用户名: 密码: 验证码:
网络控制系统的智能调度及其优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过资源约束网络实现地域上分布的传感器、执行器及控制器之间的信息交互从而实现被控对象的实时反馈控制的这样一类网络控制系统近来年得到了广泛的关注。通信网络介入传统点对点的控制系统使得这类网络控制系统的分析和设计变得更为复杂。选择合适的控制方法或者采用合适的资源调度策略均能补偿或改善网络的介入对系统性能的影响。
     本文从资源调度的角度出发,建立了集成调度与控制协同设计的模型,提出了网络控制系统的稳定性条件和控制器的协同设计方法;对网络的优先级调度提出了智能调度算法;对网络资源和控制性能的优化提出了不同的解决方案。主要研究内容如下:
     对于通信约束的网络控制系统,应用通信序列的概念和混合逻辑动态的构架,将其建模成一类集成控制和调度的资源约束离散周期系统。给出了这类系统网络信息的可调度条件和闭环系统渐近稳定的条件,同时也给出了在网络信息的周期调度下控制器的参数化设计方法。
     对于一类集成控制和调度的资源约束系统模型,采用线性矩阵不等式来描述离散周期系统的周期通信序列和H_∞控制协同设计的优化问题。提出了一种递增优化序列算法来求解优化的调度策略及其相应渐近稳定及r指数稳定的H_∞控制器。该算法结合线性矩阵不等式凸优化解决了调度与控制的协同设计问题,同时也节省了搜索优化解的计算时间。
     在网络带宽受限的情况下,综合考虑了系统响应的误差和误差变化率,设计了一个共享通信网络的模糊反馈调度器。该调度器采用模糊最大优先调度算法对网络消息发送的优先级进行动态调度。对四种不同调度算法在不同随机时延序列下进行了比较,结果表明这种智能调度算法优化了系统的控制性能,并在不确定运行环境中具有更好的适应性。
     为了优化控制性能与网络带宽的折衷关系,设计了一个基于模糊逻辑的带宽管理器对控制系统的带宽进行动态管理。利用线性矩阵不等式及资源受限条件来确定带宽动态分配的上下界来保证系统的稳定性。定义了多回路归一化控制质量、归一化带宽需求度性能衡量指标来评价网络控制系统的全局性能。在此评价方法下,对模糊带宽管理方法和采用固定带宽分配方法以及基于线性规划的优化带宽分配方法进行仿真比较。
     通过将系统控制性能、网络带宽需求等函数结合专家知识用一系列的约束条件表达成为一个多目标优化问题以达到最大化系统性能并且最小化带宽需求的目标。设计了基于神经网络的资源优化管理器来逼近该输入输出的非线性关系,通过数值优化方法结合专家知识得到一组数据集来训练神经网络的参数后在线对各个控制回路的带宽需求进行动态分配。通过对四种不同的资源分配方法的比较,表明该方法简单有效。
     针对工作负载的不可预期变化及控制系统运行环境的不确定性,设计了一个基于最小二乘支持向量机的动态预测反馈调度器。分析了网络带宽的调节机理,给出了反馈调度器的实现方案。通过监测网络资源,在线预测出下一周期的网络可适用利用率,根据预测值采用插值法得到控制回路的下一个采样周期,从而实现系统资源的动态分配。结果表明该反馈调度策略能使系统在可变负载情况下稳定运行,并在控制质量和网络服务质量之间取得了平衡。
A considerable research attention has recently been focused on a class of networked control systems (NCSs) which are typically spatially distributed systems wherein the communication between sensors, actuators, and controllers occurs through a shared resources-limited communication network. However, the insertion of communication network into traditional point-point control system makes the analysis and design of control applications complex.
     From resource scheduling perspective in this dissertation, networked control systems integrated control and scheduling codesign are reasonably modeled, and stability results and control laws design methods are also presented by some new techniques. An intelligent scheduling algorithm for the priority of network message is proposed. Some different solutions are also studied for optimization to the network resource and control performance. The main contributions are as follows:
     Firstly, by employing the notion of communication sequence and mixed logical dynamical framework, a networked control system subject to communication constraints is modeled to an integrated control and scheduling of discrete-time linear period system with resource constraints. The schedulability conditions and asymptotic stability results of this closed loop system are discussed in detail. The solution of control law is also given under a certain periodic scheduling of network message.
