用户名: 密码: 验证码:
喷雾干燥热质传递特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对现有的液滴蒸发模型,包括大空间液滴蒸发模型、有限空间液滴蒸发模型等进行分析,讨论以上模型在是否考虑液滴内部温度梯度下的数学模型和其适用范围。在此基础上通过对以上模型的进一步分析和讨论,获得了适合喷雾干燥过程的多组分液滴蒸发过程数学模型。
     建立了干燥塔内气相控制方程以及液滴颗粒的轨道方程,通过对气相控制方程的求解获得塔内气相流场,通过对液滴颗粒轨道方程求解获得粒子运动的轨迹。同时,通过气一粒的耦合计算,得到干燥粒子在运动过程中的热、质传递特性,获得粒子从一开始入塔到最终离开干燥塔期间的动态蒸发过程以及粒子与气相间的热质交互作用;颗粒吸热蒸发过程中不断向气相传递水分,通过耦合计算获得干燥塔内部各时刻的温度与相对湿度变化,得到了干燥塔尾气的排气温度、湿度。并通过对典型粒子运动的追踪,获得了粒子在干燥塔内的停留时间。
     液滴在干燥塔内的蒸发过程分为三个阶段。首先是液滴的加热升温阶段,接下来是液滴的快速干燥阶段,之后是液滴干燥完成阶段。通过对气相计算发现干燥塔内存在旋流区域,旋流区域的存在增加了系统输送空气的能耗,但是同时也增加了粒子在干燥塔内的停留时间,这又对粒子的干燥有利。液滴的蒸发强度随着进、出口空气温度的升高的增加;且增加过程在一定的温度范围内近似呈现线性关系。随着入口高温空气流速的增加,干燥塔内的平均风速增加,粒子在干燥塔内粒子平均停留时间缩短。
     喷雾干燥过程中用于粒子回收的旋风分离器对颗粒的分离效率跟旋风分离器的物理尺寸、入口风速和粒子直径有密切关系;对于既定的旋风分离设备,入口风速的增加和颗粒粒径的增加在一定程度上可以提高其分离效率,但是入口风速的增加同时也带来进出口压差快速增加,带来更大的动力消耗,故而盲目地提高旋风分离器的入口风速来提高其分离性能是不可取的。
Through analyzing on the existing droplet evaporation models, such as droplet evaporation model in large space, droplet evaporation model in limited space, this paper discussed these models above whether to consider the temperature gradient of temperature and its application. Based on these previous models, through further analysis and discussion, we obtain a mathematical model for multi-component droplet evaporation process,which is suitable for spray drying process.
     The mathematical model of gas which flows in the spray dryer and the orbit model of particle are established,firstly. Next,By solving these equations,the flow field in spray dryer and the trajectory of particle are obtained,respectively. Meanwhile, the characteristics of heat and mass transfer of particles are obtained by coupling calculating of gaseous phase and moving particles. And the dynamic evaporation performance and the heat and mass transfer between gaseous phase and moving particles are also obtained in the whole process.The temperature field and relative humidity in spray dryer,and in the meantime,are also obtained bycoupling calculating of gaseous phase and moving particles. Access to track the motion process of some typical particles, the residual time of these particles are obtained.
     The process of droplet evaporation in the dry tower can be divided into several stages. Firstly,the droplets are heat up by the hot air and their temperture are rised.Next, by heat up for a short time,these droplets enter a rapid drying stage when the proper temperature is reached. At last, these droplets are in the stages of completion after a evaporation period. By numerical simulation,the cyclone zones are found which exist in the drying tower. And the existence of cyclone zones have a salutary effect on the particles drying process, because their can provide more time for particles when particles are drying in the spray dryer.But this phenomenon can also increse the energy consumption. The evaporation rate of droplet is increased with the increase of inlet and outlet air temperature. And this increase process becomes approximately a linear relationship within a certain temperature range. With the increase of inlet air velocity, the average air speed increases and the average particle residence time become shorter in the drying tower.
     The separating efficiency of cyclone separator which is used for spray drying process has a relationship with the physical model of cyclone separator, the inlet air speed and particle diameter.For a special cyclone separation equipment. To some degree, the separation efficiency can be improved with the increase of inlet air speed and particle size. But the increase of inlet air velocity can also lead to a rapid increase in wind resistance and power consumption. Thus,It is not appropriate to increase the inlet air velocity blindly to improve the separating efficiency.
引文
[1]王喜忠,于才渊,周才君.喷雾干燥(第二版)[M].北京:化学工业出版社.2003.1
    [2]刘广文.喷雾干燥[M].北京:化学工业出版社,2005
    [3]刘广文.喷雾干燥实用技术大全.北京:中国轻工业出版社.2001
    [4]Heng, P.W. S., Chan, L. W., Tang, E. S. K.,2006. Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters[J]. Int. J. Pharm.327,26-35.
