用户名: 密码: 验证码:
氨基湿法烟气脱硫的机理及工业试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的能源结构以煤炭为主。目前,我国煤炭的主要利用方式是直接燃烧,约占煤炭利用总量的80%。煤在燃烧过程中会产生多种污染物,其中SO2、NOx由于排放量大、对环境的影响面广,已成为各国政府极为重视的大气污染物排放控制目标。相对传统石灰石石膏法脱硫技术,湿式氨法脱硫技术因其脱硫效率高、副产品容易利用、可以同时脱去部分氮氧化物、适用于高硫煤、无二次污染、初期投资低等优点,满足了人们对环保及循环经济的要求,越来越受到人们的重视。本文针对国内对氨基湿法烟气脱硫技术日益增长的需求,对氨法脱硫过程中的相关机理进行了深入研究,并经过中间试验的验证,得到了完整工艺方案和可指导于工业生产的成果。此外,为进一步开发氨法同时脱硫脱硝技术做准备,本文还研究了氨法脱硫条件下NO2的吸收特性。
     本文利用搅拌反应器研究了(NH4)2SO3溶液与SO2、NO2司气液吸收反应特性,并获得了必要的动力学参数及基础数据。在试验条件下(NH4)2SO3溶液吸收S02时,当液相(NH4)2SO3浓度小于临界值0.05mol/L时,反应过程受气液双膜的控制;而当液相中的(NH4)2SO3浓度大于临界值后,反应逐渐变为以受气膜传递的控制为主,此时吸收反应级数对(NH4)2SO3浓度表现为零级。气相中S02浓度及温度的提高有利于提高S02的吸收速率,(NH4)2SO3溶液吸收S02的反应对S02浓度表现为0.6级。在试验条件下(NH4)2SO3溶液吸收N02时,二氧化氮的吸收速率随亚硫酸铵浓度的增加而增加,但当亚硫酸铵的液相浓度超过0.1mol/L时,其增加对二氧化氮吸收速率的影响不再明显。二氧化氮的吸收速率随液相pH值、反应温度及NO2的初始入口浓度的增加而增加。当亚硫酸铵的液相浓度超过0.1mol/L时,二氧化氮的吸收速率对液相亚硫酸铵浓度表现为零级,对二氧化氮界面浓度为一级。
     在实验室小型喷淋塔上进行了模拟的氨法脱硫试验,结果表明,pH值是影响烟气脱硫效率的主要因素,高pH值有利于脱硫。选择适当的烟气流速和液气比L/G有利于提高脱硫效率。在其它试验条件保持不变时,入口烟气SO2浓度的增加会降低脱硫效率。在气液吸收的双膜理论的基础上建立了脱硫过程的数学模型,利用所建立的数学模型对氨基湿法烟气脱硫过程进行了数值模拟,计算结果与试验研究结果吻合良好。在湿法脱硫过程中,铁离子对亚盐离子的氧化具有催化作用,因此利用恒温振荡器研究了飞灰中的铁在氨法脱硫条件下的浸出特性,并利用液-固异相反应的表面反应动力学模型分析了反应过程的动力学参数及反应特征。飞灰中铁的浸出浓度随温度、振荡频率和飞灰铁含量的增加而增加,随pH值和L/S值的增加而减小。此外,浸出时间的延长也有助于铁的进一步溶出。氨法脱硫条件下铁浸出反应的表观活化能为20.01kJ/mol,所以在试验条件下铁离子的浸出同时由化学反应和扩散两方面因素控制。
     在机理性试验的基础上,进行了烟气量为3000Nm3/h的工业中间试验,分析了各工艺操作参数对系统脱硫效率的影响。脱硫效率随循环脱硫液的pH值、液气比L/G的升高而增大,随烟气流速、循环脱硫液盐浓度的升高而降低。脱硫液中亚硫酸铵的氧化程度随循环液pH值、盐浓度的升高而降低。烟气的含氧量、脱硫液中铁离子含量、反应温度等因素的增加均可加剧亚硫酸铵的氧化。通过中间试验的调试和运行,解决了工艺难题,并确定了较为合理的工艺流程和工艺参数。以此为基础确定了工业化生产方案,并对工业系统进行了经济性分析。
From the perspective of energy resource condition, China's energy structure is coal-dominated. There are many kinds of pollutions produced by coal combustion. Because SO2 and NOx have serious influences on the environment, they have been the important goals of air pollution control in the world. Ammonia-based wet desulfurization process has drawn an increasing attention recently due to its advantages such as high desulfurization efficiency, easy utilization of by-products. Aimed at the increasing demand of Ammonia-based wet desulfurization process, the studies carried out systemically on the related mechanisms, and obtained the complete process applied to industrial production through a pilot experiment.