     Secondly, for an integrated control and scheduling of resource-constrained system with resource constraints, the optimal solution of discrete-time linear period system for period communication sequence and H-infinity control co-design is depicted by linear matrix inequalities (LMIs). A heuristic search method, namely increasing optimal sequence algorithm, can effectively seek the optimal solution of scheduling scheme and H-infinity controller for its asymptotical stability and r-exponential stability, respectively. The algorithm, in conjunction with the convex optimization of the LMIs, can successfully give a solution to the problem of scheduling and control co-design, and can greatly save the computational cost, simultaneously.
     Thirdly, considering the error and error difference of system response, a fuzzy feedback scheduler that shares communication network is designed with the bandwidth constraint. A scheduling algorithm of the scheduler, namely fuzzy maximum first (FMF), can schedule dynamically the priority of network message. Four different scheduling algorithms with different stochastic delay series are compared, respectively. The results of simulation highlight that the proposed scheduling algorithm can optimize the performance of control loop and has more flexible than other algorithms in uncertain running conditions.
     Fourthly, in order to optimize an unavoidable tradeoff between the control performance and the bandwidth consumption, an intelligent control approach to manage bandwidth dynamically, namely fuzzy bandwidth management (FBM), is proposed based on fuzzy logic control technique. The lower and upper bound of the assignable bandwidth, which can guarantee the system's stability, are evaluated in terms of LMIs and the resource constraints, respectively. In addition, the normalizable criterions of quality of control (QoC) and requirement of bandwidth (RoB) are also defined, which can estimate the performance of the whole networked control systems. The proposed approach, traditional fixed bandwidth allocation and optimal bandwidth allocation based on linear programming are also compared under these criterions.
     Fifthly, considering control performance and network resource, a multi-objective programming with a set of constraints combining expert knowledge expressed as rules is presented in order to maximize control performance and minimize bandwidth consumption. An optimal resource manager based on neural network (NN) as good and robust nonlinear function approximator is employed to provide the optimal solution. The optimal algorithm combining expert knowledge as connotative constraints expressed as rules is used as a teacher to label the data samples for the NN well-trained. Consequently, the NN is employed to allocate requirement of bandwidth for each control loop at runtime. The simulation results show that the proposed optimal strategy is a simple and effective approach in comparison with other three different resource allocation strategies.
     Finally, due to the variation of the workload and unpredictable open environment, a feedback scheduler based on least squares support vector machines (LSSVM) is designed in order to guarantee the stability of the system. The mechanism and its applications are discussed in detail. The feedback scheduler monitors the network resources, predicates the available utilization for the next period, and adopts interpolated method to calculate the next sampling period from predicative value. Consequently, the system's resources are dynamically allocated by this feedback scheduling mechanism. The results of simulation indicate that the feedback scheduling strategy can guarantee the stability of the system under flexible workload. These results also prove that the proposed strategy is an effective tradeoff method between quality of control and quality of service.
