用户名: 密码: 验证码:
毛细管电泳在药物筛选中的应用和技术开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳是一种高效、快速、微量的分离分析技术,在生物分析领域应用广泛。本文利用毛细管电泳的技术特点将其应用于药物筛选中,针对药物活性筛选中的关键技术问题,如高效快速的筛选方法和新药物靶点寻找,进行了一系列的新探索。
     首先,药物活性筛选新方法的开发。对化合物进行活性筛选,主要是研究化合物与药物靶点的相互作用。亲和毛细管电泳是研究分子间相互作用的常用方法,以待测样品的有效电泳淌度为参数计算分子间的结合常数。淌度的准确测定是该方法的重要前提,但是由于受到温度变化、电渗流波动等因素的影响,重现性较差,限制了其发展。本文在上述技术的基础上,开发了一种压力驱动的亲和毛细管电泳方法,通过将气压推动过程和电泳过程相结合,有效的避免了因素的干扰,分析时间也大大缩短。采用该方法研究了8种具有不同pKa值、不同结合能力的药物与牛血清白蛋白之间的结合情况,并计算了结合常数值。通过与传统的荧光分光光度法的测定结果比较,验证了该方法的可行性和准确性。同时,明确了该方法适用于研究结合较弱的反应体系。
     其次,药物结构筛选模型的建立。活性筛选是目前常用的筛选方法,但是因筛选指标单一,筛选结果具有误导性,单纯的增加筛选数量难以找到有活性又未知的化合物,因此筛选成本高,效率低。为此,本文探索了一种全新的结构筛选方法,以抗原特殊结构为核心,利用抗原和抗体特异性识别能力,筛选具有抗原类似结构的化合物。以抗真菌药物棘球白素B的母核和其多克隆抗体为样品,采用毛细管电泳配体分离法和激光诱导荧光检测技术,通过研究二者的结合行为,初步建立了以抗原有效电泳淌度变化为判断依据的结构筛选模型。该模型旨在用于筛选具有潜在抗真菌活性的化合物。
     最后,药物靶点发现方面的应用。差异蛋白质组学是发现药物作用靶点的重要方法,二维凝胶电泳和质谱是分离和鉴定蛋白质的核心技术。经二维凝胶电泳分离的蛋白质,在进入质谱之前需要长时间、繁琐的样品处理过程,难以满足自动化的需要。针对该问题,本文在前人工作的基础上,开发出一种集凝胶中蛋白质转移和在线酶解的毛细管电泳方法。以SDS-聚丙烯酰胺凝胶中的牛血清白蛋白条带为研究对象,采用三电极的转移模式,将蛋白质高效、快速的从凝胶中转移到毛细管中。采用溶胶-凝胶技术制备固定胰蛋白酶的毛细管整体柱,通过与转移毛细管相连,实现了转移出来蛋白质的在线酶解和检测。该技术的开发大大提高了转移效率,为二维凝胶电泳和质谱提供了一个有效的连接手段。
Capillary elcotrophoresis (CE) is an analytical technique of high efficiency, fast speed and microscale, which is widely used in bioanalysis. In this article, according to its characteristics, CE was applied to drug screening, and new explorations were carried out in view of the key problems in drug activity screening, for example, developing fast and high efficiency screening methods and searching for new drug targets.
     Firstly, development of new method of drug activity screening. The study of interaction between compounds and a drug target is critical in drug screening. Affinity capillary electrophoresis is a common method used to determine their binding, but bad reproducibility, caused by temperature change, electroosmotic flow fluctuation and so on, limits its development. Based on the techniques discussed above, a pressure-mediated affinity capillary electrophoresis method was developed in this article. By using a special sequence of pressure and electrophoresis, the influence of factors was effectively avoided and the analysis time was greatly reduced. Using this method, the binding of eight drugs with different pKa and binding abilities and bovine serum albumin (BSA) was evaluated and binding constants were calculated. By comparison with results determined by traditional fluorescence spectrophotometry, the feasibility and accuracy of this method were verified. The results were shown that this method was well suitable for studying weak interacting systems.
     Secondly, establishment of drug structure screening model. Up to now, activity screening is one of the most popular screening methods. However, using single screening standard is prone to result in misleading effect. Merely increasing the number of compounds to be screened makes it difficult to find active but unknown compounds. As a result, all of those lead to high screening cost as well as low efficiency. In this article, a newly structure screening method was explored, which depended on the specific recognition ability between antigen and antibody to screen compounds with similar structure to antigen. Using CE ligands separation method and laser induced fluorescence detection technology, the binding of anti-fungal Echinocandin B nucleus and its polyclonal antibody was studied, and a structure screening model based on electrophoretic mobility changes of fluorescence labeled antigen was preliminary established. This screening model can be used to screen compounds with special structure and potential anti-fungal activities.
     Lastly, application in discovery of drug targets. Differential proteomic is an important method to discover drug targets. Two-dimensional gel electrophoresis and mass spectrometry are its key technologies to separate and identify proteins. Prior to mass spectrometry analysis, proteins separated by two-dimensional gel electrophoresis need a long and complex process, which makes it difficult to meet the requirements of automation. In order to resolve this problem, based on the work of the formers, a capillary electrophoresis method involving gel protein transfer and on-line proteolytic digestion was developed. Bovine serum albumin present in SDS-polyacrylamide gel as the model protein can be transferred fast and effectively from the gel to capillary by three-electrode transfer method. A capillary monolithic column which immobilized trypsin by the sol-gel method was used to digest the transferred protein. After connecting the capillary monolithic column to transference capillary, on-line digestion and detection of transferred proteins was carried out. This technique significantly improved transference efficiency, and provided an efficient way for the connection of two-dimensional gel electrophoresis and mass spectrometry.