     In order to investigate the characteristics of the reaction between ammonium sulfite, the main desulfurizing solution, and the flue-gas-contained sulfur dioxide during the process of ammonia-based wet flue gas desulfurization in a power plant, the gas-liquid absorption reaction between sulfur dioxide and an ammonium sulfite solution was studied in a stirred tank reactor and a bench scale scrubber. Under the experimental condition of a stirred tank, the results indicate that the absorption of sulfur dioxide is controlled by both the gas-and liquid-films when the ammonium sulfite concentration is lower than 0.05 mol/L, and mainly by the gas-film at higher concentrations. In the latter case, the reaction rates are found to be zero-order with respect to the concentration of ammonium sulfite. The absorption rates of sulfur dioxide increase as the concentration of sulfur dioxide in inlet gas and the temperature increase. The reaction rate is of 0.6th-order with respect to the concentration of sulfur dioxide. The absorption reactions of NO2 into aqueous solution of (NH4)2SO3 were also investigated in a stirred tank reactor with a plane gas-liquid interface. It was also found that NO2 absorption rates was enhanced by the increasing concentration of (NH4)2SO3 but nearly remained constant if the concentration is greater than 0.1 mol/L. The absorption rates also increased with the increasing of the (NH4)2SO3 concentration, reaction temperature and the initial inlet concentration of NO2, but decreased as the oxygen concentration increased. The reaction rate is of first-order with respect to the concentration of sulfur dioxide, and of zero-order to the (NH4)2SO3 concentration in the solution when the concentration is greater than 0.1 mol/L.
     The process parameters were studied on the influence in desulfurization efficiency under the cold-state experimental condition of the scrubber. The experimental results indicate that the desulfurization efficiency is mainly controlled by pH value, and increase with the increasing pH value, flue gas velocity, and liquid-gas ratio. The increasing concentration of inlet SO2 decreases the desulfurization efficiency. Based on the two-film theory of gas-liquid absorption, the mathematic model of SO2 removal was built up with the bentch-scale scrubber as the physiacal model. The SO2 removal process in ammonia-based WFGD was simulated with this model. It is showed that the caculated results agree well with the experimental results.In the wet process, the presence of iron would catalyze the oxidation of sulfite. Iron leaching from fly ash has been investigated under simulated ammonia-based wet flue gas desulfurization conditions to determine the effects of reaction temperature, initial pH value, liquid-to-solid ratio and vibration frequency. The experimental results indicated that the ferric ion concentration in solution increased with the increase of temperature and vibration frequency, but increased with the decrease of pH value and liquid-to-solid ratio. The kinetics of iron leaching can be expressed as diffusion combined with a surface chemical reaction model. The reaction path can be described by the equation:1-(1-a)1/3=kt. The apparent activation energy was estimated to be about 20.01 kJ/mol. Such a value of the activation energy indicates that the leaching of iron under experimental condition is controlled by both chemical reaction and diffusion.
     Based on the results of the mechanism tests, a novel process of ammonia-bisulfite WFGD was developed. The pilot-scale experimental system was designed for 3000 Nm3/h of flue gas flow. The experimental results indicate that pH value is the dominant factor influencing desulphurization efficiency. The desulphurization efficiency increases with increasing pH value and liquor gas ratio, while decreases with increasing solution density and flue gas velocity. The oxidation of ammonium sulfite decreases with increasing pH value, salt concentration in solution. The increasing concentration of oxygen content in flue gas, reaction temperature and iron concentration in solution can also aggravate the oxidation of sulfite. Based on the operation results of the pilot-scale system, some process problems were solved. Therefore, the process flow and the parameters were determined. The industrial process was designed, and its Economic analysis was made.
引文
[1]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [2]田海宏.燃煤污染及控制措施分析[J].应用能源技术,2004,(2):35-36.
    [3]王龙贵,欧泽深.析燃煤污染危害及其防治[J].选煤技术,2004,(2):12-15.
    [4]张国宝.未来能源需求主要依靠国内供给.available from:http://gov.people.com.cn GB/46738/4401894.html.