    [5]Ozbey, M., Soylemez, M.S. Effect of swirling flowon fluidized bed drying of wheat grains. Energy Convers. Manage [J].2005.46,1495-1512.
    [6]Ronsse, F., Pieters, J. G., Dewettinck, K. Combined population balance and thermodynamic modeling of the batch top-spray fluidised bed coating process[J]. Part I. Model development and validation. J. Food Eng.2007.78,296-307.
    [7]E. S. K. Tang, L. Wang, C. V. Liew, L. W. Chan, P. W. S. Heng. Drying efficiency and particle movement in coating—Impact on particle agglomeration and yield[J]. International Journal of Pharmaceutics 350(2008)172-180
    [8]Desai K G, Park HJ. Effect of manufacturing parameters on the characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres prepared by spray-drying [J]. J Microencapsul,2006,23(1):91-103.
    [9]Corrigan D 0, Healy A M, Corrigan 0 I. Preparation and release of salbutamol from chitosan and chitosan co-spray dried compacts and multiparticulates [J]. Eur J Pharm Biopharm,2006,62(3):295-305.
    [10]蔡鑫君,程巧鸳,赵宁,李范珠.喷雾干燥法制备川芎嗪壳聚糖微球的研究[J].中草药.2008.5 V39
    [11]程新梅.喷雾制粒技术在中成药固体制剂中的应用[J].中国药业.2008.V17-12
    [12]刘燕湫.一种中药喷雾干燥塔[P].中国:1598458.2008.12.24
    [13]汪旗等.喷雾干燥法制备炎琥宁[P].中国:101016283.2007.8.15
    [14]云南昆船设计研究院.中药浓缩液喷雾干燥工艺及设备[P].中国:1679732 2007.8.29
    [15]Morten Jonas Maltesen,Simon Bjerregaard,Lars Hovgaard,Svend Havelund, Marco van de Weert. Quality by design-Spray drying of insulin intended for inhalation [J]. European Journal of Pharmaceutics and Biopharmaceutics 70 (2008) 828-838.
    [16]吕翼,刘亚妮,陈华庭.骨炎宁颗粒喷雾干燥制备工艺研究[J].医药导报.2008.8.27(4).
    [17]王志萍,邓家刚,王勤,韦慧鲜,中文慧.祛痹颗粒喷雾干燥工艺的研究[J].中国药师.2008.11(4)
    [18]Mahesh V. Chaubal and Carmen Popescu, Conversion of Nanosuspensions into Dry Powders by Spray Drying:A CaseStudy[J], Pharmaceutical Research, Vol.25, No.10, October 2008
    [19]包汝泼,赵浩如,张志宇.清香片的喷雾干燥工艺研究[J].中成药.2006.28(12).
    [20]Eudragit E as Excipient for Production of Granules and Tablets From Phyllanthus niruri L Spray-Dried Extract[J]. AAPS PharmSciTech 2007;8(2)Article 34
    [21]Germano Eder Gadelha Moreira, Mayra Garcia Maia Costa, Arthur Claudio Rodrigues de Souza, Edy Sousa de Brito, Maria de Fatima Dantas de Medeiros, Henriette M. C. de Azeredo. Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids[J]. LWT-Food Science and Technology 42(2009) 641-645.
    [22]Stephan Drusch,Yvonne Serfert,Matteo Scampicchio. Impact of Physicochemical Characteristics on the Oxidative Stability of Fish Oil Microencapsulated by Spray-Drying[J]. J. Agric. Food Chem.2007,55,11044-11051
    [23]Georgetti SR, Casagrande R, Souza CRF, Oliveira WP, Fonseca MJV. Spray drying of the soybean extract:Effects on chemical properties and antioxidant activity [J]. LWT-Food Science and Technology.2008.41(8) 1521-1527
    [24]Vikram S. Shabde, Karlene A. Hoo. Optimum controller design for a spray drying process[J]. Control Engineering Practice 16(2008) 541-552.
    [25]Alyaqout, S., Papalambros, P.,&Ulsoy, A. (2005). Quantification and use of system coupling in decomposed design optimization problems[J]. In ASME international mechanical engineering congress and exposition.
    [26]Shabde, V. (2006). Optimal design and control of a spray drying process that produces hollow polymeric particles [J]. Doctor of philosophy, Texas Tech University, Lubbock, TX.
    [27]Shabde, V, Hoo, K. (2006). Design and operation of a spray dryer for the manufacture of hollow microparticles[J]. Industrial and Engineering Chemistry Research,45,8329-8337.
