用户名: 密码: 验证码:
口服微囊化噬菌体的制备及其在胃肠环境中的稳定性、释放行为和抗菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噬菌体是一类细菌性病毒,其中裂解性噬菌体在感染宿主菌后能快速复制增殖,并最终破裂菌体细胞从而达到抗菌效果。与传统的抗生素相比,噬菌体治疗具有特异性强、自我复制增殖、安全无残留以及来源丰富等优势,因此被认为是一种理想的抗生素替代品。
     噬菌体在防治动物细菌性疾病方面卓有成效,但目前存在的问题是噬菌体缺乏合适的给药剂型,尤其是在治疗动物肠道疾病时,口服噬菌体的活性易遭胃酸、消化酶和胆汁酸盐的破坏,丧失抗菌活性。因此,开发噬菌体口服给药系统便成为噬菌体治疗领域亟待解决的问题,而以pH敏感性高分子为载体材料对噬菌体进行微囊化包埋不失为一种理想的策略。
     本研究首先以海藻酸钠和壳聚糖为载体材料,通过液滴法对沙门氏菌噬菌体FelixOl进行微囊化包埋。结果显示,噬菌体在整个包埋过程中能够保持完整的生物活性,且平均包埋率达到93.3%。未包埋噬菌体Felix O1对酸极其敏感,在pH<3.7的酸性溶液中,孵育5 min活性即完全丧失。微囊化噬菌体对酸耐受性显著提高,在pH 2.4的模拟胃液中孵育1 h,效价仅降低2.58 log10PFU/g;噬菌体Felix O1在胆汁酸中不稳定,未包埋噬菌体在1%和2%的胆汁酸中孵育3h后,效价分别降低1.29和1.67log10PFU/g,而微囊化噬菌体的活性则完全保留;在模拟肠液中,微囊化噬菌体孵育6h后近乎完全释放。另外,噬菌体在湿态微球中具有很好的保存稳定性,4℃保存6个星期,活性无明显损失;对干燥微球,40℃或22℃保存6个星期后,噬菌体效价分别下降了0.90和1.20log10PFU/g,故较常温条件,微囊化噬菌体在4℃条件下保存更稳定。
     为增加微囊化噬菌体在酸性环境中的稳定性,并改变其释放性能,本论文向海藻酸钙微球中分别添加了CaCO3无机微粒和乳清蛋白。结果显示海藻酸钙微球中掺合CaCO3微粒后,噬菌体的包埋率不受影响,对胃酸耐受性显著提高,在pH 2.5的模拟胃液中孵育2 h后效价仅下降0.17log10PFU/g;噬菌体在模拟肠液中的释放减慢,12小时后累计释放率约为68%。以海藻酸钠和乳清蛋白共混凝胶为载体微球时,噬菌体在pH 2.5的模拟胃液中孵育2 h后效价仅下降0.53 log10PFU/g;在模拟肠液中的释放加快,孵育3 h后噬菌体基本完全释放。释药模型的拟合结果显示噬菌体为非Fickian扩散控制型释放,微球骨架溶蚀或内部凝胶网络的酶解断裂是噬菌体释放的控制因素。在对微囊化噬菌体干燥保护剂的筛选时发现蔗糖、海藻糖、麦芽糊精和脱脂奶粉均能增加噬菌体K在干燥过程中的稳定性,且干燥保护效果与浓度相关。
     动物体内实验,以鸡和小鼠为实验动物模型,研究口服微囊化噬菌体在动物消化道中的释放行为及分布规律,并比较不同载体微球间噬菌体释放行为的差异。结果显示以Chitosan-Alginate微球和Alginate/CaCO3微球为包埋载体时,微囊化噬菌体在鸡肠道中难以释放,口服后1-4 h肠道各部位释放量均低于4log10PFU/g,相比较在小鼠肠道中释放量明显增加但也不完全。而经Alginate/Whey微球包埋后,噬菌体通过鸡肌胃后的存活率显著提高,而且能够在肠道内充分释放。进一步通过对鸡的沙门氏菌攻毒保护实验证实,口服Alginate/Whey微囊化噬菌体后12h和24 h,鸡盲肠中沙门氏菌浓度分别降低了1.34和1.27log10CFU/g,减菌效果显著优于未包埋噬菌体组。
     采用人结肠腺癌细胞株Caco-2体外培养模型,研究了噬菌体对胞内鼠伤寒沙门氏菌的裂解活性。结果表明噬菌体Felix O1对已侵入胞内的沙门氏菌无感染能力,仅能抑制细菌对宿主细胞的侵入,提示沙门氏菌的胞内侵袭性可能是影响噬菌体抗菌效果的限制因素之一。
     综上所述,本研究成功制备出口服微囊化噬菌体,并通过体外和体内实验考察了微囊化噬菌体在胃肠道环境中的稳定性、释放行为及抗菌活性;实验结果证实微囊化包埋能保护噬菌体免受胃酸和胆汁的破坏作用,并提供足量的噬菌体进入肠道中释放,充分发挥其抗菌作用,这为噬菌体在动物细菌性疾病防治中的应用奠定了基础。
Bacteriophages (or phages) are viruses that invade bacteria cells and, in the case of lytic phages, multiply rapidly till the complete lysis of bacteria. Phage therapies have unique advantages compared with common antibiotics by their host-specificity, exponential growth, low side effects and their ubiquitous and plentiful nature. Therefore, bacteriophages have been suggested as possible alternatives to chemical antibiotics.
     Recent studies indicate that phages can be used effectively to control and treat bacterial infections in animals, but one problem is that the viability of orally administered phages may be rapidly reduced under acidic conditions of the stomach and in the presence of gastric acid, enzymes, and other digestive compounds such as bile. Without protection phages might not survive gastric passage and thus not be infective in the intestine. Therefore, it is highly necessary to develop an effective delivery system to protect orally administered phages from the harsh gastrointestinal environment enroute to the infection site in the intestine. One possible way of protection of phages is by encapsulating them in microspheres of pH-dependent polymers.
