage.Neurol Res 2006; 28(1): 104-122.
    5.Friedenstein AJ, Petrakova KV, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968 Mar; 6(2):230-47.
    6.Owen ME, Cave J, Joyner CJ. Clonaanalysis in vitro of osteogeni differentiation of marrow CFU-F [J]. J Cell Science, 1987; 87(Pt 5): 731-738.
    7.Tao H, Ma DD. Evidence for trans differentiation of human bone marrow-derived stem cells: recent progress and controversies. Pathology 2003; 35(1):6-13.
    8.Service RF.Tissue engineers build new bone[J]. Science, 2000, 289:1498-1500.
    9.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesemchymal stem cells[J ]. Science, 1999; 284 :143 - 147.
    10.Zohar R, Sodek J, McCulloch C A. Characterization of stromal progenitor cells enriched by flow cytometry[J]. Blood, 1997,90(9): 3471-3481
    11.Fortier LA, Nixon A J, Williams J, et al. Isolation and chondrocytic differentiation of equine bone ... Proc Natl Acad Sci USA, 1998,95(7) :3908-3913
    12.Pittenger MF, Mackay AM, Bek SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-147
    13.Ghilzon R, McCulloch CA, Zohar R. Stromal mesenchymal progentor cellsin process citation. Leuk Lymphoma, 1999, 32(3-4):211-221
    14.Encina NR,Billotte WG,Hofmann MC.Immunormagnetic isolation of osteo progenitors from human bone marrow stroma.Lab Invest,1999,79(4):449-457
    15.Wulf GG, Jackson KA, Goodell MA. Somatic stem cell plasticity: current evidence and emerging concepts. Exp Hematol 2001; 29(12):1361-1370.
    16.Barry FP. Mesenchymal stem cell therapy in joint disease. Novartis Found Symp 2003;249: 86-96.
    17.Conget P A, Minguell J J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Cell Physiol, 1999,181(l):67-73
    18.Anokhina EB, Buravkova LB. Heterogeneity of stromal precursor cells isolated from rat bone marrow. Tsitologiia 2007; 49(1): 40-47.
    19.Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-317.
    20.Coyne TM, Marcus AJ , Woodbury D, et al. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells; 2006; 24 (11): 2483-2492.
    1. Boni M, Denaro V. Anatomo-Clinical Correlations in Cervical Spondylosis. In Kehr P, Weidner A, eds. Cervical Spine I. New York: Springer-Verlag, 1987:3-20.
    2. Karasek M, Bogduk N. Twelve-month follow-up of a controlled trial of intradiscal thermal anuloplasty for back pain due to internal disc disruption. Spine 2000;25:2601-7.
    3. Sun M, Li W, Markovic P, et al. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2001; 28: 446-54
    4.李华壮,周跃,郭志良,等.hTGF-1基因转染骨髓间充质干细胞椎间盘移植术后的表达[J].颈腰痛杂志,2006, 27(3): 179-182
    5. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringd(?)n O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003 Oct; 31(10):890-6.
    6. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L,Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8932-7.
    7. Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo award in basic science. Spine 2002; 27(23):2631-2644
    8.赵勇,工文波,卢宇,等.白细胞介素1对椎间盘细胞软骨特异性基因Sox9 mRNA的调节作用[J].中华外科杂志,2006,44(24):1704-1707
    9.李小川,原泉,王艺漩,等.血小板衍生生长因子对体外培养人椎间盘细胞功能的影响[J].中国临床康复,2006,10(21):60-62
    10. Nomura T, Mochida J, Okuma M, et al. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 2001; 389(2) :94-101
    11. Liechty KW, Mackenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000, 6(11): 1282-1286.
    12. Risbud MV, Albert TJ, Guttapalli A, et al: Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 2004; 29(23):2627-32
    13. Steck E, Bertram H, Abel R, et al: Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 2005; 23(3):403-11
    14. Richardson SM, Walker RV, Parker S, et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 2006;24:707-16
    15. Sakai D, Mochida J, Iwashina T, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 2005;30:2379-87
    16. Thomas S, Alginate dressings in surgery and wound management-Part 1 [J]. J Wound Care, 2000, 9 (2): 56 - 60
    17. Ueng SW, Lee S S, Lin S S, et all Biodegradable alginate antibiotic beads[J]. Clin Orthop Relat Res, 2000, (380): 250 - 259
    18. Mok SS, Masuda K, H(a|¨)uselmann HJ, et al. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 1994 Dec 30;269(52):33021-7 (1994) J. Biol. Chem. 269, 33021-33027.
    19. H(a|¨)uselmann HJ, Aydelotte MB, Schumacher BL, et al. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix. 1992 Apr; 12(2): 116-29.
    20.侯天勇,许建中,吴雪峰等.藻酸盐微球的制备及其对共培养的MSCs的影响.第三军医大学学报.2007,29(3):199-202
    21. Weber M, Steinert A, Jork A, et al. Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel clsaa of alginates[J]. Biomaterials, 2003; 23(9): 2003-2013.