引文
[1]杜冠华,胡娟娟,夏丽娟,等,药物筛选的发展与现状,药物学报,1998,33(11):876~879
    [2]李松军,刘白玲,胡杰,高通量筛选技术中数学模型的建立,中国科学院研究生院学报,2004,21(3):333~339
    [3]杜冠华,高通量药物筛选,北京:化学工业出版社,2002.20
    [4] O’Farrell P H, High resolution two-dimensional gel electrophoresis of proteins, J Biol Chem, 1975, 250: 4007~4021
    [5] Lane C S, Mass spectrometry-based proteomics in the life sciences, Cell Mol Life Sci, 2005, 62(7-8): 848~869
    [6] Bushey M M, Jorgenson J W, Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins, Anal Chem, 1990, 62: 161~167
    [7] Hemmmila L, Webb S, Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications, Drug Discov Today, 1997, 2(9): 373~381
    [8] Liu H C, He Z M, Rosenwaks Z, Application of complementary DNA microarray (DNA chip) technology in the study of gene expression profiles during folliculogenesis, Fertil Steril, 1999, 45(5): 533~543
    [9] Jones D A, Fitzpatrick F A, Genomics and the discovery of new drug targets, Curr Opin Chem Biol, 1999, 3(1): 71~76
    [10] Storer R, Solution-phase synthesis in combinatorial chemistry: Applications in drug discovery, Drug Discov Today, 1996, 1(6): 248~254
    [11] Joseph-McCarthy D, Computational approaches to structure-based ligand design, J Vet Pharmacol Ther, 1999, 84(2): 179~191
    [12]包元武,孙艳,李川,体内药代高通量筛选研究进展,中国天然药物,2005,3(4):200~207
    [13]黄家学,胡娟娟,杜冠华,5-HT受体结合物的高通量筛选,药学学报,2000,35(增刊):53~56
    [14]尚念勇,胡娟娟,杜冠华,腺苷A1受体结合物的高通量筛选,药学学报,2000,35(增刊):47~49
    [15]胡娟娟,杜冠华,药物筛选模型研究进展,基础医学与临床,2001,21(4): 302~305
    [16]司书毅,张月琴,药物筛选——方法与实践,北京:化学工业出版社,2007.42
    [17]吕秋军,高月,受体药物筛选研究进展,中国药学杂志,1999,34(1):6~8
    [18] Detering C, Varani G, Validation of automated docking programs for docking and database screening against RNA drug targets, J Med Chem, 2004, 47(17): 4188~4201
    [19] Ma D L, Chan D S H, Lee P, et al, Molecular modeling of drug-DNA interactions: virtual screening to structure-based design, Biochimie, 2011, 93(8): 1252~1266
    [20] Brown A M, High throughput functional screening of an ion channel library for drug safety and efficacy, Eur J Bio, 2009, 38(3): 273~278
    [21] Young K, Lin S, Sun L, et al, Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen, Nat Biotechnol, 1998, 16(10): 946~950
    [22] Gillmor S A, Cohen F E, New strategies for pharmaceutical design, Receptor, 1993, 3(3): 155~163
    [23]王琳,陈涵,药物体外吸收、分布、代谢和排泄筛选模型,中国组织工程研究与临床康复,2008,12(50):9957~9961
    [24]吕秋军,徐天昊,吴祖泽,国外医学药学分册,2003,30(3):129~134
    [25] Prentis R A, Lis Y, Walker S R, Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985), Br J Clin Pharmacol, 1988, 25: 387~396
    [26] Linpinski C A, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods, 2000, 44: 235~249
    [27] Beresford A P, Selick H E, Tarbit M H, The emerging importance of predictive ADME simulation in drug discovery, Drug Discov Today, 2002, 7(2): 109~116
    [28] Eddershaw P J, Beresford A P, Bayliss M K, ADME/PK aspart of a rational approach to drug discovery, Drug Discov Today, 2000, 5(9): 409~414
    [29]郭宾,李川,药物与血浆蛋白结合的药理学基础及其研究进展,中国临床药理学与治疗学,2005,10(3):241~253
    [30] Greenblatt D J, Sellers E M, Koch-Weser J, The importance of protein binding for the interpretation of serum or plasma drug concentrations, J Clinical Pharmacol, 1982, 22: 259~263
    [31] Yao R C, Mahoney D F, Enzyme-linked immunosorbent assay for the detection of detection of fermentation metabolites: aminoglycoside antibiotics, Antibiotics, 1984, 37(11): 1462~1468
    [32] Yao R C, Mahoney D F, Enzyme immunoassay for macrolide antibiotics: characterization of an antibody to 23-amino-O-mycaminosyltylonolide, Appl Environ Microb, 1989, 55(6): 1507~1511
    [33] Yao R C, Crandall L W, Glycopepetides, classification, occurrence and discovery in Glycopepetide antibiotics, New York: Marcel Dekker Inc, 1994.1~28
    [34]杨红芹,李学军,化学蛋白质组学与药物靶点的发现,药学学报,2011,46(8):877~882
    [35] Caron P R, Mullican M D, Mashal R D, et al, Chemogenomic approaches to drug discovery, Curr Opin Chem Biol, 2001, 5(4): 464~470
    [36] Venter J V, Smith H, Hood L, A new strategy for genome sequencing, Nature, 1996, 318: 364~366
    [37]钱小红,贺福初,蛋白质组学:理论与方法,北京:科学出版社,2003.331
    [38] Wilkins M R, Sanchez J C, Gooley A A, Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it, Biotechnol Genet Eng Rev, 1995, 13: 19~50
    [39] Swinbanks D, Government backs proteome proposal, Nature, 1995, 386: 653
    [40]王斌,曾明,章金刚,蛋白质组学在药物研究中的应用,药品评价,2006,3(2):141~143
    [41]杨根庆,廖飞,药靶发现和药物筛选,重庆医科大学学报,2007,32:86