     Here, we reported a process for the microencapsulation of Salmonella bacteriophage Felix 01 using natural polysaccharides such as alginate and chitosan. The results showed that the phage was efficiently entrapped in the alginate gel matrix and the microsphere formation process had no detrimental effect on the viability of phage. The mean encapsulation efficiency of phage in Chitosan-Alginate microspheres was 93.3%. In vitro studies were used to determine the effects of simulated gastric fluid (SGF) and bile salts on the viability of free and encapsulated phages. Free phages Felix O1 were found extremely sensitive to acidic environment and were not detectable after 5 min incubation in SGF when the pH value was below 3.7. The viable count of microencapsulated phages decreased only 2.58 log10PFU/g during 1 h exposure to SGF with pepsin at pH 2.4. After 3 h of incubation in 1 and 2% bile salt solutions, the free phage count decreased by 1.29 and 1.67 log10PFU/g respectively, while the viability of encapsulated phages was fully maintained. Phages were completely released from microspheres upon exposure to simulated intestinal fluid (SIF, pH 6.8) within 6 hours. The encapsulated phages in wet microspheres retained full viability when stored at 4℃during the testing period (6 weeks). The microencapsulated phages in dried form had a 0.90 log10PFU/g reduction after 6 weeks storage at 4℃, whereas a 1.20 log10PFU/g reduction occurs after 6 weeks at 22℃. The results demonstrate that dried encapsulated phage stored at 4℃shows better stability than phage kept at room temperature.
     In order to develop an improved microsphere delivery system with enhanced acid resistance for oral delivery of phage. CaCO3 microparticles and whey protein were co-encapsulated with phage K into alginate microspheres and tested for its efficacy in improving the viability of phage under in vitro acidic conditions. Free phage was completely destroyed when exposed to SGF of pH 2.5. By adding CaCO3 as an antacid excipient to the alginate microspheres, the stability of encapsulated phage K in SGF was largely improved, with only a 0.17 log10PFU/g reduction after 2 h exposure to SGF at pH 2.5, but the release was delayed in SIF, the cumulative release was only about 68% after 12 h. Besides, a combination of alginate and whey protein also led to a better protection for phage K in SGF, the phage titer decreased only by 0.53 log10PFU/g after 2 h exposure to SGF at pH 2.5. In additon, the Alginate/Whey microspheres showed a rapid release profile, and an almost complete release of phage was achieved after 3 h incubation in SIF. The curve fitting data indicated that the phage release mechanism followed non-fickian diffusion pattern, which controlled by erosion of the matrix or enzymatic degradation of the hydrogel network. A number of protective agents including trehalose, sucrose, skim milk, and maltodextrin were tested and found to increase the viability of encapsulated phage K when subjected to drying. The protective effects varied with the type and concentration of each incorporated additives.
     In vivo, different phage-loaded microspheres were tested in chickens and mice to determine the release profile and gastrointestinal distribution of the encapsulated phage in the digestive tracts. The results showed that there was only a small portion of released phage was detected in chickens' intestine after 1-4 h of administration of Chitosan-Alginate and Alginate/CaCO3 microspheres (<4 Log10PFU/g), whereas the Alginate/Whey microspheres showed a complete release of phage in both chick and mouse intestine. The free and Alginate/Whey encapsulated phage Felix 01 were then administered to chickens experimentally colonized with S. Typhimurium. Treatment with encapsulated phage resulted in a 1.34 and 1.27 log10CFU/g reduction of cecal Salmonella counts at 12 h and 24 h respectively after challenge as compared with untreated controls. But no significant reduction of cecal Salmonella counts was observed in the chickens treated by free phage. The results indicated that microencapsulation of phage Felix 01 into Alginate/Whey microspheres significantly enhanced its efficacy in reducing Salmonella colonization in chickens.
     The human adenocarcinoma derived Caco-2 cells were used as an in vitro model to investigate the killing activity of phage Felix 01 against intracellular Salmonella. The results showed that S. Typhimurium can invade and survive inside the Caco-2 cell monolayers. Phage Felix O1 has no lytic activity against intracellular Salmonella, but can inhibit the invasion of Caco-2 cells by the bacteria. The results indicated that the invasion and intracellular survival of Salmonella would be a limiting factor for the antimicrobial activity of bacteriophage.
     In conclusion, an oral microencapsulated form of bacteriophages were successfully prepared in this study, besides, the gastrointestinal stabilities, release profiles and antimicrobial activities of the microencapsulated phages were evaluated through both in vitro and in vivo experiments. The results demonstrated that microencapsulation can protect phages against gastric juice and bile, and also facilitate oral delivery of a high enough dose of phages to the intestine. Therefore, the current encapsulation approach would lay the foundation for the therapeutic use of phages to control bacterial infections in animals.
引文
[1]Summers WC. Bacteriophage Research:Early History [M]. In:Kutter E, Sulakvelidze A, eds. Bacteriophages:Biology and Applications. Boca Raton:CRC Press,2004. p.5-28.
    [2]Summers WC. Bacteriophage therapy [J]. Annu Rev Microbiol.2001,55:437-451.
    [3]Luria SE, Anderson TF. The Identification and Characterization of Bacteriophages with the Electron Microscope [J]. Proc Natl Acad Sci USA,1942,28(4):127-130.
    [4]Brussow H, Hendrix RW. Phage genomics:small is beautiful [J]. Cell,2002,108(1):13-16.
    [5]Claude M. Fauquet MAM, J. Maniloff, U. Desselberger, L.A. Ball Virus Taxonomy Ⅷth Report of the International Committee on Taxonomy of Viruses [M]. San Diego:Academic Press,2005.
    [6]冯书章,刘军,孙洋.细菌的病毒——噬菌体最新分类与命名[J].中国兽医学报,2007,(4):604-608.
    [7]Ackermann HW.5500 Phages examined in the electron microscope [J]. Arch Virol,2007, 152(2):227-243.
    [8]Lobocka MB, Rose DJ, Plunkett G,3rd, et al. Genome of bacteriophage P1 [J]. J Bacteriol,2004, 186(21):7032-7068.
    [9]Leiman PG, Kanamaru S, Mesyanzhinov VV, et al. Structure and morphogenesis of bacteriophage T4 [J]. Cell Mol Life Sci,2003,60(11):2356-2370.
    [10]Conley MP, Wood WB. Bacteriophage T4 whiskers:a rudimentary environment-sensing device [J]. Proc Natl Acad Sci USA,1975,72(9):3701-3705.
    [11]Guttman B, Raya R, Kutter E. Basic Phage Biology [M]. In:Kutter E, Sulakvelidze A, eds. Bacteriophages:Biology and Applications. Boca Raton:CRC Press,2004. p.29-66.
    [12]Arisaka F. Assembly and infection process of bacteriophage T4 [J]. Chaos,2005,15(4):047502.
