用户名: 密码: 验证码:
近岸水质的遥感监测和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋水质恶化和突发性海洋水质及生态灾害给人类生产和生活带来巨大隐患,造成大量经济损失。近年来,遥感技术因为能够大范围快速监测海面状况在海洋水质监测中愈益受到重视。数值模拟方法因为能够对各种海洋现象进行模拟并可以通过模拟结果分析揭示海洋现象的变化过程,在海洋环境与生态的研究中得到越来越广泛应用。遥感数据的获取受到天气条件等的影响,数据间隔受航测周期或卫星运行周期制约;数值模拟需要合理选择参数,合理确定边界条件、初始条件,模拟结果需要监测资料验证。将遥感与数值模拟相结合,可以使两种研究方法的不足得到互相弥补,对于近岸水质研究具有重要意义。为此,本文将遥感与数值模拟方法有机结合,应用于我国近岸水质和突发性海洋灾害的研究中。论文的主要研究内容和结论大致可以概括为以下两部分:
     第一部分,对杭州湾水质状况进行研究。首先,通过遥感技术对面源污染进行大面积监测,监测结果表明污染物主要受物理混合作用控制,表现出保守性特征,说明海洋动力过程对污染的传输和扩散起到了重要作用。为此,采用COHERENS模型中拉格朗日粒子传输方法和欧拉物质输运方法模拟面源污染物的扩散路径和水质更新时间,对其物理自净能力进行分析。其次,对杭州湾的点源热污染进行遥感监测,并开展两次实测调查,通过热扩散数值模型模拟秦山核电站温排水的分布特征,分析点源热污染对杭州湾的水质影响。最后,在对杭州湾的常规水质因子进行遥感监测和数值模拟的基础上,将温度和叶绿素浓度的数值模拟结果用于遥感数据补缺,使得遥感技术和数值模拟方法相互补充,在近岸常规水质研究中综合发挥作用。结果表明杭州湾点源热污染对水质影响并不严重;面源污染容易聚集在湾顶西北部和湾口东南部区域;湾内悬浮泥沙含量高、营养盐丰富、叶绿素浓度低,属于高营养盐低生产力的典型区域。
     第二部分,针对2008年青岛奥运基地附近海域爆发的浒苔藻华现象,将遥感监测和数值模拟相结合的方法进一步应用于突发性海洋灾害的研究中。首先采用遥感手段对藻华的发展过程进行跟踪监测,然后利用COHERENS生态-动力耦合模型模拟黄海春季浮游植物生长情况,并用拉格朗日粒子传输方法跟踪黄海中部浮游植物的漂移路径,最后采用一维生态-动力耦合模型模拟大风天气对藻类生长的影响。结果表明,黄海中部地区浮游植物首先进入繁盛期,但是直接传入青岛附近水域诱发藻华的可能不大,浒苔藻华之前青岛附近海域持续大风和降雨天气对浒苔的大量生长起到了促进作用。
The deterioration of marine water quality and unexpected oceanic disaster often make trouble to production and life of human beings, and result in substantial economic losses. In recent years, remote sensing has attracted more and more attention by monitoring the sea surface conditions in large scale and in near real time. Numerical simualtion is widely used in marine environmental study due to its flexibility in simulating and analyzing the oceanic phenomena and changes. However, remote sensing is seriously influenced by the weather condition and limited by the aerial survey or satellite operation period. Numerical simulation is obstructed in attaining the optimal parameter, the reasonable boundary or initial condition and verifying data. Therefore, it is of great significance to combine remote sensing and numerical simulation together for overcoming one's weaknesses by acquiring the strong points of the other. In this paper, these two methods are coordinated to study the water quality and unexpected oceanic disaster in the coastal areas. The following two parts are presented in this dissertation:
     The first part of this dissertation deals with the routine water quality in the Hangzhou Bay. Firstly, remote sensing monitoring results show that the distribution of area-source pollution in the bay is mainly controlled by the hydrodynamic factors. So, the pollutant trajectories and the half exchange time are simulated by the COHERENS model through Lagrangian particle tracking and Euler mass transport methods to analyze the physical self-purification capability in the bay. Secondly, the shipboard observation and numerical simulation combined with remote sensing are applied to study the warm water distribution and the influence of point-source thermal pollution on the water quality in the bay. Finally, the numerical SST (sea surface temperature) and chlorophyll-a results are used to make up the blank areas caused by cloud in the satellite images, which means that the mutual promotion of the remote sensing and numerical simulation play an important role on the coastal water quality study. It is shown that the point-source thermal pollution is not serious in the Hangzhou Bay. The area-source pollution is prone to accumulate in the northwest of the bay head area and the southeast of the bay mouth area. The bay is a typical high-nutrient-low- production place with high nutrient and suspended sediment concentration and low chlorophyll concentration.
     The second part of this dissertation deals with the unexpected oceanic disaster. The remote sensing and numerical simulation methods are applied to study the algal bloom in coastal area around Qindao City in 2008. Firstly, the development of the algal bloom is tracked by remote sensing. Then, the phytoplankton growth in spring in the Yellow Sea and the phytoplankton transportation from the middle part of the Yellow Sea are simulated by COHERENS ecological dynamics model and the Lagrangian particle track model. Lastly, the influence of wind on the algal growth is studied by the one-dimensional ecological dynamics model. The results imply that the phytoplankton blooms firstly in the central area of the Yellow Sea, while it is impossible to get the coastal area directly and induce the local algal bloom. The sustained wind before the algal bloom is helpful to the phytoplankton growth.