    [42] Celis J E, Rasmussen H H, Vorum H, et al, Bladder squamous cell carcinomas express psoriasin and externalize it to the urine, J Urol, 1996, 155(6): 2105~2112
    [43] Greenbaum D C, Baruch A, Grainger M, et al, A role for the protease falcipain1 in host cell invasion by the human malaria parasite, Science, 2002, 298(5600):2002~2006
    [44] Jorgenson J W, Lukacs K D, Zone electrophoresis in open-tubular glass capillaries, Anal Chem, 1981, 53(8): 1298~1302
    [45]毛煜,徐建明,毛细管电泳技术和应用新进展,化学研究与应用,2001,13(1):4~9
    [46]邓延倬,何金兰,高效毛细管电泳,北京:科学出版社,1996.197
    [47] Mato I, Suárez-Luque S, Huidobro J F, Simple determination of main organic acids in grape juice and wine by using capillary zone electrophoresis with direct UV detection, Food Chem, 2007, 102(1): 104~112
    [48] Ahrer K, Jungbauer A, Chromatographic and electrophoretic characterization of protein variants, J Chromatogr B, 2006, 841(1-2): 110~122
    [49] Delgado-Zamarreno M M, Gonzalez-Maza I, Sanchez-Perez A, et al, Analysis of synthetic phenolic antioxidants in edible oils by micellar electrokinetic capillary chromatography, Food Chem, 2007, 100(4): 1722~1727
    [50] Guryca V, Mechref Y, Palm A K, et al, Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides, J Biochem Bioph Methods, 2007, 70(1): 3~13
    [51] Noll B O, Debelak H, Uhlmann E, Identification and quantification of GC-rich oligodeoxynucleotides in tissue extracts by capillary gel electrophoresis, J Chromatogr B, 2007, 847(2): 153~161
    [52] Liu X J, Dahdouh F, Salgado M, et al, Recent advances in affinity capillary electrophoresis (2007), J Pharm Sci, 2009, 98: 394~410
    [53] Pang H, Kenseth J, Coldiron S, High-throughput multiplexed capillary electrophoresis in drug discovery, Drug Discov Today, 2004, 9(24): 1072~1080
    [54] Tu J, Anderson L N, Dai J, et al, Application of multiplexed capillary electrophoresis with laser induced fluorescence (MCE/LIF) detection for the rapid measurement of endogenous extracellular signal-regulated protein kinase (ERK) levels in cell extracts, J Chromatogr B, 2003, 789: 323~335
    [55] Medintz I L, Lee C R, Wong W W, et al, Loss of heterozygosity assay for molecular detection of cancer using energy-transfer primers and capillary array electrophoresis, Genome Res, 2000, 10: 1211~1218
    [56] Dean F B, Nelson J R, Giesler T L, Lasken R S, Rapid amplification of plasmidand phage DNA using phi29 DNA polymerase and multiply-primed rollng circle amplification, Genome Res, 2001, 11: 1095~1099
    [57] http://www.genteon.net/products/capella-400.asp.
    [58] Lee H, Griffin T J, Gygi S P, et al, Development of a multiplexed microcapillary liquid chromatography system for high-throughput proteome analysis, Anal Chem, 2002, 74(17): 4353~4360
    [59] Feng B, MxQueney M S, Mezzasalma T M, et al, An integrated ten-pump, eight-channel parallel LC/MS system for automated high-throughput analysis of proteins, Anal Chem, 2001, 73(23): 5691~5697
    [60] Fang L, Cournoyer J, Demee M, et al, High-throughput liquid chromatography ultraviolet/mass spectrometric analysis of combinatorial libraries using an eight-channel multiplexed electrospray time-of-flight mass spectrometer, Rapid Commun Mass Spectrom, 2002, 16: 1440~1447
    [61] Banker M J, Clark T H, Williams J A, Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding, J Pharm Sci, 2003, 92: 967~974
    [62] Judd R L, Pesce A J, Free drug concentrations are constant in serial fractions of plasma ultrafiltrate, Clin Chem, 1982, 28: 1726~1727
    [63] Kurz H, Trunk H, Weitz B, Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration, Arzneimittelforschung, 1977, 27: 1373~1380
    [64]何梅,夏之宁,阴永光,等,紫外光谱法研究中药大黄有效成分与牛血清白蛋白的相互作用,中国现代应用药学杂志,2004,21(6):429~432
    [65] Mote U S, Bhattar S L, Patil S R, et al, Interaction between felodipine and bovine serum albumin: fluorescence quenching study, Luminescence 2010, 25, 1~8
    [66] Fiaux J, Bertelsen E B, Horwich A L, et al, NMR analysis of a 900K GroEL-GroES complex, Nature, 2002, 418(6894): 207~211
    [67] Ascoli G A, Domenici E, Bertucci C, Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism, Chirality, 2006, 18: 667~679
    [68] Ostergaard J, Heegaard N H H, Bioanalytical interaction studies executed by preincubation affinity capillary electrophoresis, Electrophoresis, 2006, 27:2590~2608
    [69] Huber W, Mueller F, Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology, Curr Pharm Des, 2006, 12: 3999~4021
    [70]赵艳芳,傅崇岗,刘爱林,毛细管电泳法测定结合常数的研究进展,色谱,2003,21(2):126~130