    [13]Marco MB, Reinheimer JA, Quiberoni A. Phage adsorption to Lactobacillusplantarum:influence of physiological and environmental factors [J]. Int J Food Microbiol,2010,138(3):270-275.
    [14]Watanabe K, Takesue S. The requirement for calcium in infection with Lactobacillus phage [J]. J Gen Virol,1972,17(1):19-30.
    [15]Rees PJ, Fry BA. The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus [J]. J Gen Virol,1981,53(2):293-307.
    [16]Hadas H, Einav M, Fishov I, et al. Bacteriophage T4 development depends on the physiology of its host Escherichia coli [J]. Microbiology,1997,143 (1):179-185.
    [17]Letellier L, Boulanger P, Plancon L, et al. Main features on tailed phage, host recognition and DNA uptake [J]. Front Biosci,2004,9:1228-1339.
    [18]Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes [J]. J Mol Biol,1986,189(1):113-130.
    [19]Miller ES, Kutter E, Mosig G, et al. Bacteriophage T4 genome [J]. Microbiol Mol Biol Rev,2003, 67(1):86-156.
    [20]Borysowski J, Weber-Dabrowska B, Gorski A. Bacteriophage endolysins as a novel class of antibacterial agents [J]. Exp Biol Med,2006,231(4):366-377.
    [21]O'Flaherty S, Ross RP, Coffey A. Bacteriophage and their lysins for elimination of infectious bacteria [J]. FEMS Microbiol Rev,2009,33(4):801-819.
    [22]Brock TD, editor. The Emergence of Bacterial Genetics [M]. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press,1990.
    [23]Prescott LM, editor. Microbiology [M].5th ed. New York:McGraw-Hill,2002.
    [24]d'Herelle F. Essai de traitement de la peste bubonique par le bacteriophage [J]. La presse medical, 1925,33:1393-1394.
    [25]Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy [J]. Antimicrob Agents Chemother, 2001,45(3):649-659.
    [26]Eaton MD, Bayne-Jones S. Bacteriophage therapy. Review of the principles and results of the use of bacteriophage in the treatment of infections [J]. JAMA,1934,23:1769-1939.
    [27]Krueger AP, Scribner EJ. Bacteriophage therapy. Ⅱ. The bacteriophage:its nature and its therapeutic use [J]. JAMA,1941,19:2160-2277.
    [28]Kutateladze M, Adamia R. Phage therapy experience at the Eliava Institute [J]. Medecine Et Maladies Infectieuses,2008,38(8):426-430.
    [29]Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli infections in mice using phage:its general superiority over antibiotics [J]. J Gen Microbiol,1982,128(2):307-318.
    [30]Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs [J]. J Gen Microbiol,1983,129(8):2659-2675.
    [31]Smith HW, Huggins MB, Shaw KM. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages [J]. J Gen Microbiol,1987,133(5):1111-1126.
    [32]Smith HW, Huggins MB, Shaw KM. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment [J]. J Gen Microbiol,1987,133(5):1127-1135.
    [33]Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy [J]. Nat Rev Microbiol, 2004,2(2):166-173.
    [34]Barrow P, Lovell M, Berchieri A, Jr. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves [J]. Clin Diagn Lab Immunol,1998, 5(3):294-298.
    [35]Bull JJ, Levin BR, DeRouin T, et al. Dynamics of success and failure in phage and antibiotic therapy in experimental infections [J]. BMC Microbiol,2002,2:35.
    [36]Kudva IT, Jelacic S, Tarr PI, et al. Biocontrol of Escherichia coli 0157 with 0157-specific bacteriophages [J]. Appl Environ Microbiol,1999,65(9):3767-3773.
    [37]Sheng H, Knecht HJ, Kudva IT, et al. Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants [J]. Appl Environ Microbiol,2006,72(8):5359-5366.
    [38]Bach SJ, McAllister TA, Veira DM, et al. Effect of bacteriophage DC22 on Escherichia coli 0157: H7 in an artificial rumen system (Rusitec) and inoculated sheep [J]. Anim Res,2003,52(2):89-101.
    [39]Raya RR, Varey P, Oot RA, et al. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep [J]. Appl Environ Microbiol,2006,72(9):6405-6410.
    [40]Callaway TR, Edrington TS, Brabban AD, et al. Fecal Prevalence of Escherichia coli 0157, Salmonella, Listeria, and Bacteriophage Infecting E. coli O157:H7 in Feedlot Cattle in the Southern Plains Region of the United States [J]. Foodborne Pathog Dis,2006,3(3):234-244.
    [41]Payne RJH, Jansen VAA. Understanding bacteriophage therapy as a density-dependent kinetic process [J]. J Theor Biol,2001,208(1):37-48.
    [42]Niu YD, Xu Y, McAllister TA, et al. Comparison of fecal versus rectoanal mucosal swab sampling for detecting Escherichia coli O157:H7 in experimentally inoculated cattle used in assessing bacteriophage as a mitigation strategy [J]. J Food Prot,2008,71(4):691-698.
    [43]Chibani-Chennoufi S, Bruttin A, Dillmann ML, et al. Phage-host interaction:an ecological perspective [J]. J Bacteriol,2004,186(12):3677-3686.
    [44]Chibani-Chennoufi S, Sidoti J, Bruttin A, et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages:Implications for phage therapy [J]. Antimicrob Agents Chemother,2004, 48(7):2558-2569.
    [45]Waddell T, Mazzocco A, Johnson RP, et al. Control of Escherichia coli O157:H7 infection of calves by bacteriophages.4th International International Symposium and Workshop on Shiga toxin (verocytotoxin)-producing Escherichia coli (VTEC 2000) Kyoto, Japan,2000.
    [46]Lutful Kabir SM. Avian colibacillosis and salmonellosis:a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns [J]. Int J Environ Res Public Health,2010,7(1):89-114.
    [47]Huff WE, Huff GR, Rath NC, et al. Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02) [J]. Poult Sci,2002,81(4):437-441.
    [48]Huff WE, Huff GR, Rath NC, et al. Bacteriophage treatment of a severe Escherichia coli respiratory infection in broiler chickens [J]. Avian Dis,2003,47(4):1399-1405.
    [49]Huff WE, Huff GR, Rath NC, et al. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection [J]. Poult Sci,2003,82(7):1108-1112.
    [50]Huff WE, Huff GR, Rath NC, et al. Evaluation of the influence of bacteriophage titer on the treatment of colibacillosis in broiler chickens [J]. Poult Sci,2006,85(8):1373-1377.