引文
[1] Mindy S, Suzie G, Robert D, et al. Eutrophication and Hypoxia in coastal areas: A global assessment of the state of knowledge. Washington DC: World Resources Institute. 2008.
    [2] Clive W. Status of Coral Reefs of the World: 2004. Australian: IUCN, 2004.
    [3]联合国:过去25年全球红树林面积减少1/5. http://www.cna.com.tw/SearchNews/doDetail.aspx?id=200802020024
    [4]溢油应急计划. http://baike.baidu.com/view/1672415.html?goodTagLemma.
    [5]苏纪兰,唐启升.中国海洋生态系统基础研究的发展——国际趋势和国内需求.地球科学进展, 2005, 20(2): 139-143.
    [6]尹改,王桥,郑炳辉,等.国家环保总局对中国资源卫星的需求与分析(上).中国航天, 1999, (9): 3-7.
    [7]王惠民,王艳红.潮汐水域油污染计算.水利水运工程学报, 2006, (1): 1-7.
    [8]张健,施青松,邬翱宇,等.杭州湾丰水期主要污染因子的分布变化及成因.东海海洋, 2002, 20(4): 35-41.
    [9]张学庆.近岸海域环境数学模型研究及其在胶州湾的应用[博士学位论文].青岛:中国海洋大学, 2006.
    [10]张继民,吴时强,王惠民.电厂温排水区流动特性分析及模型参数的研究.东北水利水电, 2005, 23(8): 51-56.
    [11]彭云辉,陈浩如,王肇鼎,等.大亚湾核电站运转前和运转后邻近海域水质状况评价.海洋通报, 2001, 20(3): 45-52.
    [12]李四海,刘百桥.海洋遥感特征及其发展趋势.遥感技术与应用, 1996, 11(2): 65-69.
    [13]朱君艳,沈琼华,王珂.海洋遥感的研究进展.浙江海洋学院学报(自然科学版), 2000, 19(1): 77-80.
    [14] Dekker A G, Malthus T J, Wijnen M M, et al. The effect of spectral ban width and positioning on the spectural signature analysis of inland water. Remote Sensing Environment, 1992, 41: 211-225.
    [15]陈文召,李光明,徐竟成,等.水环境遥感监测技术的应用研究进展.中国环境监测, 2008, 24(3): 6-11.
    [16]张筑元,吴传庆,冉涛,等.湖泊富营养化遥感监测研究进展.中国环境监测, 2008, 24(4): 24-28.
    [17]汪小钦,王钦敏.水污染遥感监测.遥感技术与应用, 2002, 17(2): 74-77.
    [18]杨一鹏,王桥,王文杰,等.水质遥感监测技术研究进展.地理与地理信息科学, 2004, 20(6): 6-12.
    [19]赵碧云,贺彬,朱云燕,等.滇池水体中叶绿素a含量的遥感定量模型.云南环境科学, 2001, 20(3): 1-3.
    [20] Iwashita K, Kudoh K. Satellite analysis for water flow of lake in Banuma. Advance in Space Research, 2004, (33): 284-289.
    [21]马荣华,戴锦芳.结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量.湖泊科学, 2005, 17(2): 97-103.
    [22]肖青,闻建光,柳钦或,等.混合光谱分解模型提取水体叶绿素含量的研究.遥感学报, 2006, 10(4): 559-567.
    [23]祝令亚,王世新,周艺,等.应用MODIS监测太湖水体叶绿素a浓度的研究.应用技术, 2006, (2): 25-28.
    [24] Ekstrand S. Landsat TM based quantification of Chlorophyll-a during algae blooms in coastal waters. International Journal of Remote Sensing, 1992, 13(10): 1913-1926.
    [25]佘丰宁,李旭文,蔡启铭.水体叶绿素含量的遥感定量模型.湖泊科学, 1996, 8(3): 201-207.
    [26]刘灿德,何报寅.水质遥感监测研究进展.世界科技研究与发展, 2005, 27(5): 40-44.
    [27] Williams A N, Grabau W E. Sediment concentration mapping in tidal estuaries. Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, 1973, 1: 1347-1386.
    [28]黎夏.悬浮泥沙遥感定量的统一模式及其在珠江口中的应用.环境遥感, 1992, 7(2): 106-113.
    [29] Mertes L A K, Smith M O, Adams J B. Estimating suspended sediment concentration in surface waters of the Amazon River Wetlands from Landsat images. Remote Sensing of Environment, 1993, 43(3): 281-301.
    [30]李京.水域悬浮固体含量的遥感定量研究.环境科学学报, 1986, 5(2): 166-173.
    [31] Stumpf R P, Pennock J R. Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary. Journal of Geophysical Research, 1989, 94(C10): 14363-14371.
    [32] Li Y, Wei H, Ming F. An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data. Continental Shelf Research, 1998, 18(5): 487-500.
    [33]李炎,李京.基于海面—遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法.科学通报, 1999, 44(17): 1892-1897.
    [34]濮静娟,董卫东,关燕宁,等.热红外遥感用于徒河水库生态环境研究.遥感学报, 1997, 1(4): 290-297.
    [35]王坚.卫星遥感技术用于水体热污染监测的方法研究.中国西部科技, 2005, (5): 50-51.