    [5]焦红光,胡正彬.浅谈我国燃煤污染危害及其防治[J].选煤技术,2004,(2):3-6.
    [6]钟毅,基于WFGD系统的硫、氮、汞污染物协同脱除的理论与研究[D].杭州:浙江大学,2008.
    [7]中国电力企业联合会.2007年发电机组和电网设施基本情况.available from: http://www.cec.org.cn/images/200872112846447.doc.
    [8]中国环境保护产业协会锅炉炉窑脱硫除尘委员会.我国火电厂脱硫脱硝行业2007年发展综述[J].中国环保产业,2008,(6).
    [9]中华人民共和国环境保护部.2008年中国环境状况公报(大气环境).available from: http://www.zhb.gov.cn/plan/zkgb/2008zkgb/200906/t20090609_152566.htm.
    [10]孔火良,吴慧芳,金保升.燃煤电厂烟气脱硫技术及其主要工艺[J].煤矿环境保护,2002,16(6):22-28.
    [11]吕向前,孙林兵,张敏,等.洁净煤技术在防治燃煤污染中的应用[J].煤炭技术,2003,22(8):2-4.
    [12]中华人民共和国环境保护部.国家酸雨和二氧化硫污染防治“十一五”规划.available from: http://www.zhb.gov.cn/info/gw/huanfa/200801/t20080114_116230.htm.
    [13]中华人民共和国环境保护部.环境公报.available flom:http://www.zhb.gov.cn/plan/zkgb/
    [14]虞莉萍.中国硫资源开发结构及消费领域[J].无机盐工业,2008,40(2):61.
    [15]贺泓,李俊华,何洪,等.环境催化-原理及应用[M].北京:科学出版社,2008.
    [16]周立新,褚毅,陈朝东.工业脱硫脱销技术问答[M].北京:化学工业出版社,2006.
    [17]高志飞,陈建中,王盼盼.燃煤氮氧化物排放控制技术研究进展及相关思考[J].广东环境科学,2007,22(2):19-22.
    [18]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2003.
    [19]Roy S., Hegde M. S., Madras G.. Catalysis for NOx abatement [J]. Applied Energy,2009,86:2283-2297.
    [20]Jenkins J. T., Ephraums G. J. Climate change [M]. Cambridge:The IPCC Scientific Assessment Cambridge University Press,1990.
    [21]张楚莹,王书肖,邢佳,等.中国能源相关的氮氧化物排放现状与发展趋势[J].环境科学学报,2008,28(12):2470-2479.
    [22]电力网. 中国火电厂氮氧化物控制现状[R]. available from: http://www.dianli.com/index.php?do=article_info_show&id=330&site=6&cate-3
    [23]王长会.我国氮氧化物的污染现状和治理技术的发展及标准介绍[J].节能环保,2008,(3):20-21.
    [24]Srivastava R. K., Jozewicz W., Singer C. SO2 Scrubbing technologies:a review [J]. Environ. Prog. 2001,20(4):219-228.
    [25]Ellison W. FGD design for simultaneous SO2/NOx removal with usable byproducts [C].1995 International Joint Power Geration Conference, ASME,1995,1.
    [26]王晓宇,王彦明.氨法烟气脱硫及实用性分析[J].化工生产与技术,2008,15(2):47-50.
    [27]Saleem A., Janssen K. E., Ireland P. A.利用氨水洗涤含硫烟气制取硫酸铵的新工艺[J].磷肥与复肥,1996,(3):72-74.
    [28]李江,徐光.氨法深度氧化烟气净化技术[J].华东电力,2005,33(4):215-217.
    [29]徐长香,傅国光.氨法脱硫技术综述[J].电力环境保护,2005,21(2):17-20.
    [30]氨法烟气脱硫技术赴美考察报告[J].企业科技进步,2005,(7):13-15,7.
    [31]available from:http://www.marsulex.com/proven_solutions/examples/scrubbing.htm
    [32]available from:http://www.caepi.org.cn/upload/article/accessory/C-MET%20brief%20 presentation%2020081021.ppt
    [33]St. Clair H.W. Vapor pressure and thermodynamic properties of ammonium sulphites. U.S. BUR. Mines Rept. Inv. No.3339,1937,19-29.
    [34]Scargill D. Dissociation Constants of Anhydrous Ammonium Sulphite and Ammonium Pyrosulphite Prepared by Gas-phase Reaction [J]. Chem. Soc. (A); Inorg. Phy. Thero.1971,2461-2466.