    [51]Huff WE, Huff GR, Rath NC, et al. Immune interference of bacteriophage efficacy when treating colibacillosis in poultry [J]. Poult Sci,2010,89(5):895-900.
    [52]Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars,9th ed. Institut Pasteur, Paris, France:WHO Collaborating Centre for Reference and Research on Salmonella,2007.
    [53]徐仕忠.家禽沙门氏菌病及其疫苗控制[J].中国家禽,2006,(17):48-50.
    [54]Barrow PA. The paratyphoid salmonellae [J]. Rev Sci Tech,2000,19(2):351-375.
    [55]Cogan TA, Humphrey TJ. The rise and fall of Salmonella enteritidis in the UK [J]. J Appl Microbiol, 2003,94 Suppl:114S-119S.
    [56]Herikstad H, Motarjemi Y, Tauxe RV. Salmonella surveillance:a global survey of public health serotyping [J]. Epidemiol Infect,2002,129(1):1-8.
    [57]Threlfall EJ. Antimicrobial drug resistance in Salmonella:problems and perspectives in food- and water-borne infections [J]. FEMS Microbiol Rev,2002,26(2):141-148.
    [58]Berchieri A, Jr., Lovell MA, Barrow PA. The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium [J]. Res Microbiol,1991,142(5):541-549.
    [59]Atterbury RJ, Van Bergen MAP, Ortiz F, et al. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens [J]. Appl Environ Microbiol,2007,73(14):4543-4549.
    [60]Andreatti RL, Higgins JP, Higgins SE, et al. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar enteritidis in vitro and in vivo [J]. Poult Sci,2007, 86(9):1904-1909.
    [61]Higgins SE, J. P. Higgins, L. R. Bielke, B. M. Hargis. Selection and application of bacteriophages for treating Salmonella enteritidis infections in poultry[J]. Int J Poult Sci,2007,6(3):6.
    [62]Lee N, Harris DL. Effect of bacteriophage treatment as a preharvest intervention strategy to reduce the rapid dissemination of Salmonella typhimurium in pigs. Proc Am Assoc Swine Vet; 2001; Perry, IA: American Association of Swine Veterinarians; 2001. p.555-557.
    [63]Samuel MC, Vugia DJ, Shallow S, et al. Epidemiology of sporadic Campylobacter infection in the United States and declining trend in incidence, FoodNet 1996-1999 [J]. Clin Infect Dis,2004,38 Suppl 3:S165-174.
    [64]Shane SM. Campylobacter infection of commercial poultry[J]. Rev Sci Tech,2000,19(2):376-395.
    [65]Friedman CR, Hoekstra RM, Samuel M, et al. Risk factors for sporadic Campylobacter infection in the United States:A case-control study in FoodNet sites[J]. Clin Infect Dis,2004,38 Suppl 3:S285-296.
    [66]Danis K, Di Renzi M, O'Neill W, et al. Risk factors for sporadic Campylobacter infection:an all-Ireland case-control study [J]. Euro Surveill,2009,14(7).
    [67]Wagenaar JA, Van Bergen MAP, Mueller MA, et al. Phage therapy reduces Campylobacter jejuni colonization in broilers [J]. Vet Microbiol,2005,109(3-4):275-283.
    [68]Carrillo CL, Atterbury RJ, El-Shibiny A, et al. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens [J]. Appl Environ Microbiol,2005,71(11):6554-6563.
    [69]El-Shibiny A, Scott A, Timms A, et al. Application of a group Ⅱ Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens [J]. J Food Prot,2009,72(4):733-740.
    [70]Carvalho C, Susano M, Fernandes E, et al. Method for bacteriophage isolation against target Campylobacter strains [J]. Lett Appl Microbiol,2010,50(2):192-197.
    [71]Lerondelle C, Poutrel B. Bacteriophage treatment trials on staphylococcal udder infection in lactating cows (author's transl) [J]. Ann Rech Vet,1980,11(4):421-426.
    [72]Gill JJ, Paean JC, Carson ME, et al. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle [J]. Antimicrob Agents Chemother,2006,50(9):2912-2918.
    [73]Gill JJ, Sabour PM, Leslie KE, et al. Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K [J]. J Appl Microbiol,2006,101(2):377-386.
    [74]Carlton RM. Phage therapy:past history and future prospects [J]. Arch Immunol Ther Exp (Warsz), 1999,47(5):267-274.
    [75]Calci KR, Burkhardt W,3rd, Watkins WD, et al. Occurrence of male-specific bacteriophage in feral and domestic animal wastes, human feces, and human-associated wastewaters [J]. Appl Environ Microbiol,1998,64(12):5027-5029.
    [76]Yeung MK, Kozelsky CS. Transfection of Actinomyces spp. by genomic DNA of bacteriophages from human dental plaque [J]. Plasmid,1997,37(2):141-153.
    [77]Bachrach G, Leizerovici-Zigmond M, Zlotkin A, et al. Bacteriophage isolation from human saliva [J]. Lett Appl Microbiol,2003,36(1):50-53.
    [78]FDA. FDA approval of Listeria-specific bacteriophage preparation on ready-to-eat (RTE) meat and poultry products. CFSAN/Office of Food Additive Safety.
    [79]Chang TM. Semipermeable Microcapsules [J]. Science,1964,146:524-525.
    [80]Marty JJ, Oppenheim RC, Speiser P. Nanoparticles-a new colloidal drug delivery system [J]. Pharm Acta Helv,1978,53(1):17-23.
    [81]Wee S, Gombotz WR. Protein release from alginate matrices [J]. Adv Drug Del Rev,1998, 31(3):267-285.
    [82]Sikorski P, Mo F, Skjak-Braek G, et al. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction [J]. Biomacromolecules,2007,8(7):2098-2103.
    [83]Haug A, editor. Composition and properties of alginates 1964.
    [84]Gaserod O, Smidsrod O, Skjak-Braek G. Microcapsules of alginate-chitosan-I. A quantitative study of the interaction between alginate and chitosan [J]. Biomaterials,1998,19(20):1815-1825.
    [85]朱静,谢威扬,于炜婷,等.多通道微胶囊制备系统规模化制备海藻酸钙微胶珠[J].化工学报,2009,(01):204-210.
    [86]Poncelet D. Production of alginate beads by emulsification/internal gelation [J]. Ann N Y Acad Sci, 2001,944:74-82.
    [87]Liu XD, Yu WY, Zhang Y, et al. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources [J]. J Microencaps,2002,19(6):775-782.