    22.Chen EH, Olson EN. Unveiling the mechanisms of cell-cell fusion. Science 2005;308:369-73
    23.Spees JL, Olson SD, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma.ProcNatl Acad Sci USA 2003;100:2397-402
    24.Liu TQ, Li XQ, Sun XY , et al. Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochemical Engineering Journal 2004; 18:97-104
    25.Khaoustov VI, RisinD, PellisNR, et al. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report. In Vitro Cell DevBiolAnim 2001;37:84-88
    26.Chiu B, Wan JZ, Abley D, et al. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity.Acta Astronaut 2005; 56: 918-22
    27.Bhatia SN, Balis UJ, Yarmush ML, et al. Effect of cell-cell interactions in preservation of cellular phenotypexocultivation of hepatocytes and nonparenchymal cells.FASEBJ 1999; 13: 1883-900
    1.郭世绂.骨科临床解剖学[M]济南:山东科学技术出版社,2001.Gan JC,
    2. Ducheyne P, Vresilovic E, et al. Bioactive glass serves as a substrate for maintenance of phenotype of nucleus pulposus cells of the intervertebral disc. Biomed Mater Res 2000;51(4): 596-604.
    3. Sato M, Kikuchi T, Asazuma T, et al. Glycosam inoglycan accumulation in primary culture of rabbit intervertebral disc cells. Spine 2001; 26(12): 2653-2660.
    4. Sun YL, Hurtig M, Pilliar RM, et al. Characterization of nucleus pulposus issue formed in vitro. Orthop Res 2001; 19(6): 1078-1084
    5. Okuma M, Mochida J, Nishimurak, et al. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration. Orthop 2001; 18(7): 988-997.
    6. Gruber HE, Hanley EN Jr. Human disc cells in monolayer 3D culture: cell-shaped,division and matrix formation. BMC Musculoskelet Discord 2002; 3(1): 1-10.
    7. An HS, Thonar EJ, Masuda K. Biological repair of intervertebral disc. Spine. 2003 Aug 1;28(15 Suppl):S86-92.
    8. Risbud MV. Izzo MW, Adams CS. et al. An organ culture system for the study of the nucleus pulposus: description of the system and evaluation of the cells. Spine. 2003 Dec15;28(24):2652-8; discussion 2658-9.
    9.Mizuno H, Roy AK, Vacanti CA, Kojima K, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine. 2004 Jun 15;29(12):1290-7; discussion 1297-8.
    10.Tamai N, Myoui A, Hirao M, Kaito T, et al. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite,synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).Osteoarthritis Cartilage. 2005 May;13(5):405-17.
    11.Ganey T, Libera J, Moos V, Alasevic O, et al. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine. 2003 Dec1;28(23):2609-20.
    12.Gomes ME, Bossano CM, Johnston CM, Reis RL, Mikos AG. In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a flow perfusion bioreactor. Tissue Eng. 2006 Jan; 12(1): 177-88.
    13.Risbud MV, Albert TJ, Guttapalli A, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 2004;29:2627-32.
    14.Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 2005; 23:403-11.
    15.Yamamoto Y, Mochida J, Sakai D, et al. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine 2004; 29:1508-14.
    16.Le Visage C, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW. Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis.Spine 2006; 31:2036-42.
    17.Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J. 2008 Nov-Dec; 8(6):888-96.Epub 2007 Dec 21.
    18.Suuronen R, Laine P, Pohjonen T, et al. Sagittal ramus osteotomies fixed with biodegradable screws: a preliminary report. J Oral Maxillofac Surg 1994; 52(7): 715-720.
    19.Tal D, Oma TG "Designer" scaffolds for Tissue Engineening and Regeberation. Isr J chem. 2005; 45: 487-494.
    20.Anderson DG, Risbud MV, Shapiro IM, et al. Cell-based therapy for disc repair. Spine J 2005; 45: 487-494.
    21.Risbud M, Ringe J, Bhonde R, et at. In vitre expression of cartilage-specific markers by chondrocytes on a biocompatible bydrogel; implications for engineering cartilage tissue.Cell Transplant 2001; 10(8)755-763.
    22.Mwale F, Iordanova M, Demers CN, et al. Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 2005;11(1-2);130-140
    23.Alini M, Roughley PJ, Antoniou J, et al. A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J 2002; 11 Suppl 2:S215-220.
    24.Roughley P, Hoemann C, DesRosiers E, et al. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 2006; 27(3):388-396.
    25.Gilding DK. Biodegraable polymers//Biocompatibillty of Clinical implant Materals.CRC Press, 1981 ;209-232.
    26.Mizuno H, Roy AK, Vacanti CA, et al. Tissue-engineered composites of annulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 2004;29(12):1290-1297.
    27.Richardson SM, Curran JM, Chen R, et al, The differentiation of bone narrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid(PLLA)scaffolds. Biomaterials 2006; 27(22); 4069-4078.
    28. Takegami K, An HS, Kumano F, et al. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matris after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 2005; 5(3);231-238.