    [35]Shale C.C.; Simpson, D.G.; Lewis, P.S. Removal of sulfur and nitrogen oxides from stack gases by ammonia [J]. Chem. Eng. Prog. Symp. Ser.1971,67(115):52-57.
    [36]Shale C. C. Ammonia Injection:A route to clean Sstack, in pollution control and energy needs [C]. Advances in Chemistry Series 127; American Chemical Society:Washington DC,1973,195-205.
    [37]Tock R. W.; Hoover K. C.; Faust G. J. SO2 removal by transformation to solid crystals of ammonia complexes [J]. AIChE Symp. Ser.1979,75(188):62-82.
    [38]Stromberger M. J., The removal of sulfur dioxide from coal-fired boiler flue gas by ammonia injection. M.S. [D]. University of Cincinnati, Cincinnati,1984.
    [39]Keener T. C.; Davis W. T., Demonstration of a Ca(OH)2/NH3 based Ssystem for removal of SO2 on high sulfur coals, Final report to the Ohio coal development office, Columbus, OH, August,1988.
    [40]Bai H., Biswas P., Keener T. C., SO2 removal by NH3 gas injection:effects of temperature and moisture content [J]. Ind. Eng. Chem. Res.1994,33(5):1231-1236.
    [41]Bai H., Biswas P., Keener T. C., Particle formation by the NH3-SO2 reactions at trace water conditions [J]. Ind. Eng. Chem. Res.1992.31:88-94.
    [42]Johnstone H F. Equilibrium partial vapor pressures over solutions of the ammonia-sulfur dioxide-water system [J]. Ind. Eng. Chem.1935,27:587-597.
    [43]Hikita H., Asai S., Tauji T. Absorption of sulfur dioxide into aqueous ammonia and ammonium sulfite solution [J]. J. Chem. Eng. Japan.1978,11 (3):236-238.
    [44]Uchida S., Moriguchi H., et al. Absorption of sulfur dioxide into limestone slurry in a stirred tank reactor [J]. Can J Chem. Eng.1978; 56:690-697.
    [45]Long X. L., Xiao W. D., Yuan W. K. Kinetics of gas-liquid reaction between NO and Co(NH3)62+ [J]. J. Hazard. Mater.2005; B123:210-216.
    [46]郭瑞堂,高翔,王君,等.液柱塔内流场及SO2吸收的CFD模拟和优化[J].浙江大学学报工学版,2007,41(3):494-498,503.
    [47]郭瑞堂,高翔,丁红蕾,等.湿法烟气脱硫喷淋塔内流场的优化[J].中国电机工程学报,2008,28(29):70-77(EI).
    [48]林永明,高翔,施平平,等.300MW机组湿法烟气脱硫(WFGD)吸收塔内气液流场模拟.热力发电,2006,7:21-24.
    [49]Whiteman W. G.The two-film theory of gas absorption [J]. Chemistry and Metal Engineering,1923, 29(1):147-157.
    [50]Doraiswamy L. K., Sharma M. M. Heterogeneous reactions [M]. New York:Wiley,1984.
    [51]Seader J. D., Henley E. J. Seperation process priciple [M]. 北京:化学工业出版社,2002.
    [52]苏仕军.垃圾渗沥液—烟气脱硫体系气液吸收与解吸过程研究[D].成都:四川大学,2004.
    [53]Uchida S., Wen C. Y. Rate of gas absorption into a slurry accompanied by instantaneous reaction [J]. Chem. Eng. Sci.1977,32(11):1277-1281.
    [54]Kiil S., Michelsen M. L., Johansen K. D., et al. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant [J]. Ind. Eng. Chem. Res.,1998,37(7):2792-2806.
    [55]陆永琪,郝吉明,姚晓红等.管式反应器石灰雾液脱硫的数学模型[J].环境科学学报,1999,19(6):636-641.
    [56]Brogren C., Karlsson H. T. Modeling the absorption of SO2 in a spray scrubber using the penetration theory [J]. Chem. Eng. Sci.1997,52(18):3085-3099.
    [57]何苏浩,项光明,姚强等.石灰石/石灰-石膏湿法脱硫反应塔模型比较[J].煤炭转化,2001,24(3):41-49.
    [58]杨莉,刘恩科.氨法烟气脱硫吸收过程的模拟计算[J].河南化工,2003,(5):33-36.