    [88]You JO, Park SB, Park HY, et al. Preparation of regular sized Ca-alginate microspheres using membrane emulsification method [J]. J Microencaps,2001,18(4):521-532.
    [89]Benchabane S, Subirade M, Vandenberg GW. Production of BSA-loaded alginate microcapsules: influence of spray dryer parameters on the microcapsule characteristics and BSA release [J]. J Microencapsul,2007,24(6):565-576.
    [90]Coppi G, Iannuccelli V, Bernabei M, et al. Alginate microparticles for enzyme peroral administration [J]. Int J Pharm,2002,242(1-2):263-266.
    [91]Zuidam NJ, Shimoni E. Overview of microencapsulates for use in food products or processes and methods to make them [M]. In:Zuidam NJ, Nedovic V, eds. Encapsulation Technologies for Active Food Ingredients and Food Processing. New York:Springer,2010. p.3-29.
    [92]George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs:Alginate and chitosan-a review [J]. J Control Release,2006,114(1):1-14.
    [93]刘袖洞,于炜婷,王为,等.海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J].化学进展,2008,(01):126-139.
    [94]Wang W, Liu XD, Xie YB, et al. Microencapsulation using natural polysaccharides for drug delivery and cell implantation [J]. J Mater Chem,2006,16(32):3252-3267.
    [95]Madziva H, Kailasapathy K, Phillips M. Alginate-pectin microcapsules as a potential for folic acid delivery in foods [J]. J Microencapsul,2005,22(4):343-351.
    [96]Ferreira Almeida P, Almeida AJ. Cross-linked alginate-gelatine beads:a new matrix for controlled release of pindolol [J]. J Control Release,2004,97(3):431-439.
    [97]Chen L, Subirade M. Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds [J]. Biomaterials,2006,27(26):4646-4654.
    [98]Ribeiro CC, Barrias CC, Barbosa MA. Calcium phosphate-alginate microspheres as enzyme delivery matrices [J]. Biomaterials,2004,25(18):4363-4373.
    [99]Zhu G, Schwendeman SP. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants:mechanism of stabilization by basic additives [J]. Pharm Res, 2000,17(3):351-357.
    [100]Moser CA, Speaker TJ, Offit PA. Effect of water-based microencapsulation on protection against EDIM rotavirus challenge in mice [J]. J Virol,1998,72(5):3859-3862.
    [101]Offit PA, Khoury CA, Moser CA, et al. Enhancement of rotavirus immunogenicity by microencapsulation [J]. Virology,1994,203(l):134-143.
    [102]Puapermpoonsiri U, Spencer J, van der Walle CF. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres [J]. Eur J Pharm Biopharm,2009,72(1):26-33.
    [103]Mumper RJ, Huffman AS, Puolakkainen PA, et al. Calcium-alginate beads for the oral delivery of transforming growth factor-βl (TGF-β1):stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads [J]. J Controlled Release,1994,30(3):241-251.
    [104]Chandy T, Mooradian DL, Rao GHR. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin [J]. J Appl Polym Sci,1998,70(11):2143-2153.
    [105]Coppi G, Iannuccelli V, Bernabei MT, et al. Alginate microparticles for enzyme peroral administration [J]. Int J Pharm,2002,242(1-2):263-266.
    [106]Li XY, Jin LJ, McAllister TA, et al. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY) [J]. J Agric Food Chem,2007,55(8):2911-2917.
    [107]Dai CY, Wang BC, Zhao HW, et al. Factors affecting protein release from microcapsule prepared by liposome in alginate [J]. Colloid Surface B,2005,42(3-4):253-258.
    [108]Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin:Design, characterization and in vitro/in vivo bioactivity [J]. Eur J Pharm Sci,2007,30(5):392-397.
    [1091 Kim B, Bowersock T, Griebel P, et al. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres [J]. J Control Release,2002, 85(1-3):191-202.
    [110]Aggarwal N, HogenEsch H, Guo P, et al. Biodegradable alginate microspheres as a delivery system for naked DNA [J]. Can J Vet Res,1999,63(2):148-152.
    [111]Quong D, Neufeld RJ, Skjak-Braek G, et al. External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation [J]. Biotechnol Bioeng,1998,57(4):438-446.
    [112]Ueng SW, Yuan LJ, Lee N, et al. In vivo study of biodegradable alginate antibiotic beads in rabbits [J]. J Orthop Res,2004,22(3):592-599.
    [113]Lucinda-Silva RM, Salgado HRN, Evangelista RC. Alginate-chitosan systems:In vitro controlled release of triamcinolone and in vivo gastrointestinal transit [J]. Carbohydr Polym,2010, 81(2):260-268.
    [114]Anal AK, Stevens WF. Chitosan-alginate multilayer beads for controlled release of ampicillin [J]. Int J Pharm,2005,290(1-2):45-54.
    [115]Li S, Wang XT, Zhang XB, et al. Studies on alginate-chitosan microcapsules and renal arterial embolization in rabbits [J]. J Control Release,2002,84(3):87-98.
    [116]Qurrat ul A, Sharma S, Khuller GK, et al. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects [J]. J Antimicrob Chemother,2003,51(4):931-938.
    [117]Madziva H, Kailasapathy K, Phillips M. Evaluation of alginate-pectin capsules in Cheddar cheese as a food carrier for the delivery of folic acid [J]. LWT-Food Sci Technol,2006,39(2):146-151.
    [118]Lee KY, Heo TR. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution [J]. Appl Environ Microbiol,2000,66(2):869-873.
    [119]Chandramouli V, Kailasapathy K, Peiris P, et al. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions [J]. J Microbiol Methods, 2004,56(1):27-35.
    [120]Graff S, Hussain S, Chaumeil JC, et al. Increased intestinal delivery of viable Saccharomyces boulardii by encapsulation in microspheres [J]. Pharm Res,2008,25(6):1290-1296.
    [121]Sturesson C, Degling Wikingsson L. Comparison of poly(acryl starch) and poly(lactide-co-glycolide) microspheres as drug delivery system for a rotavirus vaccine [J]. J Control Release,2000, 68(3):441-450.
    [122]Ramya R, Verma PC, Chaturvedi VK, et al. Poly(lactide-co-glycolide) microspheres:a potent ora delivery system to elicit systemic immune response against inactivated rabies virus [J]. Vaccine, 2009,27(15):2138-2143.