    [36] Gobbin D E, Wukelic G E. Application of Landsat Thematic Mapper Data for coastal thermal plume analysis at Diablo Canyon. Photogrammetric Engineering and Remote Sensing, 1989, 55(6): 903-909.
    [37]吴传庆,王庆,王文杰,等.利用TM影像监测和评价大亚湾温排水热污染.中国环境监测, 2006, 22(3): 80-84.
    [38] Tang D, Kester D R, Wang Z, et al. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, Nuclear Power Station, China. Remote Sensing of Environment, 2003, 84(4): 506-515.
    [39] Ahn Y, Shanmugam P, Lee J, et al. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Marine Environmental Research, 2006, 61(2): 186-201.
    [40] Schott J R. Temperature measurement of cooling water discharged from power plants. Photogrammetric Engineering and Remote Sensing, 1979, 45: 753-761.
    [41] Wilson S B, Anderson J M. A thermal plume in the Tay Estuary detected by aerial thermography. International Journal of Remote Sensing, 1984, 5(1): 262-272.
    [42]陶然,戚建人.秦山核电站冷却水排放的红外遥感调查.海洋通报, 1994, 13(4): 71-75.
    [43] Steidinger K A, Haddad K D. Biologic and hydrographic aspects of red tides. Bioscience. 1981, 31(11): 814-819.
    [44] Holligan P M, Viollier M, Dupouy C. Satellite and ship studies of Coccolithophore production along a continental shelf edge. Nature, 1983, 304: 339-342.
    [45] Vargo G A, Carder K L, Gregg W. The potential contribution of primary production by red tides to the west Florida Shelf ecosystem. Limnology Oceanography, 1987, 32(3): 762-767.
    [46] Robert J V. Integrated data-modeling approach for suspended sediment transport on a regional scale. Coastal Engineering, 2000, 41: 177-200.
    [47]李旭文,季耿善,杨静.太湖藻类卫星遥感监测.湖泊科学, 1995, 7(1): 65-67.
    [48] Groom S B, Holligan P M. Remote sensing of Coccolithophore Blooms. Advance in Space Research, 1987, 7(2): 73-78.
    [49] Gower J F R. Red tide monitoring using AVHRR HRPT imagery from a local receiver. Remote Sensing of Environment, 1994, 48: 309-318.
    [50] Svejkovsky J, Shandley J. Detection of offshore plankton blooms with AVHRR and SAR imagery. International Journal of Remote Sensing, 2001, 22(2-3): 471-485.
    [51]赵冬至. AVHRR遥感数据在海表赤潮细胞数探测中的应用.海洋环境科学, 2003, 22(1): 10-19.
    [52]楼琇林,黄韦艮.基于人工神经网络的赤潮卫星遥感方法研究.遥感学报, 2003, 7(2): 125-131.
    [53] Li Y, Shang S L, Zhang C Y, et al. Remote sensing of algal blooms using a turbidity-free funciton for near-infrared and red signals. Chinese Science Bulletin, 2006, 51(4): 464-471.
    [54]毛显谋,黄韦艮.海洋水产养殖区赤潮监测及其短期预报实验性研究项目赤潮遥感研究报告.国家海洋局第二海洋研究所, 1998.
    [55]黄韦艮,毛显谋,张鸿翔,等.赤潮卫星遥感监测与实时预报.海洋预报, 1998, 15(3): 110-115.
    [56]顾德宇,孙强,滕俊华,等.从Seawifs数据提取赤潮信息研究.“SeaWiFS海洋水色卫星遥感应用技术研究”最终研究技术报告专集.杭州, 1998: 127-149.
    [57]孙强,杨燕明,顾德宇,等. SeaWiFS探测1997年闽南赤潮模型研究.台湾海峡, 2000, 19(1): 70-74.
    [58] Stumpf R P, Culver M E, Tester P A, et al. Monitoring Karenia Brevis Blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2003, 2(2): 147-160.
    [59] ]Gohin F, Lampert L, Guilland G F, et al. Satellite and in situ observation of a late winter phytoplankton bloom in the northern bay of Biscay. Continental Shelf Research, 2003, 23(11-13): 1117-1141.
    [60]曾银东. SeaWiFS遥感数据应用于福建近海赤潮监测的适用性初步评估.福建水产, 2006, (3): 12-16.
    [61] Koponen S, Pulliainen J, Kallio K, et al. Use of MODIS satellite sensor for remote sensing of phytoplankton blooms and turbidity in the Balitic Sea. URSI/IEEE/IRC XXVII Convention on Radio Science, Espoo, Finland, 2002: 17-18.
    [62] Kahru M, Mitchell B G, Diaz A, et al. MODIS detects a devastating algal bloom in Paracas Bay, Peru, Eos. Transactions American Geophysical Union, 2004, 85(45): 465-472.
    [63] Yang D T, Pan D L, Zhang X Y, et al. Detection of algal blooms with in situ and MODIS in Lake Taihu, China. Proceedings of SPIE, 2005, 5977: 178-185.
    [64]王其茂,马超飞,唐军武,等. EOS/MODIS遥感资料探测海洋赤潮信息方法.遥感技术与应用, 2006, 21(1): 6-10.
    [65] Kutser T, Metsamaa L, Vahtmae E, et al. On suitability of MODIS 250M resolution band data for quantitative mapping Cyanobacterial Blooms. Proceedings of Estonian Acadamy of Sciences.Biology Ecology, 2006, 55(4): 318-328.