    [71] Kaddis J, Zurita C, Moran J, et al, Estimation of binding constants for the substrate and activator of Rhodobacter sphaeroides adenosine 5’-diphosphate-glucose pyrophosphorylase using affinity capillary electrophoresis, Anal Biochem, 2004, 327: 252~260
    [72] Busch M H A, Boelens H F M, Kraak J C, et al, Vacancy affinity capillary electrophoresis, a new method for measuring association constants, J Chromatogr A, 1997, 775(1-2): 313~326
    [73] Heintz J, Hernandez M, Gomez F A, Use of a partial-filling technique in affinity capillary electrophoresis for determining binding constants of ligands to receptors, J Chromatogr A, 1999, 840(2): 261~268
    [74] Okun V M, Ronacher B, Blaas D, et al, Affinity capillary electrophoresis for the assessment of complex formation between viruses and monoclonal antibodies, Anal Chem, 2000, 72(19): 4634~4639
    [75] Ostergaard J, Heegaard N H H, Bioanalytical interaction studies executed by preincubation affinity capillary electrophoresis, Electrophoresis, 2006, 27: 2590~2608
    [76] Yu X, Zhao P, Zhang W, et al, Screening of phage displayed human liver cDNA library against dexamethasone, J Pharm Biomed Anal, 2007, 45: 701~705
    [77] Rundlett K L, Armstrong D W, Methods for the determination of binding constants by capillary electrophoresis, Electrophoresis, 2001, 22: 1419~1427
    [78] Quaglia M G, Bossu E, Dellaquila C, et al, Determination of the binding of aβ2-blocker drug, frusemide and ceftriaxone to serum proteins by capillary zone electrophoresis, J Pharm Biomed Anal, 1997, 15 (8): 1033~1039
    [79] Jiang C, Armstrong D W, Use of CE for the determination of binding constants, Electrophoresis, 2010, 31: 17~27
    [80] Tanaka Y, Terabe S, Estimation of binding constants by capillary electrophoresis, J Chromatogr B, 2002, 768: 81~92
    [81] Zhang L, Ding L, Zhang X, Estimation of binding constants of receptors and ligands by affinity capillary electrophoresis, Anal Bioanal Chem, 2007, 387(8): 2833~2841
    [82] Gomez F A, Avila L Z, Chu Y H, et al, Determination of binding constants of ligands to proteins by af?nity capillary electrophoresis: compensation for electroosmotic ?ow, Anal Chem, 1994, 66: 1785~1791
    [83] Gong M, Nikcevic I, Wehmeyer K R, Protein-aptamer binding studies using microchip affinity capillary electrophoresis, Electrophoresis, 2008, 29(7): 1415~1422
    [84] Avila L Z, Chu Y H, Blossey E C, et al, Use of af?nity capillary electrophoresis to determine kinetic and equilibrium constants for binding of arylsulfonamides to bovine carbonic anhydrase, J Med Chem, 1993, 36: 126~133
    [85] Maren T H, Direct measurements of the rate constants of sulfonamides with carbonic anhydrase, Mol Pharmacol, 1992, 41: 419~426
    [86] Wei W, Ju H X, Affinity capillary electrophoresis studies on the influence of alcohols on the interaction ofβ-cyclodextrin with non-steroidal anti-inflammatory drugs, Chromatographia, 2003, 58: 449~453
    [87]何新亚,林炳承,丁永生,亲和毛细管电泳研究生物分子的手性识别,化学进展,2002,14(5):332~338
    [88] Arai T, Ichinose M, Kuroda H, et al, Chiral separation by capillary affinity zone electrophoresis using an albumin-containing support electrolyte, Anal Biochem, 1994, 217(1): 7~11
    [89] Chu Y-H, Avila L Z, Biebuyck H A, et al, Using af?nity capillary electrophoresis to identify the peptide in a peptide library that binds most tightly to vancomycin, J Org Chem, 1993, 58: 648~652
    [90] Chu Y-H, Dunayevskiy Y M, Kirby D P, et al, Af?nity capillary electrophoresis- mass spectrometry for screening combinatorial libraries, J Am Chem Soc 1996, 118: 7827~7835
    [91] Zavaleta J, Chinchilla D, Brown A, et al, Recent developments in affinity capillary electrophoresis: a review, Curr Anal Chem, 2006, 2: 1~8
    [92]李博,刘文英,亲和毛细管电泳及其在测定药物-蛋白质结合常数中的应用,药学进展,2003,27(2):81~84
    [93] Yang Z, Lv Z, Jiang T, et al, Affinity CE determination of the binding constant ofbioactive sulfated polysaccharide 916 to human serum albumin, Chromatographia, 2009, 70: 475~479
    [94] Bose S, Yang J, Hage D S, Guidelines in selecting ligand concentrations for the determination of binding constants by affinity capillary electrophoresis, J Chromatogr B, 1997, 697: 77
    [95] Chu Y, Cheng C C, Affinity capillary electrophoresis in biomolecular recognition, Cell Mol Life Sci, 1998, 54: 663~683
    [96]周大炜,李乐道,李发美,药物-蛋白结合作用的分析方法研究,色谱,2004,22(2):116~120