    [123]Nechaeva E. Development of oral microencapsulated forms for delivering viral vaccines [J]. Expert Rev Vaccines.2002. 1(3):385-397.
    [1241 Chattaraj SC, Rathinavelu A, Das SK. Biodegradable microparticles of influenza viral vaccine: comparison of the effects of routes of administration on the in vivo immune response in mice [J]. J Control Release.1999, 58(2):223-232.
    [1251 Lameiro MH, Malpique R, Silva AC, et al. Encapsulation of adenoviral vectors into chitosan-bile salt microparticles for mucosal vaccination [J]. J Biotechnol,2006,126(2):152-162.
    [1]Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy [J]. Antimicrob Agents Chemother, 2001,45(3):649-659.
    [2]Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs [J]. J Gen Microbiol,1983,129(8):2659-2675.
    [3]Loc Carrillo C, Atterbury RJ, El-Shibiny A, et al. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens [J]. Appl Environ Microbiol,2005,71(11):6554-6563.
    [4]Atterbury RJ, Van Bergen MAP, Ortiz F, et al. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens [J]. Appl Environ Microbiol,2007,73(14):4543-4549.
    [5]Gill JJ, Paean JC, Carson ME, et al. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle [J]. Antimicrob Agents Chemother,2006,50(9):2912-2918.
    [6]Cormican M, DeLappe N, O'Hare C, et al. Salmonella enterica serotype Bredeney:antimicrobial susceptibility and molecular diversity of isolates from Ireland and Northern Ireland [J]. Appl Environ Microbiol,2002,68(1):181-186.
    [7]Berndt A, Wilhelm A, Jugert C, et al. Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness [J]. Infect Immun,2007,75(12):5993-6007.
    [8]Higgins SE, J. P. Higgins, L. R. Bielke, B. M. Hargis. Selection and application of bacteriophages for treating Salmonella enteritidis infections in poultry [J]. Int J Poult Sci,2007,6(3):6.
    [9]Smith HW, Huggins MB, Shaw KM. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment [J]. J Gen Microbiol,1987,133(5):1127-1135.
    [10]Anal AK, Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery [J]. Trends Food Sci Technol,2007,18(5):240-251.
    [11]Sturesson C, Degling Wikingsson L. Comparison of poly(acryl starch) and poly(lactide-co-glycolide) microspheres as drug delivery system for a rotavirus vaccine [J]. J Control Release,2000, 68(3):441-450.
    [12]Moser CA, Speaker TJ, Offit PA. Effect of water-based microencapsulation on protection against EDIM rotavirus challenge in mice [J]. J Virol,1998,72(5):3859-3862.
    [13]Offit PA, Khoury CA, Moser CA, et al. Enhancement of rotavirus immunogenicity by microencapsulation [J]. Virology,1994,203(1):134-143.
    [14]George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs:Alginate and chitosan-a review [J]. J Control Release,2006,114(1):1-14.
    [15]Anal AK, Stevens WF. Chitosan-alginate multilayer beads for controlled release of ampicillin [J]. Int J Pharm,2005,290(1-2):45-54.
    [16]Sarmento B, Ribeiro A, Veiga F, et al. Alginate/Chitosan nanoparticles are effective for oral insulin delivery [J]. Pharm Res,2007,24(12):2198-2206.
    [17]Quong D, Neufeld RJ. DNA protection from extracapsular nucleases, within chitosan-or poly-L-lysine-coated alginate beads [J]. Biotechnol Bioeng,1998,60(1):124-134.
    [18]Lee KY, Heo TR. Survival of Bifidobacterium longwn immobilized in calcium alginate beads in simulated gastric juices and bile salt solution [J]. Appl Environ Microbiol,2000,66(2):869-873.
    [19]Hansen LT, Allan-Wojtas PM, Jin YL, et al. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions [J]. Food Microbiol,2002, 19(1):35-45.
    [20]Whichard JM, Sriranganathan N, Pierson FW. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix 01 in liquid culture and on chicken frankfurters [J]. J Food Prot,2003,66(2):220-225.
    [21]Sambrook J, Fritsch, EF, Maniatis,T., editor. Molecular cloning:a laboratory manual.2 ed:Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.,1989.
    [22]Gotcheva V, Hristozova E, Hristozova T, et al. Assessment of potential probiotic properties of Lactic acid bacteria and yeast strains [J]. Food Biotechnol,2002,16(3):211-225.
    [23]Nechaeva E. Development of oral microencapsulated forms for delivering viral vaccines [J]. Expert Rev Vaccines,2002, 1(3):385-397.
    [24]Krasaekoopt W, Bhandari B, Deeth H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria [J]. Int Dairy J,2004, 14(8):737-743.
    [25]Brussow H. Phage therapy:the Escherichia coli experience [J]. Microbiology-Sgm,2005, 151:2133-2140.
    [26]Koo J, DePaola A, Marshall DL. Effect of simulated gastric fluid and bile on survival of Vibrio vulnificus and Vibrio vulnificus phage [J]. J Food Prot,2000,63(12):1665-1669.
    [27]Jepson CD, March JB. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle [J]. Vaccine,2004,22(19):2413-2419.
    [28]Tang M, Dettmar P, Batchelor H. Bioadhesive oesophageal bandages:protection against acid and pepsin injury [J]. Int J Pharm,2005,292(1-2):169-177.
    [29]DeGroot AR, Neufeld RJ. Encapsulation of urease in alginate beads and protection from alpha-chymotrypsin with chitosan membranes [J]. Enzyme Microb Technol,2001,29(6-7):321-327.
    [30]Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine [J]. Gut,1986,27(8):886-892.
    [31]Davis SS, Illum L, Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig [J]. J Pharm Pharmacol,2001,53(1):33-39.
    [32]Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal (GI) pH in young, healthy men and women [J]. Pharm Res,1990,7(7):756-761.
    [33]O'Flynn G, Ross RP, Fitzgerald GF, et al. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli 0157:H7 [J]. Appl Environ Microbiol,2004,70(6):3417-3424.
    [34]Zhu H, Hart CA, Sales D, et al. Bacterial killing in gastric juice--effect of pH and pepsin on Escherichia coli and Helicobacter pylori [J]. J Med Microbiol,2006,55(Pt 9):1265-1270.
    [35]Koo J, Marshall DL, DePaola A. Antacid increases survival of Vibrio vulnificus and Vibrio vulnificus phage in a gastrointestinal model [J]. Appl Environ Microbiol,2001,67(7):2895-2902.