引文
[1]Chow M Y,Tipsuwan Y.Network-based control systems:a tutorial[A].IECON'01 on Industrial Electronics Society[C].Denver,USA:IEEE,2001(3).1593-1602
    [2]Yang T C.Networked control system:a brief survey[J].IEE Proceedings-Control Theory and Applications,2006,153(4):403-412
    [3]Hespanha J P,Naghshtabrizi P,Xu Y.A survey of recent results in networked control systems [J].Proceedings of the IEEE,2007,95(1):138-162
    [4]Antsaklis P,Baillieul J,(Guest Editors).Special issue on technology of networked control systems[J].Proceedings of the IEEE,2007,95(1):5-8
    [5]Baillieul J,Antsaklis P.Control and communication challenges in networked real-time systems[J].Proceedings of the IEEE,2007,95(1):9-28
    [6]Antsaklis P,Baillieul J,(Guest Editors).Special issue on networked control systems[J].IEEE Transaction Automatic Control,2004,49(9):1421-1423
    [7]Zhang W.Stability analysis of networked control systems[D].Ph.D.dissertation,Cleveland:Case Western Reserve University,2001
    [8]Li S B,Wang Z,Sun Y X.Fundamental problem of networked control systems from the view of control and scheduling[A].Proc.of IEEE 28th Annual Conference of IEEE Industrial Electronics Society[C].Sevilla,Spain:IEEE,2002(3).2503-2508
    [9]朱其新.网络控制系统的建模、分析与控制[D].南京:南京航空航天大学博士学位论文,2003
    [10]樊卫华.网络控制系统的建模与控制[D].南京:南京理工大学博士学位论文,2004
    [11]黎善斌.网络控制系统的鲁棒控制算法研究工作[D].杭州:浙江大学博士学位论文,2005
    [12]岳东,彭晨.网络控制系统的分析与综合[M].北京:科学出版社,2007
    [13]张庆灵,邱占芝.网络控制系统[M].北京:科学出版社,2007
    [14]Gaid M M B.Optimal scheduling and control for distributed real-time systems[D].Ph.D dissertation,Paris:Evry University,Nov.2006
    [15]陈磊.从现场总线到工业以太网的实时性问题研究[D].杭州:浙江大学博士学位论文,2004
    [16]冯晓东.基于工业以太网的网络控制系统及其应用[D].上海:上海交通大学博士学位论文,2003
    [17]Tanenbaum A S.Computer networks(fourth edition)[M].Englewood Cliffs,NJ:Prentice Hall,2003
    [18]Karl H,Witlig A.Protocols and architectures for wireless sensor networks[M].Chichester,England:John Wiley & Sons,2005
    [19]Lann G L.Deterministic multiple access protocols for real-time local area networks[R].Research Report 246,INRIA,France,1983
    [20]Almeida L.Flexibility and timeliness in fieldbus-based real-time systems[D].Ph.D dissertation,Aveiro,Portugal:University of Aveiro,1999
    [21]Broster I.Flexibility in dependable real-time communication[D].Ph.D dissertation,York,UK:University of York,2003
    [22]Lian F L.Analysis,Design,Modeling,and Control of Networked Control Systems[D].Ph.D dissertation,Michigan,USA:University of Michigan,2001
    [23]Ohlin M,Henriksson D,Cervin A.TrueTime 1.5-reference manual[EB/OL].Lurid,Sweden:Lurid University,January,2007.Available:http://www.control.lth.se/truetime/
    [24]Richard J R Time-delay systems:an overview of some recent advances and open problems[J].Automatica,2003,39(10):1667-1694
    [25]Ray A,Halevi Y.Integrated Communication and Control Systems:Part I-analysis and part Ⅱ-Design considerations[J].Journal of Dynamic Systems,Measurement,and Control,1988,110(4):367-381
    [26]Cervin A,Henriksson D,Lincoln B,Eker J Arzen K E.How does control timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime[J].IEEE Control Systems Magazine,2003,23(3):16-30
    [27]Xia F,Wang Z,Sun Y X.Simulation based performance analysis of networked control systems with resource constraints[A].Proceedings of the 30th Annual Conference of the IEEE Industry Electronics Society[C].Busan,Korea:IEEE,2004.2946-2951
    [28]Martí P,Yépez J,Velasco M,et al.Managing quality-of-control in network-based control systems by controller and message scheduling co-design[J].1EEE Trans.on Industrial Electronics,2004,51(6):1159-1167
    [29]Leland W E,Taqqu M S,Willinger W,Wilson D V.On the self-similar nature of Ethernet traffic(extended version)[J].Networking,IEEE/ACM Transactions on Networking,1994,2(1):1-15
    [30]张骏温,陈海文,陈常嘉.因特网业务量多重分形性本质成因的研究[J].软件学报2002,13(3):470-474
    [31]Yu-Chu Tian,Zu-Guo Yu and Colin Fidge.Multifractal nature of network induced time delay in networked control systems[J].Physics Letters A,2007,361(1/2):103-107