    [66]李继龙,唐援军,郑嘉淦,等.利用MODIS遥感数据探测长江口及邻近海域赤潮的初步研究.海洋渔业, 2007, 29(1): 25-30.
    [67] Azanza R V, David L T, Borja R T, et al. An extensive Cochlodinium Bloom along the western coast of Palawan Philippines. Harmful Algae, 2008, 7(3): 324-330.
    [68] Gower J, King S, Yan W, et al. Use of the 709nm band of MERIS to detect intense plankton blooms and other conditions in coastal waters. Proceedings of MERIS User Workshop, Frascati, Italy, 2003.
    [69] Reinart A, Kutser T. Comparison of different satellite sensor in detecting Cyanobacterial Bloom envents In the Baltic Sea. Remote Sensing of Environment, 2006, 102(1-2): 74-85.
    [70] Kuster T, Metsamaa L, Strombeck N, et al. Monitoring Cyanobacterial Blooms by satelllite remote sensing. Estuarine, Coastal and Shelf Science, 2006, 67(1-2): 303-312.
    [71] Kutser T. Quantitative detection of Chlorophyll in Cyanobacterial Blooms by the satellite remote sensing. Limnology and Oceanography, 2004, 490(6): 2179-2189.
    [72] Giardino C, Brando V E, Dekker A G, et al. Assessment of water quality in Lake Garda (Italy) using Hypersion. Remote Sensing of Environment, 2007, 109(2): 183-195.
    [73]马金峰,詹海刚,陈楚群,等.赤潮卫星遥感监测与应用研究进展.遥感技术与应用, 2008, 23(5): 604-610.
    [74]潘刚,段舜山,徐宁.海洋赤潮水色遥感技术研究进展.生态科学, 2007, 26(5): 460-465.
    [75] Davis A. Meteorologically induced circulation on the north west European Continental Shelf from a three dimensional numerical model. Oceanologica Acta, 1982, 53(2): 269-280.
    [76] Choi B. A strategy to evaluate coastal defense levels of seas around Korean Peninsula. Health of the Yellow Sea, Seoul, 1998: 7-108.
    [77] Kuo A Y, Neilson B J. A modified tidal Prism model for water quality in small coastal embayments. Water Science and Technology, 1988, 20(2-3): 133-142.
    [78] Luff R, Pohlmann T. Calculation of water exchange times in the Ices-Boxes with a Eulerian model using a half-life time approach. Ocean Dynamics, 1995, 47(4): 287-299.
    [79]匡国瑞,杨殿荣,喻祖祥,等.海湾水交换的研究——乳山东湾环境容量初步探讨.海洋环境科学, 1987, 6(1): 13-23.
    [80]潘伟然.湄洲湾海水交换率和半更换期的计算.厦门大学报(自然科学版), 1992, 31(1): 65-68.
    [81]胡建宇.罗源湾海水与外海水的交换研究.海洋环境科学, 1998, 17(3): 51-54.
    [82]叶海桃,王义刚,曹兵.三沙湾纳潮量及湾内外的水交换.河海大学学报, 2007, 35(1): 96-98.
    [83]高抒,谢钦春.狭长形海湾与外海水体交换的一个物理模型.海洋通报, 1991, 10(3): 1-9.
    [84]陈伟,苏纪兰.狭窄海湾潮交换的分段模式在象山港的应用.海洋环境科学, 1999, 18(3): 7-10.
    [85] Signell R P, Butman B. Modeling tidal exchange and dispersion in Boston Harbor. Journal of Geophysical Research, 1992, 97(10): 15591-15606.
    [86] Joji I, Eileen H E. Plankton dynamics on the outer southeastern U.S. Continental Shelf. PartⅠLagrangian particle tracing experiments. Journal of Marine Research, 1988, 46(4): 853-882.
    [87]孙英兰,陈时俊,俞光耀.海湾物理自净能力分析和水质预测——胶州湾.山东海洋学院学报, 1988, 18(2): 60-65.
    [88]赵亮,魏皓,赵建中.胶州湾水交换的数值模拟.海洋与湖沼, 2002, 33(1): 23-29.
    [89]王聪,林军,陈丕茂,等.大亚湾水交换的数值模拟研究.南方水产, 2008, 4(4): 8-15.
    [90]管卫兵,王丽娅,潘建明,等. POM模式在河口湾污染物质输运过程模拟中的应用.海洋学报, 2002, 24(3): 9-17.
    [91] Marinov D, Norro A and Zaldivar J M. Application of COHERENS model for hydrodynamic investigation of Sacca di Goro coastal lagoon (Italian Adriatic Sea shore). Ecological Modelling, 2006, 193(1-2): 52-68.
    [92]胡建宇,傅子浪.罗源湾潮流及海水半更换期的数值研究.厦门大学学报, 1989, 28(S1): 34-39.
    [93]董礼先,苏纪兰.象山港水交换数值研究Ⅰ.对流——扩散型的水交换模式.海洋与湖沼, 1999, 130(4): 410-415.
    [94]许苏清,潘伟然,张国荣.浔江湾海水交换时间的计算.厦门大学学报, 2003, 42(5): 629-632.
    [95]何雷.海湾水交换数值模拟方法研究[硕士学位论文].天津:天津大学机械工程学院, 2004.
    [96]刘云旭,温伟英,王文介.大亚湾海域物理自净能力的时空差异性研究.热带海洋, 1999, 28(4): 61-68.