    [36]Murata Y, Toniwa S, Miyamoto E, et al. Preparation of alginate gel beads containing chitosan salt and their function [J]. Int J Pharm,1999,176(2):265-268.
    [I]Bhalla A, Aron DC, Donskey CJ. Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients [J]. BMC Infect Dis,2007,7:105.
    [2]Boyce JM, Havill NL, Maria B. Frequency and possible infection control implications of gastrointestinal colonization with methicillin-resistant Staphylococcus aureus [J]. J Clin Microbiol, 2005,43(12):5992-5995.
    [3]Lindberg E, Adlerberth I, Hesselmar B, et al. High rate of transfer of Staphylococcus aureus from parental skin to infant gut flora [J]. J Clin Microbiol,2004,42(2):530-534.
    [4]Acton DS, Plat-Sinnige MJ, van Wamel W, et al. Intestinal carriage of Staphylococcus aureus:how does its frequency compare with that of nasal carriage and what is its clinical impact? [J] Eur J Clin Microbiol Infect Dis,2009,28(2):115-127.
    [5]Boyce JM, Havill NL, Otter JA, et al. Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract [J]. Infect Control Hosp Epidemiol,2007,28(10):1142-1147.
    [6]Kikuchi K, Takahashi N, Piao C, et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus strains causing neonatal toxic shock syndrome-like exanthematous disease in neonatal and perinatal wards [J]. J Clin Microbiol,2003,41(7):3001-3006.
    [7]Klotz M, Zimmermann S, Opper S, et al. Possible risk for re-colonization with methicillin-resistant Staphylococcus aureus (MRSA) by faecal transmission [J]. Int J Hyg Environ Health,2005, 208(5):401-405.
    [8]Lis E, Korzekwa K, Bystron J, et al. Enterotoxin gene content in Staphylococcus aureus from the human intestinal tract [J]. FEMS Microbiol Lett,2009,296(1):72-77.
    [9]Gries DM, Pultz NJ, Donskey CJ. Growth in cecal mucus facilitates colonization of the mouse intestinal tract by methicillin-resistant Staphylococcus aureus [J]. J Infect Dis,2005,192(9):1621-1627.
    [10]Appelbaum PC. Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA) [J]. Int J Antimicrob Agents,2007,30(5):398-408.
    [11]Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide) [J]. Nat Biotechnol,2000,18(1):52-57.
    [12]Varde NK, Pack DW. Influence of particle size and antacid on release and stability of plasmid DNA from uniform PLGA microspheres [J]. J Control Release,2007,124(3):172-180.
    [13]Junter GA, Vinet F. Compressive properties of yeast cell-loaded Ca-alginate hydrogel layers: Comparison with alginate-CaCO3 microparticle composite gel structures [J]. Chem Eng J,2009, 145(3):514-521.
    [14]Reid AA, Champagne CP, Gardner N, et al. Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles [J]. J Food Sci,2007,72(1):M031-037.
    [15]Picot A, Lacroix C. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt [J]. Int Dairy J,2004,14(6):505-515.
    [16]Chen L, Subirade M. Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds [J]. Biomaterials,2006,27(26):4646-4654.
    [17]刘群,薛伟明,于炜婷,等.海藻酸钠-壳聚糖微胶囊膜强度的研究[J].高等学校化学学报,2002,(07):1417-1420.
    [18]Zhang Y, Huo M, Zhou J, et al. DDSolver:an add-in program for modeling and comparison of drug dissolution profiles [J]. AAPS J,2010,12(3):263-271.
    [19]Baveja SK, Ranga Rao KV, Padmalatha Devi K. Zero-order release hydrophilic matrix tablets of beta-adrenergic blockers [J]. Int J Pharm,1987,39(1-2):39-45.
    [20]Mulye NV, Turco SJ. A simple model based on first order kinetics to explain release of highly water soluble drugs from porous dicalcium phosphate dihydrate matrices [J]. Drug Dev Ind Pharm,1995, 21(8):943-953.
    [21]Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices [J]. J Pharm Sci,1963,52(12):1145-1149.
    [22]Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers [J]. Int J Pharm,1983,15(1):25-35.
    [23]Ritger PL, Peppas NA. A simple equation for description of solute release Ⅱ. Fickian and anomalous release from swellable devices [J]. J Control Release,1987,5(1):37-42.
    [24]Papadopoulou V, Kosmidis K, Vlachou M, et al. On the use of the Weibull function for the discernment of drug release mechanisms [J]. Int J Pharm,2006,309(1-2):44-50.
    [25]Rinaki E, Valsami G, Macheras P. The power law can describe the entire drug release curve from HPMC-based matrix tablets:a hypothesis [J]. Int J Pharm,2003,255(1-2):199-207.
    [26]Brazel CS, Peppas NA. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers [J]. Polymer,1999,40(12):3383-3398.
    [27]Champagne CP, Morin N, Couture R, et al. The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis [J]. Food Res Int,1992,25(6):419-427.
    [28]Champagne CP, Gardner NJ. The effect of protective ingredients on the survival of immobilized cells of Streptococcus thermophilus to air and freeze-drying [J]. Electron J Biotechnol,2001,4(3):146-152.
    [29]Ma YS, Paean JC, Wang Q, et al. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery [J]. Appl Environ Microbiol,2008,74(15):4799-4805.
    [30]O'Flynn G, Coffey A, Fitzgerald GF, et al. The newly isolated lytic bacteriophages st104a and st104b are highly virulent against Salmonella enterica [J]. J Appl Microbiol,2006,101(1):251-259.
    [31]Zhu G, Schwendeman SP. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants:mechanism of stabilization by basic additives [J]. Pharm Res, 2000,17(3):351-357.
    [32]Bryant CM, McClements DJ. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey [J]. Trends Food Sci Technol,1998,9(4):143-151.
    [33]Lin CC, Metters AT. Hydrogels in controlled release formulations:network design and mathematical modeling[J]. Adv Drug Del Rev,2006,58(12-13):1379-1408.
    [34]Rees PJ, Fry BA. The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus [J]. J Gen Virol,1981,53(2):293-307.
    [35]Andresen IL, Skipnes O, Smidsrod O, et al. Some biological functions of matrix components in benthic algae in relation to their chemistry and the composition of seawater [J]. ACS Symp Ser,1977, 48:361-381.
    [36]Quong D, Neufeld RJ. DNA protection from extracapsular nucleases, within chitosan-or poly-L-lysine-coated alginate beads [J]. Biotechnol Bioeng,1998,60(1):124-134.