    [97] Kawaoka J, Gomez F A, Use of mobility ratios to estimate binding constants of ligands to proteins in affinity capillary electrophoresis, J Chromatogr B, 1998, 715: 203~210
    [98]朱健萍,胡昌勤,刘文英,毛细管电泳迁移时间重现性影响因素的探讨,色谱,2006,24(4):396~401
    [99]郭怀忠,毕开顺,孙毓庆,影响毛细管电泳分析结果重现性的因素及其控制,分析仪器,2005,2:42~45
    [100] Schaeper J P, Sepaniak M J, Parameters affecting reproducibility in capillary electrophoresis, Electrophoresis, 2000, 21: 1421~1429
    [101] Faller T, Engelhardt H, How to achieve higher repeatability and reproducibility in capillary electrophoresis, J Chromatogr A, 1999, 853: 83~94
    [102]康经武,陆豪杰,欧庆瑜,毛细管电泳涂层技术的进展,色谱,16(1):26~29
    [103] Karger B L, Chu Y H, Foret F, Capillary electrophoresis of proteins and nucleic acids, Annu Rev Biophys Biomol Struct, 1995, 24: 579~610
    [104] Gilges M, Kleemiss M H, Schomburg G, Inhibition of epidermal growth factor-induced cell transformation by tannins, Anal Chem, 1994, 66(13): 2038~2046
    [105] Tuma P, Samcova E, Stulik K, Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-an efficient tool for monitoring of inborn metabolic disorders, Anal Chim Acta, 2011, 685(1): 84~90
    [106] Green J S, Jorgenson J W, Minimizing adsorption of proteins to fused silica in capillary zone electrophoresis via the addition of alkali metal salts to the buffers, JChromatogr, 1989, 478: 63~70
    [107] Hattori T, Anraku N, Kato R, Capillary electrophoresis of chitooligosaccharides in acidic solution: Simple determination using a quaternary-ammonium-modified column and indirect photometric detection with Crystal Violet, J Chromatogr B, 2010, 878: 477~480
    [108] Guzman N A, Moschera J, Iqbal K, et al, Effect of buffer constituents on the determination of therapeutic proteins by capillary electrophoresis, J Chromatogr, 1992, 608(1-2): 197~204
    [109] Macdonald A M, Bahnasy M F, Lucy C A, A modified supported bilayer/diblock polymer-working towards a tunable coating for capillary electrophoresis, J Chromatogr A, 2011, 1218: 178~184
    [110] McCormick R M, Capillary zoon electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries, Anal Chem, 1988, 60: 2322~2328
    [111] Zhu M, Rodriguez R, Hansen D, et al, Capillary electrophoresis of proteins under alkaline conditions, J Chromatogr, 1990, 516: 123~131
    [112]吴鸿伟,章竹君,张丽媛,毛细管电泳研究抗癌药物紫杉醇与人血清蛋白结合作用,分析试验室,2007,26(1):32~36
    [113] Heegaard N H H, Nilsson S, Guzman N A, Affinity capillary electrophoresis: important application areas and some recent developments, J Chromatogr B, 1998, 715: 29~54
    [114] Hulme E C, Birdsale N J M, Strategy and tactics in receptor binding studies, in: Hulme E C (Ed), Receptor-ligand interactions, Oxford: Oxford University Press, 1992.63~176
    [115] Tao L, Kennedy R T, Measurement of antibody-antigen dissociation constants using fast capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis, 1997, 18: 112~117
    [116] Wan Q H, Le X C, Studies of protein-DNA interactions by capillary electrophoresis/laser-induced fluorescence polarization, Analytical Chemistry, 2000, 72(22): 5583~5589
    [117]姚之,张浩波,武艺,等,亲和毛细管电泳法测定牛血清白蛋白和加替沙星的结合常数,色谱,2007,25(6):930~933
    [118]周新,汪子明,邹明强,等,亲和毛细管电泳法测定3种黄酮类化合物与人血清白蛋白的结合常数,吉林大学学报,2005,43(5):669~672
    [119] Wei W, Zhang Z J, Ju H X, Study on interactions of several psychopharmaceutical drugs withβ-cyclodextrin by affinity capillary electrophoresis and their application in separation, Chromatographia, 2004, 59: 513~516
    [120] Lin B, Zhu X, Koppenhoefer B, et al, Investigation of 123 chiral drugs by cyclodextrin-modified capillary electrophoresis, LC-GC, 1997, 15(1): 40~46
    [121] Scriba G K E, Cyclodextrins in capillary electrophoresis enantioseparations -recent developments and applications, J Sep Sci, 2008, 31: 1991~2011
    [122] Cucinotta V, Contino A, Giuffrida A, et al, Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis, J Chromatogr A, 2010, 1217: 953~967
    [123]米健秋,张新祥,常文保,毛细管电泳免疫分析的发展及动向,化学进展,2003,15(1):31~40
    [124]王清刚,罗国安,杨树标,亲和毛细管电泳激光诱导荧光法测定牛血清白蛋白与其单克隆抗体的结合常数,高等学校化学学报,1999,20(10):1551~1553
    [125] Thormann W, Lanz M, Caslavska J, et al, Screening for urinary methadone by capillary electrophoretic immunoassays and confirmation by capillary electrophoresis-mass spectrometry, Electrophoresis, 1998, 19(1): 57~65
    [126] Bao J, Regnier F, Ultramicro enzyme assays in a capillary electrophoretic systems, J Chromatogr, 1992, 608(1-2): 217~224
    [127]傅崇岗,杨冬芝,电泳中介微分析及其应用进展,分析测试学报,2005,24(2):114~118