    [59]Edwards T. J., Newman J., Prausnitz, J. M. Thermodynamics of aqueous solutions containing volatile weak electrolytes[J]. Aiche J.1975,21:248-258.
    [60]周家驹,许志宏.挥发性弱电解质水溶液三元系的气液平衡—NH3-SO2-H2O, NH3-SO2-H2O, NH3-SO2-H2O体系[J].化工学报,1983,(3):234-245.
    [61]贾勇,钟秦等.填料塔氨法脱硫模型研究[J].中国电机工程学报,2009,29(14):52-57.
    [62]陈洪雨,刘国荣.新型水帘式氨法烟气脱硫理论研究[J].通用机械,2007,(4):74-77.
    [63]Nygaard J. M., Kiil S., Johnsson, K. D., et al. Full-scale measurement of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulfurization spray absorber [J]. Fuel, 2004,83(9):1151-1164.
    [64]Cornelis G.; Johnson C. A.; Gerven T. V.; et al. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline soild wastes:A review [J]. Appl. Geochem.2008,23,955-976.
    [65]Kim A. G.; Hesbach P. Comparison of fly ash leaching methods [J]. Fuel 2009,88,926-937.
    [66]Paul M.; Seferinoglu M.; Aycik G.; et al. Acid leaching of ash and coal:time dependence and trace element occurrences [J]. Int. J. Miner. Process.2006,79,27-41.
    [67]Singh D. N.; Kolay P. K. Simulation of ash-water interaction and its influence on ash characteristics [J]. Prog. Energy Combust. Sci.2002,28,267-299.
    [68]Srinivasan A.; Grutzeck M. W. The adsorption of SO2 by zeolites synthesized from fly ash [J]. Environ. Sci. Technol.1999,33,1464-1469.
    [69]Sundaram H. P.; Cho E. H.; Miller A. SO2 removal by leaching coal pyrite [J]. Energy Fuels 2001, 15,470-476.
    [70]Fytianos K.; Tsaniklidi B. Leachability of heavy metals in Greek fly ash from coal combustion [J]. Environ. Int.1998,24,477-486.
    [71]Dutta B. K.; Khanra S.; Mallick, D. Leaching of elements from coal fly ash:assessment of its potential for use in filling abandoned coal mines [J]. Fuel 2009,88,1314-1323.
    [72]Peters E., Majima H. Electrochemical reactions of pyrite in acid perchlorate solutions [J]. Can. Metallurgy Quarterly,1968,7(3):111-117.
    [73]Cho E. H. Removal of SO2 with oxygen in the presence of Fe(Ⅲ) [J]. Met. Trans. B,1986,17B: 745-753.
    [74]Cho E. H., Chateker P., Garlapalli R., et al. Mercury removal from coal by leaching with SO2 [J]. Energy Fuels,2009,23(2):774-778.
    [75]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [76]李广超.大气污染控制技术[M].北京:化学工业出版社,2008.
    [77]周涛,刘少光,吴进明,等.火电厂氮氧化物排放控制技术[J].环境工程,2008,26(6):82-85.
    [78]宋华丰,徐俭.烟气中氮氧化物的处理技术[J].能源及环境,2008,(16):20-21.
    [79]Chu H., Chien T.W., and Twu B.W. The absorption kinetics of NO in NaClO2/NaOH solutions. Journal of Hazardous Materials 2001;B84:241-252.
    [80]章巍.EDTA络合协同RDB净化NO及其菌群结构变化的研究[T].杭州:浙江工业大学,2009.
    [81]EPRI. Integrated environmental control for multiple air pollutants [R]. Palo Alto:2005.
    [82]杨睿戆,吴彦,任志凌,等.电子束氨法烟气脱硫技术工艺研究[J].环境污染治理技术与设备,2004,5(11):82-84.
    [83]吴祖良,高翔,李济吾等.电晕放电自由基簇射同时脱硫脱硝反应特性研究[J].高校化学工程学报,2008,22(2):325-331.
    [84]Optimisation of powerplant using WSA/SNOXTM technology. available from: www.topsoe.com/sitecore/shell/Applications/.../Schoubye.ashx
    [85]刘海蛟.MCFB烟气净化系统的多重污染物协同脱除研究[D].杭州:浙江大学,2009.
    [86]Kameoka Y.; Pigford R. Absorption of nitrogen dioxide in to water, sulfur acid, sodium hydroxide, and alkaline sodium sulfite aqueous solutions [J]. Ind. Eng. Chem. Fundam.1977,16:163-169.