    [28]林宗虎.多相流体力学及其工程应用[J].自然杂志.2007,28(4):200-204
    [29]梁法春,王栋,林宗虎.新型三通分配器中环状流相分析预测[J].工程热物理学报.2007. Vol.28 No.1
    [30]苏凌宇,刘卫东.运动液滴蒸发时传热传质过程的理论分析[J].国防科技大学学报.2008. Vol.30 No.5
    [31]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社.2007.11
    [32]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社.2001:353-362.
    [33]H. K. Versteeg, W.Malasekera, An Introduction to Computational Fluid Dynamics:The Finite Volume Method. Wiley, New York,1995
    [34]周雪漪.计算水力学.北京:清华大学出版社,1995.
    [35]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [36]Fluent Inc. FLUENT User's Guide.Fluent Inc.2003
    [37]胡洪,黄虎,宋倩倩,等.喷雾干燥用旋风分离器内部流动与分离特性数值模拟[J].南京师范大学学报(工程技术版),2010.
    [38]Amsden A A,0'rourke P J, Butler T D. KIVA-II:A Computer Program for Chemically Reactive Flows with Sprays[R]. Los A lamos National Laboratory Report, LA-11560-MS,1989.
    [39]AGUILAR G, MAJARON B, VERKRUYSSE W, etc. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays [J]. International Journal of Heat and Mass Transfer,2001,44(1):3201-3211.
    [40]SWEETLAND M, LIENHARD J H V. Evaporative cooling of continuously drawn glass fibers by water sprays[J]. International Journal of Heat and Mass Transfer. 2000,43(5):777-790.
    [41]袁江涛,杨立,孙嵘,等。高温气流内雾滴运动与液滴蒸发特性的理论分析[J].海军工程大学学报,2008,20(2):5-8.
    [42]袁江涛,杨立,张健,等.有限气体溶剂内的液滴传热传质模型与理论分析[J].海军工程大学学报.2010.06,Vo122(3):50-53.
    [43]RANZ W E, MARSHALL W R. Evaporation from drops:Part Ⅰ[J]. Chemical Engineering Progress,1952,48(4):141-146.
    [44]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.
    [45]M. Raderer. Drying of Viscous,Shrinking Products:Model ing and Experimental Validation. Technical University of Munich, Germany, Ph. D. Thesis.2001:17-21.
    [46]L. X. Huang, Kurichi Kumar, A. S. Mujumdar. A Comparative Study of a Spray Dryer with Rotary Disc Atomizer and Pressure Nozzle using Computational Fluid Dynamic Simulations. Chemical Engineering and Processing.2006,45:461-470.
    [47]K. K. Y. Kuo. Principles of Combustion. Sencond Edition. New York:John Wiley and Sons,2005.
    [48]胡洪,黄虎,宋倩倩,等.不同对流项离散格式对流场计算的影响[J].数值计算与计算机应用.2010,31(2):153-160.
    [49]王永学,任冰.波浪冲击过程的湍流数值模拟[J].水动力学研究与进展.1999.V14(4):409-417.
    [50]杨晨俊,王国强,中明秀.带端板地效应翼性能的数值研究[J].上海交通大学学报.2000.Vo134(1):51-55
    [51]袁礼,忻鼎定,庄逢甘.不同轴长比椭球体的绕流计算与分离形态分析[J].航空学报.1996.Vol17(7):14-19
    [52]邓见,任安禄,邹建锋.方柱绕流横向弛振及涡致振动数值模拟[J].浙江大学学报(工学版).2005.Vol39(4):595-599
    [53]涂国华,袁湘江,陆利蓬.激波捕捉差分方法研究[J].应用数学和力学.2007.Vol28(4):433-440
    [54]谢伟松,陶建华.三维水动力学模型高精度差分格式和解法研究[J].天津大学学报.2003.Vol36(5):590-594
    [55]Patankar S. V. A Calculation Procedure for Two-Dimensional Elliptic Situations, Numerical Heat Transfer,1981.4:405-425
    [56]Leonard B P. A Stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comut Meth Appl Mech Eng,1979.29:59-98
    [57]李人宪.有限体积法基础(第2版)[M].北京:国防工业出版社.2008
    [58]P.J.罗奇.计算流体动力学.钟锡昌,刘学宗译.北京:科学出版社,1983.473-490.
    [59]S.V.帕坦卡著,张政译.传热与流体流动的数值计算[M].科学出版社.1989
    [60]Meng Wai Woo, Wan Ramli Wan Daud, Arun S. Mujumdar, etc. Comparative study of droplet drying models for CFD modeling[J]. Chemical Engineering Research and Design.2008(86):1038-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700