    [128] Whisnant A R, Johnston S E, Galman S D, Capillary electrophoretic analysis of alkaline phosphatase inhibition by theophylline, Electrophoresis, 2000, 21(7): 1341~1348
    [129]傅崇岗,杨冬芝,电泳中介微分析法测定超氧化物歧化酶,分析化学,2006,34(4):517~520
    [130] Chu Y, Whiteside G M, Affinity capillary electrophoresis can simultaneously measure binding constants of multiple peptides to vancomycin, J Org Chem, 1992, 57: 3524~3525
    [131] Chu Y, Avila L, Biebuyck H A, et al, Using affinity capillary electrophoresis to identify the peptide in a peptide library that binds most tightly to vancomycin, J Org Chem, 1993, 58: 648~652
    [132] Chu Y, Kirby D P, Karger B. L, Free solution identification of candidate peptides from combinatorial libraries by affinity capillary electrophoresis/mass spectrometry, J Am Chem Soc, 1995, 117: 5419~5420
    [133] Chu Y, Dunayevskiy Y M, Kirby D P, et al, Affinity capillary electrophoresis- mass spectrometry for screening combinatorial libraries, J Am Chem Soc, 1996, 118: 7827~2835
    [134]姜萍,屈锋,谭信,等,基于微流控芯片电泳的生物分子间相互作用研究,化学进展,2009,21(9):1985~1904
    [135] Agresti J J, Antipov E, Abate A R, et al, Ultrahigh-throughput screening in drop-based microgluidics for directed evolution, Proc Natl Acad Sci, 2010, 107(9): 4004~4009
    [136] Liu D, Wang L, Zhong R, et al, Parallel microfluidic networks for studying cellular response to chemical modulation, J Biotechnol, 2007, 131(3): 286~292
    [137]褚芹,于建春,韩景献,阿尔茨海默病的蛋白质组学研究,2008,28(6):621~624
    [138] O’Farrel P H, High resolution two-dimensional electrophoresis of proteins, J Biol Chem, 1975, 250(10): 4007~4021
    [139] Rabilloud T, Lelong C, Two-dimensional gel electrophoresis in proteomics: a tutorial, J Proteomics, 2011, 74(10): 1829~1841
    [140]朱广廉,杨中汉,SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量,植物生理学通讯,1982,(2):43~37
    [141] Reiner W, Sensitive, quantitative, and fast modifications for coomassie blue staining of polyacrylamide gels, J Proteomics, 2006, 6(2): 61~64
    [142] Jin L, Li X, Cong W, et al, Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility, Anal Biochem, 2008, 383(2): 137~143
    [143] Berggren K, Chernokalskaya E, Steinberg T H, et al, Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex, Electrophoresis,2000, 21(12): 2509~2521
    [144] Matsui N M, Smith-Beckerman D M, Epstein L B, Staining of preparative 2-D gels: coomassie blue and imidazole-zinc negative staining, Methods Mol Biol, 1999, 112: 307~311
    [145]叶妙水,钟克亚,胡新文,等,双向凝胶电泳的实验操作及进展,生物技术通报,2006,(3):5~10
    [146]常胜合,舒海燕,秦广雍,等,凝胶电泳蛋白质染色方法研究进展,河南农业科学,2006,(5):8~12
    [147] Miller I, Crawford J, Gianazza E, Protein stains for proteomic applications: which, when, why? J Proteomics, 2006, 6: 5385~5408
    [148] Yarnashita M, Fenn J B, Electrospray ion source: another variation on the free-jet theme, J Phys Chem, 1984, 88: 4451~4459
    [149]王岚,刘骁勇,张华宁,等,生物质谱技术在蛋白质组学研究中的应用,生物技术通讯,2007,18(1):166~168
    [150] Karas M, Hillenkamp F, Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons, Anal Chem, 1988, 60(20): 2299~2301
    [151]李悄悄,王清路,生物质谱在蛋白质组学中的应用,内江科技,2007,11:143
    [152]杨芃原,钱小红,盛龙生,生物质谱技术与方法,北京:科学出版社,2003. 142
    [153] Demirev P A, Ramirez J, Fenselau C, Tandem mass spectrometry of intact proteins for characterization of biomarkers from bacillus cereus T spores, Anal Chem, 2001, 73(23): 5725~5731
    [154] Liu Y D, Bao J J, Methods and apparatus for automatic on-line multi-dimensional electrophoresis, U. S. Patent, 6676819, 2004-01-13
    [155]李拥军,敖红,孙桂金,mRNA差异显示技术中特意条带回收方法的比较,生物技术,2005,15(3):43~44
    [156] Jin Y, Manabe T, High-efficiency protein extraction from polyacrylamide gels for molecular mass measurement by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry, Electrophoresis, 2005, 26: 1019~1028
    [157]曾昭书,丁梅,孙元亮,非变性PAGE银染后DNA片断的回收及再扩增条件的探讨,中国法医学杂志,2004,19(1):43~44
    [158] Cohen S L, Chait B T, Mass spectrometry of whole proteins eluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, Anal Biochem, 1997, 247: 257~267
    [159]傅国平,SDS-PAGE中蛋白质回收方法,生命的化学,1995,15(3):41
    [160]黄轶,华超,徐江英,等,透析袋电洗脱法在蛋白质回收和纯化中的应用,南京军医学院学报,2003,25(1):33~34
    [161]韦霄,何敏,蒋智华,等,人血清中小分子蛋白质的电洗脱回收,现代预防医学,2007,34(190):3625~3626
    [162] Clarke N J, Feng L, Tomlinson A J, One step microelectroelution concentration method for efficient coupling of sodium dodecylsulfate gel electrophoresis and matrix-assisted laser desorption time-of-flight mass spectrometry for protein analysis, J Am Soc Mass Spectrom, 1998, 9(1): 88~91