    [87]Adewuyi Y. G., He X. D., Shaw H., et al. Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite [J].1999,174:21-51.
    [88]Nelli C. H., Rochelle G. T. Nitrogen dioxide reaction with alkaline solid [J]. Ind. Eng. Chem. Res. 1996,35,999-1005.
    [89]Rosenberg H. S., Grotta H. M. NOx influence on sulfite oxidation and scaling in lime/limestone flue gas desulfurization (FGD) system [J]. Environ. Sci. Technol.1980,14 (4):470-472.
    [90]Wu Z. B., Wang H. Q., Liu Y., et al. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides [J]. Chem. Eng. J.2008,144:221-226.
    [91]Suchak N. J., Jethani K. R., Joshi, J. B. Absorption of nitrogen oxides in alkaline solutions:selective manufacture of sodium nitrite [J]. Ind. Eng. Chem. Res.1990,29:1492-1502.
    [92]Ellison W. Commercial process design options in achieving simultaneous/combined removal of NOx, mercury, SO2, SO3 and particulate [C]. The 27th International Technical Conference on Coal Utilization & Fuel Systems. Clearwater, Florida,2002.
    [93]Pradhan M. P., Joshi J. B. Absorption of NOx gases in plate column:Selective manufacture of sodium nitrite [J]. Chem. Eng. Sci.2000,55:1269-1282.
    [94]Shen C. H., Rochelle G. T. Nitrogen dioxide absorption and sulfide oxidation in aqueous sulfide [J]. J. Air Waste Manag. Assoc.1999,47:332-338.
    [95]Song Q. Research on homogeneous oxidation of NO and SO2 in flue gas by chain reaction [J]. Energy Fuel.2003,17:1549-1553.
    [96]Chang S. G., Littlejohn D., Lin N. H. Kinetics of reaction in a wet flue gas simultaneous desulfurization and denitrification system [C]. ACS Symposium 188. Washington D. C.,1982:127-152.
    [97]Clifton C. L., Altstein N., Hule, R. E. Rate constant for the reaction of NO2 with sulfur(IV) over the pH range 5.3-13 [J]. Environ. Sci. Technol.1988,22:586-589.
    [98]Ellison T. K., Eckert C. A. The oxidation of aqueous SO2.4. the influence of nitrogen dioxide at low pH [J]. J. Phys. Chem.1984,88:2335-2339.
    [99]Siddiqi M. A., Petersen J., Lucas K. A study of the effect of nitrogen dioxide on the absorption of sulfure dioxide in wet flue gas cleaning processes [J]. Ind. Eng. Chem. Res.2001,40:2116-2127.
    [100]Littlejohn D., Wang Y., Chang S. G. Oxidation of aqueous sulfite ion by nitrogen dioxide [J]. Environ. Sci. Technol.1993,27:2162-2167.
    [101]Pikon K. Environmental impact of combustion [J]. Appl. Energy 2003; 75:213-220.
    [102]Gerard P, Segantini G, Vanderschuren J. Modeling of Dilute Sulfur Dioxide Absorption into Calcium Sulfite Slurries [J]. Chem. Eng. Sci.,1996,51(12):3349-3358.
    [103]杜谦,马春元,董勇,等.液气比对石灰石-石膏湿法烟气脱硫过程的影响[J].动力工程,2007,27(3):421-426.
    [104]周月桂,王冬福,章明川,等.多流体碱雾发生器烟气脱硫新方法的试验[J].动力工程,2004,24(5):707-710.
    [105]Kaminski J. Technologies and costs of SO2-emissions reduction for the energy sector [J]. Appl. Energy 2003; 75:165-172.
    [106]肖文德,李伟,方运进等.火电厂烟气脱硫新方法—NADS 氨-肥法[J].中国电力,2001, 34(7):54-58.
    [107]汤桂华.《硫酸》.北京:化学工业出版社,1999.
    [108]Ruhland F., Kind R., et al. The kinetics of the absorption of sulfur dioxide in calcium hydroxide suspensions [J]. Chem. Eng. Sci.1991; 46:939-947.
    [109]Sada E., Kumazawa H., et al. Kinetics of Absorptions of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide [J]. Chem. Eng. Sci.1981; 46:149-155.
    [110]Gao X., Guo R.T., Ding H.L., et al. Absorption of NO2 into Na2S solution in a stirred tank reactor [J]. J. Zhejiang Univ. Sci. A.2009,10 (3):434-438.