    29. Akeda K, An HS, Pichika R, et al. Platelet-rich plasma(PRP)stimulates the extracellular matrix metabolism of porcine nucleus pulposus and annulus fibrosus cells cultured in alginate beads. Spine 2006, 31(9); 959-966.
    30. Iwashina T, Mochida J, Miyazaki T, et al. Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertabral disc cells cultured in algingate. Biomaterials 2006; 27(3)354-361.
    31. Sakai D, Mochida J, Iwashina T, et al. Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro; influence on the proliferation and proteoglycan production of HNPSV-1 cells. Biomaterlals 2006; 27(3); 346-353.
    32. Sato M, Kikuchi M, Ishihara M, et al. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal(ACHMS scaffold). Med Biol Eng Comput 2003; 41(3);365-371.
    33. Alini M, Li W, Markovic P, et al. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2003;28(5); 446-454.
    34.李长青,周跃,罗刚等.仿生髓核组织工程材料支架对体外培养髓核细胞合成代谢的影响[J],中国脊柱脊髓杂志,2006,16(6);450-453.
    35. Le Visage C, Yang SH, Kadakia L, et al. Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration. Spine 2006; 31(21); 2423-2430.
    36. Sims CD. Butler PE, Lao YL, et al. Tissue-engineered neocartilage using derived polymer substarates and chondrocytes. Plast Reconstr Surg 1998; 101(6); 1580-1585.
    37. Stem S, Lindenhayn K, Schultz O, et al. Cultivation of porcine cells from the nucleus pulposus in a fibrin? Byaluronic acid matrix. Acta Orthop Scand 2000; 71(5);496-502.
    38.Yang SH, Chen PQ. Chen YF. et at. An in-vitro study on regeneration of human nucleus pulposus by using gelatin/chondroitin-6-sulfate/hyaluronantri-copolymer scaffold.Artifical Organs 2005;29(10);806-814.
    39.Brown RQ, Mounl A, Burg KJ. Evaluation of polymer scaffolds to be used in a composite injectable system for intervertebral disc tissue engineering. J Biomed Mater Res A2005;74(1);32-39.
    40.Pilliar RM, Filiaggi MJ, Wells JD, et at. Porous calcium polyphosphate scaffolds for bone substitute applications-in vitro characterization. Biomaterials 2001; 22(9); 963-972.
    41.Seguin CA, Grynpas MD, Pilliar RM, et al. Tissue engineered nucleus pulposus tissue formed on a porous catcium polyphosphate substrate, Spine 2004;29(12);1299-1306.
    42.Hamilton DJ, Seguin CA, Wang J, et al. Formation of a nucleus pulposus-cartilage endplate construct in vitro. Biomaterials 2006; 27(3)397-405.
    43.Thompson JP, Oegema TR Jr, Bradford DS, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors [J]. Spine 1991; 16: 253-260.
    44.Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene [J]. Spine 1999; 24:2419-2425.
    45.Tan Y, Hu Y, Tan J. Extracellular matrix synthesis and ultra-structural changes of degenerative disc cells transfected by Ad / CMV-hTGFbeta 1[J]. Chin Med J(Engl) 2003;116: 1399-1403.
    46.Walsh AJL, Bradford DS, Lotz JCS. In vivo growth factor treatment of degenerated intervertebral discs [J]. Spine; 2004, 29:156-163.
    47.Li J. Yoon ST, Hutton WC. Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech. 2004 Oct; 17(5):423-8.
    48.Takegami K, Thonar EJ, An HS, et al. Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1 [J]. Spine 2002;12:1324-1325.
    49.Kei M, Koichi M, Jesse GK, et al. Intradiscal injections of osteo-genic-protein-1 restore the viscoelastic properties of degenerated intervertebral disc [J]. The Spine Journal, 2006;6(6): 692-703.
    50.Thompson JP, Oegema TR Jr, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors [J] .Spine; 1991,16(3): 253- 260.
    51.Osada R, Ohshima H, Ishihara H, et al. Autocrine/paracrine mechanism of insulin like growth factor 1 secretion, and the effect of insulinlike growth factor 1 on proteoglycan synthesis in bovine intervertebral discs [J]. J Orthop Res 1996; 14: 690-699.
    52.Wang H, Kroeber M, Hanke M et al. Release of active and depot GDF-5 after adenovirus-mediated Overepression stimulates rabbit and human intervertebral disc cells[J]. J Mol Med 2004; 82: 126-134.
    53.Mwale F, Demers CN, Petit A, et al. A synthetic peptide of link protein stimulates the biosynthesis of collagens Ⅱ,Ⅸand proteoglycan by cells of the intervertebral disc [J]. J Cell Biochem 2003; 88: 1202-1213.
    54.Yoon ST, Park JS, Kim KS, et al. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo [J] Spine 2004; 29: 2603-2611.
    55.Paul R, Haydon RC, Cheng H, et al. Potential use of sox9 gene therapy for intervertebral degenerative disc disease [J] Spine 2003; 28: 755-763.
    56.Wallach CJ, Sobajima S, Watanabe Y, et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs [J]. Spine 2003; 28(20): 2331-2337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700