    [97]娄海峰,黄世昌,谢亚力.象山港内水体交换数值研究.浙江水利科技, 2005, 140(4): 8-12.
    [98]张越美,孙英兰.渤海湾三维变动边界潮流数值模拟.青岛海洋大学学报, 2002, 32(3): 337-344.
    [99] Qi D M, Shen H T, Zhu J R. Flushing time of the Yangtze Estuary by discharge:a model study. Journal of Hydrodynamcis Ser.B, 2003, 15(3): 63-71.
    [100]孙英兰,张越美.丁字湾物质输运及水交换能力研究.青岛海洋大学学报, 2003, 33(1): 1-6.
    [101]杜伊,周良明,郭佩芳,等.罗源湾海水交换三维数值模拟.海洋湖沼通报, 2007, 7(1): 7-13.
    [102] Ribbe J, Wolff J O, Staneva J, et al. Assessig water renewal time scales for marine environments from three-dimensional modelling: A case study for Hervey Bay, Australia. Environment Modelling & Software, 2008, 23(10-11): 1217-1228.
    [103]刘新成,卢永金,潘丽红,等.长江口和杭州湾潮流数值模拟及水体交换的定量研究.水动力学研究与进展, 2006, 21(2): 171-180.
    [104]汪思明,成安生.排污和溢油对杭州湾水质的影响.水产学报, 1995, 19(3): 233-243.
    [105]刘成,何耘,李行伟,等.上海市污水排放口污染物运动轨迹模拟.水利学报, 2003, (4): 114-118.
    [106]史峰岩,朱首贤,朱建荣,等.杭州湾、长江口余流及其物质输运作用的模拟研究I.杭州湾、长江口三维联合模型.海洋学报, 2000, 22(5): 1-12.
    [107]朱首贤,丁平兴,史峰岩,等.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅱ.冬季余流及其对物质的输运作用.海洋学报, 2000, 22(6): 1-12.
    [108] Hamrick J M, Mills W B. Analysis of water temperatures in Conowingo Pond as influenced by the Peach Bottom Atomic Power Plant thermal discharge. Environmental Science & Policy, 2000, 3(S1): 197-209.
    [109] Suh S W. A hybrid near-field/far-field thermal discharge model for coastal areas. Marine Pollution Bulletin, 2001, 43(7-12): 225-233.
    [110] Schreiner S P, Krebs T A, Strebel D E, et al. Testing the Cormix Model using thermal plume data from four Maryland Power Plants. Environmental Modelling & Software, 2002, 17(3): 321-331.
    [111] Romero C E, Shan J. Development of an artificial neural network-based software for prediction of power plant canal water discharge temperature. Expert Systems with Applications, 2005, 29(4): 831-838.
    [112]程杭平.热污染一、二维耦合模型及其应用.水动力学研究与进展, 2002, 17(6): 647-655.
    [113]韩康,张存智,张砚峰,等.三亚电厂温排水数值模拟.海洋环境科学, 1998, 17(2): 54-57.
    [114]杨芳丽,谢作涛,张小峰,等.非正交曲线坐标系平面二维电厂温排水模拟.水利水运工程学报, 2005, (2): 36-40.
    [115]孙艳涛,吴修锋,王惠民.温排水对水体环境影响的数值模拟.电力环境保护, 2008, 24(1): 42-45.
    [116]周玲玲,孙英兰,张学庆,等.黄骅电厂二期工程温排水排放方案优选.海洋通报, 2006, 25(5): 43-49.
    [117]马进荣,张晓艳,张行南.平面二维温排水数学模型中的热上浮效应.水利水运工程学报, 2005, (3): 37-40.
    [118]李光炽,饶光辉,王船海.分叉型海湾温水排放数学模型.水利水运工程学报, 2005, (3): 20-25.
    [119]黄锦辉,李群,张建军.鸭河口火电厂温排水对鸭河口水库溶解氧影响预测研究.北方环境, 2004, 29(2): 22-23.
    [120]陈凯麒,李平衡,密小斌.温排水对湖泊、水库富营养化影响的数值模拟.水利学报, 1999(1): 22-26.
    [121]李平衡,陈凯麒,鲁四光,等.温排水对陡河水库富营养化影响的预测研究—电厂温排水对陡河水库富营养化影响研究之二.水资源保护, 2001, (2): 15-18.
    [122]朱军政.强潮海湾温排水三维数值模拟.水力发电学报, 2007, 26(4): 55-60.
    [123]周巧菊.大亚湾海域温排水三维数值模拟.海洋湖沼通报, 2007, (4): 37-46.
    [124]汪一航,魏泽勋,王永刚,等.潮汐潮流三维数值模拟在庄河电厂温排水问题中的应用.海洋通报, 2006, 25(1): 8-15.
    [125]黄平.汕头港水域温排水热扩散的三维数值模拟.海洋环境科学, 1996, 15(1): 59-65.
    [126]王丽霞,孙英兰,郑连远.三维热扩散预测模型.青岛海洋大学学报, 1998, 28(1): 29-35.
    [127]郝瑞霞,韩新生.潮汐水域电厂温排水的水流和热传输准三维数值模拟.水利学报, 2004, (8): 66-70.
    [128]王春生,杨关铭,何德华,等.秦山核电站邻近水域浮游动物的群落结构和年际变化.东海海洋, 1999, 17(1): 37-47.