    [111]Zhao Y., Wang S.X., Duan L., et al. Primary air pollution emission of coal-fired power plants in China:current status and future prediction [J]. Atmos. Environ.2008,42 (36):8442-8452.
    [112]Resnik K. P. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx [J]. Int. J. Environ. Tech. Manage.2004,4:89-104.
    [113]Shen C. H., Rochelle G. T. Nitrogen dioxide absorption and sulfide oxidation in aqueous sulfite [J]. Environ. Sci. Technol.1998,32 (13):1994-2003.
    [114]Brogren C., Karlsson H.T., Bjerle I. Absorption of NO in an aqueous solution of NaCIO2 [J]. Chem. Eng. Technol.1998,21:61-70.
    [115]Chien T. W., Chu H., Hsueh H. T.. Kinitic study on absorpiton of SO2 and NOx with acidic NaClO2 solutions using the spraying column [J]. J. Environ. Eng.2003, (11):967-978.
    [116]Wu Z. L., Gao X., Luo Z. Y., et al. NOx Treatment by DC corona radical shower with different geometric nozzle electrodes [J]. Energy fuel.2005,19:2279-2286.
    [117]Wang Z. H., Zhou J. H., Zhu Y. Q., et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:Experimental results [J]. Fuel Process Technol.2007,88: 817-823.
    [118]Chien T.W., Chu H.. Removal of SO2 and NO from flue gas by wet scrubing using an aqueous NaClO2 solution [J]. J. Hazard. Mater.2000, B80:43-57.
    [119]Jin D.S., Deshwal B.R., Park Y.S., Lee, H. K.. Simultaneous removal of SO2 and NO by wet scrubing using aqueous chlorine dioxide solutin [J]. J. Hazard. Mater.2006, B135:412-417.
    [120]李伟,吴成志,马碧瑶,施耀[J].化工学报,2005,56(10):1843-1848.
    [121]施耀,项菲,李伟,钟战铁[J].中国环境科学,2003,23(2):201-205.
    [122]陈甘棠,梁玉衡.化学反应技术基础[M].北京:科学出版社,1981.
    [123]Levenspiel O., Godfrey J. H. A gradientless contactor for experimental study of interphase mass transfer with/without reaction [J]. Chem. Eng. Sci.1974; 29:1723-1730.
    [124]谭天恩,金一中,骆有寿.传质-反应过程[M].浙江:浙江大学出版社,1990.
    [125]Shi Y., Littlejoin D., Chang S. G. Kinetics of NO absorption in aqueous iron (Ⅱ) thiochelate solution [J]. Environ. Prog.1997; 16:301-306.
    [126]Hiroshi T., Makoto A., Nobuo K. Absorption of Nitrogen oxides in aqueous sodium sulfite and bisulfite solutions [J]. Ind. Eng. Chem.1977; 16:303-308.
    [127]Chu H., Chien T. W., Li S. Y. Simultaneous absorption of SO2 and NO from flue gas with KmnO4/NaOH solutions [J]. Sci. Total. Environ.2001; 275:127-135.
    [128]Rumpf B., Maurer G. Solubilities of hydrogen cyanide and sulfur dioxide in water at temperatures from 293 to 413 K and pressures up to 2.5 Mpa. Fluid Phase Equilibr [J].1992; 81:241-260.
    [129]Versteeg G. F., Van Swaaij W. P. M. Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions. J. Chem. Eng. Data [J].1988; 33:29-34.
    [130]Wilke C. R., Chang P. Correlation of difusion coefficients in dilute solutions. AIChE J.1955; 1:264-270.
    [131]天津大学化工原理教研室.化工原理(下册)[M].天津科学技术出版社,1983.
    [132]Mertes S. Wahner A. Uptake of nitrogen dioxide and nitrous acid on aqueous surface [J]. J. Phys. Chem.1995,99:14000-14006.
    [133]Palumbo A. V.; Tarver J. R.; Fagan, L. A.; et al. Comparing metal leaching and toxicity from high pH, low pH, and high ammonia fly ash [J]. Fuel 2007,86:1623-1630.
    [134]Chakraborty M.; Mukherjee A. Mutagenicity and genotoxicity of coal fly ash water leachate [J]. Ecotox. Environ. Safe.2009,72:838-842.