    [37]Crowe JH, Crowe LM, Carpenter JF, et al. Stabilization of dry phospholipid bilayers and proteins by sugars [J]. Biochem J,1987,242(1):1-10.
    [38]Miller DP, Anderson RE, de Pablo JJ. Stabilization of lactate dehydrogenase following freeze thawing and vacuum-drying in the presence of trehalose and borate [J]. Pharm Res,1998,15(8):1215-1221.
    [39]Bieganski RM, Fowler A, Morgan JR, et al. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose [J]. Biotechnol Prog,1998,14(4):615-620.
    [40]Pisal S, Wawde G, Salvankar S, et al. Vacuum foam drying for preservation of LaSota virus:effect of additives [J]. AAPS PharmSciTech,2006,7(3):60.
    [41]Lian WC, Hsiao HC, Chou CC. Survival of bifidobacteria after spray-drying [J]. Int J Food Microbiol, 2002,74(1-2):79-86.
    [42]Gill JJ, Sabour PM, Leslie KE, et al. Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K [J]. J Appl Microbiol,2006,101(2):377-386.
    [1]Herikstad H, Motarjemi Y, Tauxe RV. Salmonella surveillance:a global survey of public health serotyping [J]. Epidemiol Infect,2002,129(1):1-8.
    [2]Barrow PA. The paratyphoid Salmonella [J]. Rev Sci Tech,2000,19(2):351-375.
    [3]Cogan TA, Humphrey TJ. The rise and fall of Salmonella Enteritidis in the UK [J]. J Appl Microbiol, 2003,94 Suppl:114S-119S.
    [4]Kienzle E, Dobenecker B, Wichert B, et al. Effect of fecal water and dry matter excretion on fecal mineral excretion in dogs studied in a fiber model [J]. J Nutr,2006,136(7 Suppl):2001S-2003S.
    [5]Niu YD, Johnson RP, Xu Y, et al. Host range and lytic capability of four bacteriophages against bovine and clinical human isolates of Shiga toxin-producing Escherichia coli O157:H7 [J]. J Appl Microbiol, 2009,107(2):646-656.
    [6]Cuellar-Mata P, Jabado N, Liu J, et al. Nrampl modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages [J]. J Biol Chem,2002, 277(3):2258-2265.
    [7]McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments [J]. J Pharm Pharmacol,2008,60(1):63-70.
    [8]Chibani-Chennoufi S, Sidoti J, Bruttin A, et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages:Implications for phage therapy [J]. Antimicrob Agents Chemother,2004, 48(7):2558-2569.
    [9]CDC, editor. Salmonella surveillance:annual summary,2006. Atlanta, Georgia:US Department of Health and Human Services, CDC,2008.
    [10]Sirsat SA, Burkholder KM, Muthaiyan A, et al. Effect of sublethal heat stress on Salmonella Typhimurium virulence [J]. J Appl Microbiol,2011,110(3):813-822.
    [11]Chibani-Chennoufi S, Canchaya C, Bruttin A, et al. Comparative genomics of the T4-Like Escherichia coli phage JS98:implications for the evolution of T4 phages [J]. J Bacteriol,2004, 186(24):8276-8286.
    [12]Barrow PA, Huggins MB, Lovell MA, et al. Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens [J]. Res Vet Sci,1987,42(2):194-199.
    [13]Lee N, Harris DL. Effect of bacteriophage treatment as a preharvest intervention strategy to reduce the rapid dissemination of Salmonella typhimurium in pigs. Proc Am Assoc Swine Vet; 2001; Perry, IA: American Association of Swine Veterinarians; 2001. p.555-557.
    [14]Andreatti RL, Higgins JP, Higgins SE, et al. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar enteritidis in vitro and in vivo [J]. Poult Sci,2007, 86(9):1904-1909.
    [15]Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability [J]. Gastroenterology,1989,96(3):736-749.
    [16]Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport [J]. Adv Drug Deliv Rev,2001,46(1-3):27-43.
    [17]Finlay BB, Falkow S. Salmonella interactions with polarized human intestinal Caco-2 epithelial cells [J].J Infect Dis,1990,162(5):1096-1106.
    [18]Mellor GE, Goulter RM, Chia TW, et al. Comparative analysis of attachment of Shiga-toxigenic Escherichia coli and Salmonella strains to cultured HT-29 and Caco-2 cell lines [J]. Appl Environ Microbiol,2009,75(6):1796-1799.
    [19]呙于明.家禽营养与饲料[M].第一版.北京:中国农业大学出版社,1997.
    [20]Chang MH, Chen TC. Reduction of Campylobacter jejuni in a simulated chicken digestive tract by Lactobacilli cultures [J]. J Food Prot,2000,63(11):1594-1597.
    [21]Graff S, Hussain S, Chaumeil JC, et al. Increased intestinal delivery of viable Saccharomyces boulardii by encapsulation in microspheres [J]. Pharm Res,2008,25(6):1290-1296.
    [22]Ma YS, Paean JC, Wang Q, et al. Microencapsulation of bacteriophage Felix 01 into chitosan-alginate microspheres for oral delivery [J]. Appl Environ Microbiol,2008,74(15):4799-4805.
    [23]Denbow DM. Gastrointestinal Anatomy and Physiology. In:Whittow GC, editor. Sturkie's Avian Physiology (Fifth Edition). San Diego:Academic Press,2000. p.299-325.
    [24]Berndt A, Wilhelm A, Jugert C, et al. Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness [J]. Infect Immun,2007,75(12):5993-6007.
    [25]Atterbury RJ, Van Bergen MAP, Ortiz F, et al. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens [J]. Appl Environ Microbiol,2007,73(14):4543-4549.
    [26]Berchieri A, Jr., Lovell MA, Barrow PA. The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium [J]. Res Microbiol,1991,142(5):541-549.
    [27]Patel JC, Galan JE. Manipulation of the host actin cytoskeleton by Salmonella--all in the name of entry[J]. Curr Opin Microbiol,2005,8(1):10-15.
    [28]Broxmeyer L, Sosnowska D, Miltner E, et al. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium:a model for phage therapy of intracellular bacterial pathogens [J]. J Infect Dis,2002,186(8):1155-1160.
    [29]Capparelli R, Parlato M, Borriello G, et al. Experimental phage therapy against Staphylococcus aureus in mice [J]. Antimicrob Agents Chemother,2007,51(8):2765-2773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700