    [129]李淑菁,朱廷璋,潘德炉.秦山核电站邻近水域海水光的穿透性能变化研究.海洋环境科学, 1998, 17(2): 50-53.
    [130]王正方,龚敏,阮正,等.秦山核电站邻近水域环境化学要素特征.东海海洋, 1991, 9(2): 16-21.
    [131]何德华.秦山核电站邻近水域生态特点.东海海洋, 1991, 9(2): 119-123.
    [132]王正方,许建平.秦山核电站邻近水域水质评价.东海海洋, 1993, (1):61-66.
    [133]马明强,孙培芝,郑文,等.秦山核电站运行11年后周围居民受照剂量及其健康状况调查研究.中国辐射卫生, 2004, 13(4): 273-275.
    [134]王赞信,赵义方.秦山核电站运行对杭州地区环境放射性影响.中国公共卫生学报, 1999, 18(3): 181-182.
    [135]张玉庆,吴水龙,胡云仙,等.秦山核电站运行对上海环境影响的调查与评价.中国辐射卫生, 1996, 5(2): 99-101.
    [136]何德华,杨关铭,王正方,等.秦山核电站运行后对邻近海域生态环境及其水质影响评级.海洋环境科学, 1999, 18(2): 53-58.
    [137]周金全,刘颖.秦山核电二期工程海水取排水系统的设计和试验.核工程研究与设计, 1990, (6): 7-9.
    [138] Bates P D, Horritt M S, Smith C H, et al. Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrological Processes, 1997, 11(14): 1777-1795.
    [139] Walter P, Roland D and Jurgen S. Numerical simulation and satellite observations of suspended matter in the North Sea. Journal of Oceanic Engineering, 1994, 19(1): 3-9.
    [140] Yang M D, Merry C J and Sykes R M. Integration of water quality modeling, remote sensing and GIS. Journal of the American Water Resources Association, 1999, 35(2): 253-263.
    [141] Claude E, Veronique K, Patrick M, et al. The plume of the Rhone: Numerical simulation and remote sensing. Continental Shelf Research, 1997, 17(8): 899-924.
    [142]季顺迎,岳前进,赵凯.渤海海冰动力学的质点网格法数值模拟.水动力学研究与进展Ser.A, 2003, 18(6): 748-760.
    [143] Ouillon S, Douillet P and Andrefouet S. Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia. Coral Reefs, 2004, 23: 109-122.
    [144]冯益明,雷相东,陆元昌.应用空间统计学理论解译遥感影像信息"缺失"区.遥感学报, 2004, 8(4): 317-322.
    [145]黄思训,程亮,盛峥.一种卫星反演海温资料的补缺方法.气象科学, 2008, 28(3): 237-243.
    [146]肖奥,陶舒,王晓爽,等.遥感融合方法分析与评价.首都师范大学学报(自然科学版), 2007, 28(4): 77-80.
    [147]许长辉,高井祥,王坚,等.多源多时相遥感数据融合在煤矿塌陷地中应用研究.水土保持研究, 2008, 15(1): 92-95.
    [148]闫利,岳昔娟,崔晨风.一种定量确定遥感融合图像空间分辨率的方法.武汉大学学报(信息科学版), 2007, 32(8): 667-670.
    [149] Reynolds R W, Rayner N A, Smith T M. An improved in situ and satellite SST analysis for climate. Climate, 2002, 15(13): 1609-1625.
    [150]陈仁喜,李鑫慧. Gis辅助数据下的影像缺失信息恢复.武汉大学学报(信息科学版), 2008, 33(5): 461-464.
    [151] Luyten P J, Jones J E, Proctor R, et al. COHERENS—a Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas User Documentation.1999.
    [152]何贤强,潘德炉,白雁,等.基于矩阵算法的海洋——大气耦合矢量辐射传输数值计算模型.中国科学D辑地球科学, 2006, 36(9): 860-870.
    [153]何贤强,潘德炉,白雁,等.基于辐射传输数值模型PCOART的大气漫射透过率精确计算.红外与毫米波学报, 2008, 27(4): 303-307.
    [154]毛志华,黄海清.我国海区SeaWiFS资料大气校正.海洋与湖沼, 2001, 32(6): 581-587.
    [155] Keith D J, Yoder J A, Freeman S A, et al. Application of the Seawifs OC4 Chlorophyll algorithm to the waters of Narragansett Bay, Rhode Island. ASLO TOS Ocean Research Conference, Honolulu, HI, 2004: 15-20.
    [156]殷青军,杨英莲.中等分辨率成像光谱仪(MODIS)简介.青海气象, 2002, (1): 60-62.
    [157]吴龙涛,吴辉碇,孙兰涛,等. MODIS渤海海冰遥感资料反演.中国海洋大学学报, 2006, 36(2): 173-179.
    [158]张洁,张志.基于MODIS数据的云南抚仙湖星云湖水质污染遥感调查方法研究.水文地质工程地质, 2008, (5): 92-105.
    [159]祝令亚,王世新,周艺,等.应用MODIS监测太湖水体叶绿素a浓度的研究.应用技术, 2006, (2): 25-28.
    [160]吴敏,王学军.应用MODIS遥感数据监测巢湖水质.湖泊科学, 2005, 17(2): 110-113.
    [161]曲利芹,管磊,贺明霞. SeaWiFS和MODIS叶绿素浓度数据及其融合数据的全球可利用率.中国海洋大学学报, 2006, 36(2): 321-326.