    [163] Rosenfeld J, Capdevielle J, Guillemot J C, et al, In-gel digestion of proteins for internal sequence analysis after one or two dimennsional gel electrophoresis, Anal Biochem, 1992, 203: 173~179
    [164] Kumarathasan P, Mohottalage S, Goegan P, et al, An optimized protein in-gel digest method for reliable proteome characterization by MALDI-TOF-MS analysis, Anal Biochem, 2005, 346(1): 85~89
    [165]王旭初,范鹏,李银心,一种适用于质谱分析的简化胶内酶解方法,植物生理与分子生物学学报,2007,33(5):449~455
    [166]张浩波,新型凝胶蛋白质电转移装置的研究初探:[硕士论文],天津;天津大学,2007
    [167] Cooper J W, Gao J, Lee C S, Gel protein capillary extraction apparatus. Electronic protein transfer, Anal Chem, 2002, 374: 1182~1186
    [168] Cooper J W, Gao J, Lee C S, Electronic gel protein transfer and identification using matix-assisted laser desorption/ionization-mass spectrometry, Electrophoresis, 2004, 25: 1379~1385
    [169]周大炜,在线多维电泳方法及仪器:[博士后研究工作报告],天津;天津大学,2005
    [170] Williams B A, Vigh G. Fast, accurate mobility determination method for capillary electrophoresis, Anal. Chem., 1996, 68: 1174~1180
    [171] Doherty E, Meagher R J, Albarghouthi M N, et al, Microchannel wall coatings for protein separations by capillary and chip electrophoresis, Electrophoresis, 2003, 24(1-2): 34~54
    [172] Vindas S S, Vigh G. Non-aqueous capillary electrophoretic enantiomer separations using the tetrabutylammonium salt of heptakis(2,3-O-diacetyl-6-O-sulfo)- cyclomaltoheptaose, a single-isomer sulfatedβ-cyclodextrin highly-soluble in organic solvents, J Chromatogr A, 2005, 1068(1): 151~158
    [173] Costa A C, Perfeito L, Tavares M, et al, Determination of sorbate and benzoate in beverage samples by capillary electrophoresis-optimization of the method with inspection of ionic mobilities, J Chromatogr A, 2008, 1204: 123~127
    [174] Chan G L Y, Axelson J E, Price J D E, et al, In vitro protein binding of propafenone in normal and uraemic human sera, Eur J Clin Pharmacol, 1989, 36, 495~499
    [175] Hong Y J, Tang Y H, Zeng S, Enantioselective plasma protein binding of propafenone: mechanism, drug interaction, and species difference, Chirality, 2009, 21, 692~698
    [176]吴鸿伟,毛细管电泳对盐酸普罗帕酮与人血清白蛋白结合作用的研究,分析测试学报,2008,27,1114~1117
    [177] Shimura K, Kasai K, Affinity capillary electrophoresis: a sensitive tool for the study of molecular interactions and its use in microscale analyses, Anal Biochem, 1997, 251(1): 1~16
    [178]徐新军,刘皋林,张正行,影响毛细管电泳分析精密度的因素及对策,国外医学药学分册,2001,28(2):101~104
    [179] Zhou D W, Li F M. Protein binding study of clozapine by capillary electrophoresis in the frontal analysis mode, J Pharm Biomed Anal, 2004, 35(4): 879~885
    [180] Bilek G, Kremser L, Blaas D, et al, Capillary electrophoresis of liposomes functionalized for protein binding, Electrophoresis, 2006, 27(20): 3999~4007
    [181] Musheev M U, Filiptsev Y, Krylov S N, Noncooled capillary inlet: a source of systematic errors in capillary-electrophoresis-based affinity analyses, Anal Chem, 2010, 82: 8637~8641
    [182] Mushee M U, Filiptsev Y, Krylov S N, Temperature difference between thecooled and the noncooled parts of an electrolyte in capillary electrophoresis, Anal Chem, 2010, 82: 8692~8695
    [183] Evenhuis C J, Musheev M U, Krylov S N, Heat-associated field distortion on electro-migration techniques, Anal Chem, 2010, 82: 8398~8401
    [184] Zhang Y, Wang J, Okamoto Y, et al, Velocity gap theory developed for magnifying resolutions without changing separation mechanisms or separation lengths, Anal Chem, 2009, 81: 2745~2750
    [185] Liu J, Abid S, Hail M E, Lee M S, et al, Use of affinity capillary electrophoresis for the study of protein and drug interactions, Analyst, 1998, 123: 1455~1459
    [186]许帼英,药物的结构和血浆蛋白的结合,国外医学·药学分册,1980,(4):230~232
    [187] Yin T J, Wei W Z, Yang L, et al, Kinetics parameter estimation for the binding process of salicylic acid to human serum albumin (HSA) with capacitive sensing technique, J Biochem Bioph Methods, 2007, 70: 587~593
    [188] Kratochwil N A, Huber W, Muller F, et al, Predicting plasma protein binding of drugs: a new approach, Biochem Pharmacol, 2002, 64(9): 1355~1374
    [189] Vuignier K, Schappler J, Veuthey J L, et al, Drug-protein binding: a critical review of analytical tools, Anal Bioanal Chem, 2010, 398: 53~66
    [190] Mote U S, Bhattar S L, Paril S R, et al, Interaction between felodipine and bovine serum albumin: fluorescence quenching study, Luminescence, 2010, 25: 1~8
    [191] Gonzalez-Jimenez J, Frutos G, Cayre I, et al, Chlorpheniramine binding to human serum albumin by fluorescence quenching measurements, Biochimie, 1991, 73(5): 551~556