    [135]Zhao J. T.; Huang J. J.; Zhang, J. M.; et al. Influence of fly ash on high temperature desulfurization using iron oxide sorbent [J]. Energy Fuels 2002,16:1585-1590.
    [136]Izquierdo M. T.; Rubio B. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal [J]. J. Hazard. Mater.2008,155:199-205.
    [137]Li L.; Fan, M. H.; Brown R.; et al. Production of a new waster treatment coagulant from fly ash with concomitant flue gas scrubbing [J]. J. Hazard. Mater.2009,162:1430-1437.
    [138]Guan B. H.; Ni W.; Wu Z. B.; et al. Removal of Mn(Ⅱ) and Zn(Ⅱ) ions from flue gas desulfurization wastewater with water-solution chitosan [J]. Sep. purif. Technol.2009,65:269-274.
    [139]Karatza D.; Prisciandaro M.; Lancia A.; et al. Calcium bisulfite oxidation in the flue gas desulfurization process catalyzed by iron and manganese ions [J]. Ind. Eng. Chem. Res.2004,43: 4876-4882.
    [140]Ozbek H., Abali Y., ColaK S., et al. Dissolution kinetics of magnesite mineral in water saturated by chlorine gas [J]. Hydrometallurgy,1999,51:173-185.
    [141]Li M.; Hu S.; Xiang J. et al. Characterization of fly ashes from two Chinese municipal solid waste incinerators [J]. Energ. Fuel.2003,17:1487-1491.
    [142]Ansari A.; Peral J.; Domenech X.; et al. Oxidation of ⅡSO4- in aqueous suspensions of a-Fe2O3 a-FeOOH β-FeOOH and γ-FeOOH in the dark and under illumination [J]. Environ. Pollut.1997,95:283-288.
    [143]Aydogan A., Erdemoglu M., Ucar G., Kinetics of galena dissolution in nitric acid solutions with hydrogen peroxide [J]. Hydrometallurgy 2007,88:52-57.
    [144]Levenspiel O. Chemical reaction engineering,3rd ed. [M]. Chemical Industry Press:Beijing,2002, pp379.
    [145]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [146]钟秦.湿法烟气脱硫的理论和研究(Ⅱ)[J].南京理工大学学报,1999,23(1):3-5.
    [147]项光明.液柱喷射烟气脱硫研究[D].北京:清华大学,2003.
    [148]拉姆B.M.著,刘凤至译.气体吸收(第二版)[M].北京:化学工业出版社,1985.
    [149]Fuller E. N., Schettler P. P., Giddings J. C. [J]. Ind. Eng. Chem.1966,58(5):19-27.
    [150]柯斯乐E.L.著,王宇新,姜忠义译.扩散—流体中的传质(第二版)[M].北京:化学工业出版社,2002.
    [151]刘光启,马连湘,刘杰.化学化工物性手册(无机卷)[M].北京:化学工业出版社,2002.
    [152]Perry R. H., Green D. W., Maloney, J. O. Perry's chemical engineers'handbook (7th ed.)[M].北京:科学出版社,2001.
    [153]毛在砂.化工数学模型方法[M].北京:高等教育出版社,2008.
    [154]白云峰,李永旺,吴树志,等.KMnO4/CaCO3协同脱硫脱硝研究[J].煤炭学报,2008,33(5):575-578.
    [155]Zheng Y. J., Kill S., Johnsson J. E.. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurization [J]. Chem. Eng. Sci.2003,58:4695-4703.
    [156]Evans A. P., Miller C., Pouliot S. Operational experience of commercial, full scale ammonia-based wet FGD for over a decade. Available from:http://met-pc.com/dnn/Portals/0/Coal% 20Gen%20AS%20Paper%20Final.pdf
    [157]Gunnar G. N., Finn B.. Ammonia-based flue gas desulphurization waste solution as a nitrogen fertilizer [J]. Environ. Geochem. Hlth.1989,11(2):54-56.
    [158]刘少武.《二氧化硫的转化和尾气处理》[M].北京:化学工业出版社,1982.
    [159]Zhou J. H., Li W., Xiao W. D.. Kinetics of Heterogeneous Oxidation of Concentrated Ammonium Sulfite [J]. Chem. Eng. Sci.2000,55:5637-5641.
    [160]Lancial A., Musmarra D., Marina P., et al. Catalytic Oxidation of Calcium bisulfite in the Wet Limestone-gypsum flue gas desulfurization process [J]. Chem. Eng. Sci.1999,54:3019-3026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700