    [162] Gong F, Wang D F, Pan D L, et al. Introduction to an airborne remote sensing system equipped onboard the Chinese marine surveillance plane. SPIE. 2008, 71061S.
    [163] Gong F, Wang D F, Pan D L, et al. Marine airborne multi-spectrum scanner and its potentiality for oceanic remote sensing. SPIE. 2005, 59781w.
    [164]王迪峰,于龙,龚芳,等.机载多光谱扫描仪及其海洋信息获取的潜力.仪器仪表学报, 2005, (Z1): 585-588.
    [165]倪勇强,耿兆铨,朱军政.杭州湾水动力特性探讨.水动力学研究与进展, 2003, 18(4): 439-445.
    [166] Zhou X J, Gao S. Spatial variability and representation of seabed sediment grain sizes: an example from the Zhoushan-Jinshanwei transect, Hangzhou Bay, China. Chinese Science Bulletin, 2004, 49(23): 2503-2507.
    [167]李家芳.浙江省海岸带自然环境基本特征及综合分区.地理学报, 1994, 49(6): 551-560.
    [168] Zhu J R, Qi D M, Xiao C Y. Simulated circulations off the Changjiang (Yangtze) River mouth in spring and autumn. Chinese Journal of Oceanology and Limnology, 2004, 22(3): 286-291.
    [169]路月仙,陈振楼,王军,等.上海市排污口环境影响评价.环境保护科学, 2003, 29(120): 46-49.
    [170] Chen X H, Zhu L S, Zhang H S. Numerical simulation of summer circulation in the east China sea and its application in estimating the sources of red tides in the Yangtze River Estuary and adjacent sea areas. Journal of Hydrodynamics Ser.B, 2007, 19(3): 272-281.
    [171]茅志昌,潘定安,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析.地理研究, 2001, 20(2): 170-177.
    [172]沈新强,袁骐,王云龙,等.长江口、杭州湾附近渔业水域生态环境质量评价研究.水产学报, 2003, 27(S1): 76-81.
    [173]王芳,康建成,周尚哲,等.春秋季长江口及其邻近海域营养盐污染研究.生态环境, 2006, 15(2): 276-283.
    [174] Zhu S X, Ding P X, Shi Fengyan, et al. Numerical study on residual current and its impact on mass transport in the Hangzhou Bay and the Changjiang EstuaryⅡ.Residual current and its impact on mass transport in winter. Acta Oceanologica Sinica, 2001, 20(2): 153-169.
    [175] Zhu S X, Shi F Y, Zhu J R, et al. Numerical study on residual current and its impact on mass transport in the Hangzhou Bay and the Changjiang Estuary I. A 3-D joint model of the Hangzhou Bay and the Changjiang Estuary. Acta Oceanologica Sinica, 2001, 20(1): 1-13.
    [176]刘新成,卢永金,潘丽红,等.长江口和杭州湾潮流数值模拟及水体交换的定量研究.水动力学研究与进展(A辑), 2006, 21(2): 171-180.
    [177]堵盘军,胡克林,孔亚珍,等. ECOMSED模式在杭州湾海域流场模拟中的应用.海洋学报, 2007, 29(1): 7-16.
    [178]姚炎明,李佳,周大成.钱塘江河口段潮动力对污染物稀释扩散作用探讨.水力发电学报, 2005, 24(3): 99-105.
    [179]吴海杰,王志刚,陈淑丰.滨海电站温排水数值模拟.电力环境保护, 2005, 21(4): 48-51.
    [180]羊天柱,许建平,陈洪,等.秦山核电站邻近水域的流况分析.东海海洋, 1993, 11(1): 10-17.
    [181]何德华.秦山核电站邻近水域生态特点.东海海洋, 1991, 9(2): 119-123.
    [182]王正方,龚敏,阮正,等.秦山核电站邻近水域环境化学要素特征.东海海洋, 1991, 9(2): 16-21.
    [183]王正方,许建平.秦山核电站临近水域水质评价.东海海洋, 1993, 11(1): 61-66.
    [184]邢前国,陈楚群,施平.利用Landsat数据反演近岸海水表层温度的大气校正算法.海洋学报, 2007, 29(3): 23-30.
    [185]覃志豪,李文娟,徐斌,等.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法.海洋科学进展, 2004, 22(S1): 129-137.
    [186] Weng Q H, Lu D S, Schubring J. Estimation of land surface temperature- vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 2004, 89(4): 467-483.
    [187]陈介中.大亚湾热污染研究[硕士学位论文].上海:华东师范大学河口海岸科学研究院, 2007.
    [188]许建平,羊天柱,陈洪,等.秦山核电站邻近水域的基本水文特征.东海海洋, 1991, 9(2): 1-15.
    [189]江吉喜.海表温度对台风移动的影响.热带气象学报, 1996, 12(3): 246-251.
    [190]刘瑞云.海面温度对热带气旋路径的影响初探.气象, 1993, 19(7): 35-37.
    [191]袁金南,肖伟生.海温变化对台风路径的影响.广东气象, 2002, (3): 1-2.
    [192]袁佳双,郑庆林.热带海洋温度持续异常对东亚初夏大气环流的影响.气象, 2005, 31(12): 10-17.
    [193]张甲坤,苏奋振,杜云艳.东海区中上层鱼类资源与海表温度关系.资源科学, 2004, 26(5): 147-152.