    [192]曹团武,杨季冬,蔡思彬,卡马西平与牛血清白蛋白的相互作用,华西药学杂志,2008,23(4):419~421
    [193] Dufour C, Dangles O, Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy, Biochimica et Biophysica Acta, 2005, 1721(1-3): 164~73
    [194]俞天智,陶祖贻,水杨酸与人血清白蛋白相互作用的荧光光谱研究,光谱学与光谱分析,1999,19(3):453~455
    [195]颜承农,上官云凤,张华新,等,双氯芬酸钠与牛血清白蛋白结合反应的特征,武汉大学学报,2004,50(6):683~686
    [196] Bi S, Yan L, Sun Y, et al, Investigation of ketoprofen binding to human serum albumin by spectral methods, Spectrochim Acta A Mol Biomol Spectrosc, 2011, 78(1): 410~414
    [197]张勇,张贵珠,王月梅,等,光谱法研究丝裂霉素、血清白蛋白以及金属离子间的相互作用,分析科学学报,2000,16(6):445~448
    [198] Jia Z J, Ramstad T, Zhong M, Determination of protein-drug binding constants by pressure-assisted capillary electrophoresis (PACE)/frontal analysis (FA), J Pharm Biomed Anal, 2002, 30: 405~413
    [199] Zhang Z Q, Liang G X, Flow injection on-line oxidizing fluorometry coupled to dialysis sampling for the study of carbamazepine-protein binding, Analytica chimica acta, 2005, 536: 145~151
    [200] Martínez-Pla J J, Martínez-Gómez M A, Martín-Biosca Y, et al, High-Throughtput capillary electrophoresis frontal analysis method for the study of drug interactions with human serum albumin at near-physiological conditions, Electrophoresis, 2004, 25: 3176~3185
    [201] Debono M, Abbott B J, Fukuda D S, et al, Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of antifungal agent cilofungin (LY121019), J Antibiotics, 1989, 42(3): 389~397
    [202]陈頔,曹国颖,傅得兴,等,棘白霉素类抗真菌药的研究进展,中国新药杂志,2007,16(14):1082~1087
    [203]肖异珠,李桂明,作用于真菌细胞壁的抗真菌药物研究进展,皮肤病与性病,2001,23(2):13~15
    [204]梁锡辉,区伟能,任豪,等,激光诱导荧光检测技术,激光与光电子学进展,2008,45(1):65~72
    [205] Shoji M, Kato M, Hashizume S J, Electrophoretic recovery of proteins from polyacrylamide gel. J Chromatogr A, 1995, 698: 145~162
    [206]国家药典委员会,中华人民共和国药典,北京:北京工业出版社,2005,三部,附录21~22
    [207] Krivacsy Z, Gelencser A, Hlavay J, et al, Electrokinetic injection in capillary electrophoresis and its application to the analysis of inorganic compounds, J Chromatogr A, 1999, 834: 21~44
    [208] Chien R L, Burgi D S, Field amplified sample injection in high-performance capillary electrophoresis, J Chromatogr A, 1991, 559(1-2): 141~152
    [209]林海,冯敏,张正行,等,酸性药物的反向电渗流高效毛细管电泳分离分析研究,色谱,1998,16(5):383~385
    [210] Georgiou C D, Grintzalis K, Zervoudakis G, et al, Mechanism of coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins, Anal Bioanal Chem, 2008, 391: 391~403
    [211] Manabe T, Jin Y, High-efficiency protein extraction from polyacrylamide gels for molecular mass measurement by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry, Electrophoresis, 2005, 26: 1019~1028
    [212] Tal M, Silberstein A, Nusser E, Why does coomassie brilliant blue R interact differently with different protein? J Biol Chem, 1980, 260(18): 9976~9980
    [213]陈文静,凌笑梅,毛细管柱固定蛋白质方法的研究进展,分析化学,2009,37(6):929~934
    [214] Sakai-Kato K, Kato M, Toyo'oka T, On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis, Anal Chem, 2002, 74: 2943~2949
    [215] Kato M, Sakai-Kato K, Toyo'oka T, Silica sol-gel monolithic materials and their use in a variety of applications, J Sep Sci, 2005, 28: 1893~1908
    [216] Kato M, Sakai-Kato K, Matsumoto N, et al, A protein-encapsulation technique by the sol-gel method for the preparation of monolithic columns for capillary electrochromatography, Anal Chem, 2002, 74(8): 1915~1921
    [217]黄淑芳,姜忠义,吴洪,等,溶胶-凝胶法固定化酶的问题与解决途径,高分子通报,2003,(5):28~35
    [218] Lin W, Skinner C D, Desigh and optimization of porous polymer enzymatic digestors for proteomics, J Sep Sci, 2009, 32: 2642~2652
    [219] Sakai-Kato K, Kato M, Nakakuki H, et AL, Investigation of structure and enantioselectivity of BSA-encapsulated sol-gel columns prepared for capillary electrochromatography, J Pharm Biomed Anal, 2003, 31: 299~309
    [220]孙继红,章斌,范文浩,等,SiO_2-PEG体系的溶胶-凝胶过程及物化特性,材料研究学报,1999,13(3):301~304
    [221]孙继红,巩雁军,范文浩,等,SiO_2-PEG凝胶体系织构特性的研究,高等学校化学学报,2000,21(1):95~98
    [222]汪秀全,杨洪斌,陈奇,等,聚乙二醇对合成多孔SiO_2块体结构和性能的影响,硅酸盐学报,2005,33(8):975~979
    [223]黄淑芳,姜忠义,吴洪,等,溶胶-凝胶法固定化酶的问题与解决途径,高分子通报,2003,5:28~35
    [224]国家药典委员会,中华人民共和国药典,北京:北京工业出版社,2005,二部,624
    [225] Xu X, Wang X, Liu Y, et al, Trypsin entrapped in poly(diallydimethylammonium chloride) silica sol-gel microreactor coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun Mass Sp, 2008, 22: 1257~1264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700