    [194]张春桂,张星,曾银东,等.台湾海峡海表温度的遥感反演及精度检验.海洋学报, 2008, 30(2): 153-160.
    [195]疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系.遥感学报, 2000, 4(1): 41-45.
    [196]陈锦年,何宜军,王宏娜,等.中国近海海面热平衡.北京:海洋出版社, 2007.
    [197]中华人民共和国水利部.中国河流泥沙公报.北京:中国水利水电出版社, 2006.
    [198]沈志良.长江氮的输送通量.水科学进展, 2004, 15(6): 752-759.
    [199] Shen Z L, Liu Q, Zhang S M, et al. A nitrogen budget of the Changjiang River catchment. Ambio, 2003, 32(1): 65-69.
    [200]徐礼强,童杨斌,楼章华,等.钱塘江枯水期主要污染物水环境模拟.环境科学, 2007, 28(12): 2682-2687.
    [201]吴洁,虞左明,钱天鸣.钱塘江干流杭州段水体氮污染特征分析.长江流域资源与环境, 2003, 12(6): 552-556.
    [202]林卫青,卢士强,矫吉珍.长江口及毗邻海域水质和生态动力学模型与应用研究.上海环境科学, 2008, 27(1): 2-8.
    [203]陈俊男.以数值方法模拟大鹏湾初级生产力之研究[硕士学位论文].台湾:国立中山大学海洋环境及工程研究所, 2002.
    [204]吴小燕. POM模型的改进及在长江口临近海域的应用[硕士学位论文].杭州:国家海洋局第二海洋研究所, 2008.
    [205]张霄宇.基于海洋水色遥感产品的沿海水质评价研究[博士学位论文].上海:中国科学院技术物理研究所, 2006.
    [206]刘芳.南黄海及东海北部海域悬沙的遥感研究[硕士学位论文].青岛:中国科学院研究生院(海洋研究所), 2005.
    [207] Blomster J, Back S, Fewer D P. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. American Journal of Botany, 2002, 89(11): 1756-1763.
    [208]良宗英,林祥志,马牧,等.浒苔漂流聚集绿潮现象的初步分析.中国海洋大学学报, 2008, 38(4): 601-604.
    [209]何清,胡晓波,周峙苗,等.东海绿藻缘管浒苔营养成分分析及评价.海洋科学, 2006, 30(1): 35-38.
    [210]李祯,王爽,徐姗楠,等.大型海藻浒苔热解特性与动力学研究.生物技术通报, 2007, (3): 159-164.
    [211]林文庭.浅论浒苔的开发与利用.中国食物与营养, 2007, (9): 23-25.
    [212]王超,乔洪金,潘光华,等.青岛奥帆基地海域漂浮浒苔光合生理特点研究.海洋科学, 2008, 32(8): 31-51.
    [213]叶静,张喆,李富超,等.大型绿藻浒苔转化表达系统选择标记的筛选.生物技术通报, 2006, (3): 63-67.
    [214]张寒野,吴望星,宋丽珍,等.条浒苔海区试栽培及外界因子对藻体生长的影响.中国水产科学, 2006, 13(5): 781-786.
    [215]郑霞,邵世光,阎斌伦.镉污染对肠浒苔毒性作用研究.水产科学, 2007, 26(7): 411-413.
    [216]黄邦钦,刘媛,陈纪新,等.东海、黄海浮游植物生物量的粒级结构及时空分布.海洋学报, 2006, 28(2): 156-164.
    [217]檀赛春,石广玉.中国近海初级生产力的遥感研究及其时空演化.地理学报, 2006, 61(11): 1189-1199.
    [218]韩希福,王荣.海洋浮游动物对浮游植物水华的摄食与调控作用.海洋科学, 2001, 25(10): 31-33.
    [219]胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报, 2004, 26(6): 74-88.
    [220]李杰,吴增茂,万小芳.黄海冷水团新生产力及微食物环作用分析.中国海洋大学学报(自然科学版), 2006, 36(2): 193-199.
    [221]田恬,魏皓,苏健,等.黄海氮磷营养盐的循环和收支研究.海洋科学进展, 2003, 21(1): 1-11.
    [222]夏洁,高会旺.南黄海东部海域浮游生态系统要素季节变化的模拟研究.安全与环境学报, 2006, 6(4): 59-65.
    [223]曾呈奎,张德瑞,张峻甫.中国经济海藻志.北京:科学出版社, 1962.
    [224]王建伟,阎斌伦,林阿朋,等.浒苔(Enteromorpha Prolifera)生长及孢子释放的生态因子研究.海洋通报, 2007, 26(2): 60-65.
    [225]王晓坤,马家海,叶道才,等.浒苔(Enteromorpha Prolifera)生活史的初步研究.海洋通报, 2007, 26(5): 112-116.
    [226]钱树本,刘东艳,孙军.海藻学.青岛:中国海洋大学出版社, 2005.
    [227] Fujita R M. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by Macroalgae. Journal of Experimental Marine Biology and Ecology, 1985, 92: 283-301.
    [228]王保栋,单宝田,战闰,等.黄、渤海无机氮的收支模式初探.海洋科学, 2002, 26(2): 33-36.
    [229] Chen C S, Ji R B, Zheng L Y, et al. Influence of physical processes on the ecosystems in Jiaozhou Bay: A coupled physical and biological model experiment. Journal of Geophysical Research, 1999, 104(C12): 29925-29949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700