    [32]Nilsson J.Real-time control systems with delays[D].Ph.D dissertation,Sweden:Lund Institute of Technology,1998
    [33]Lian F L,Moyne J R,Tilbury D M.Network design consideration for distributed control systems[J].IEEE Transactions on Control Systems Technology,2002,10(2):297-307
    [34]杨丽曼,李运华,袁海斌.网络控制系统的时延分析及数据传输技术研究[J].控制与决策,2004,19(4):361-366
    [35]Lian F L,Moyne J R,Tilbury D M.Performance evaluation of control networks:Ethernet,Controlnet and Devicenet[R].Technical Report:UM-MEAM-99-02,University of Michigan,1999
    [36]Lian F L,Moyne J R,Tilbury D M.Performance evaluation of control networks:Ethernet,Controlnet,and Devicenet[J].IEEE Control Systems Magazine,2001,21(1):66-83
    [37]Hong S H.Scheduling algorithm of data sampling times in the integrated communication and control systems[J].IEEE Transactions on Control Systems Technology,1995,3(2):225-230
    [38]Tipsuwan Y,Chow M Y.Control methodologies in networked control systems[J].Control Engineering Practice,2003,11(10):1099-1111
    [39]Overstreet J W,Tzes A.An internet-based real-time control engineering laboratory[J].IEEE Control Systems Magazine,1999,19(5):19-34
    [40]Tipsuwan Y,Chow M Y.Network-based controller adaptation based on QoS negotiation and deterioration[A].The 27th Annual Conference of the IEEE Industrial Electronics Society[C].Denver:IEEE,2001(3).1794-1799
    [41]Wang N,Zhang N,Wei J,Stoll Q and Peterson D E.A real-time,embedded,weed-detection system for use in wheat fields[J].Biosystems Engineering,2007,98(3):276-285
    [42]Stein M R.Interactive Internet artistry[J].IEEE Robotics & Automation Magazine,2000,7(2):28-32
    [43]Tipsuwan Y,Chow M Y.Gain adaptation of networked mobile robot to compensate QoS deterioration[A].The 28th annual conference of the IEEE industrial electronics society[C].Sevilla,Spain:IEEE,2002.3146-3151
    [44]Ray A.Performance evaluation of medium access control protocols for distributed digital avionics[J].ASME Journal of Dynamic Systems Measurement and Control,1987,109(4):370-377
    [45]Sparks J A.Low cost technologies for aerospace applications[J].Microprocessors and Microsystems,1997,20(8):449-454
    [46]Oboe R.Web-interfaced,force-reflecting teleoperation systems[J].IEEE Transactions Industrial Electronics,2001,48(6):1257-1265
    [47]José Carlos Dafonte Vázquez,Alfonso Castro Martínez,Angel Gómez and Bernardino Arcay Varela.Intelligent agents technology applied to tasks scheduling and communications management in a critical care telemonitoring system[J].Computers in Biology and Medicine,2007,37(6):760-773
    [48]佟为明,林景波,李辉.基于DeviceNet现场总线的汽车总装生产线控制系统[J].低压电器,2003,5:40-42
    [49]Anderson D.FireWire System Architecture:IEEE 1394A(2nd Edition)[M].Massachusetts:Addison-Wesley,1998
    [50]李世平,戴凡,汪旭东.IEEE-1394(Fire Wire)系统原理与应用技术[M].西安:西安电子科技大学,2004
    [51]景兴建.网络遥操作机器人系统稳定性分析和规划方法研究[D].沈阳:中国科学院沈阳自动化研究所博士学位论文,2005
    [52]Rehbinder H,Sanfridson M.Scheduling of a limited communication channel for optimal control[J].Automatica,2004,40(3):491-500
    [53]Gaid M M B,Cela A,Hamam Y.Optimal integrated control and scheduling of systems with communication constraints[A].Proceeding of the 44th IEEE Conference on Decision Control and European Control Conference[C].Seville,Spain:IEEE,2005.854-859
    [54]Gaid M M B,Cela A,Hamam Y.Optimal integrated control and scheduling of networked control systems with communication constraints:application to a car suspension system[J].IEEE Transactions on Control Systems Technology,2006,14(4):776-787
    [55]Lu L,Xie L,Fu M.Optimal control of networked systems with limited communication:a combined heuristic and convex optimization approach[A].Proceeding of the 42nd IEEE Conference on Decision and Control[C].Hawaii,USA:IEEE,2003(2).1194-1199
    [56]Yi J,Wang Q,Zhao D,Wen J T.BP neural network prediction-based variable-period sampling approach for networked control systems[J].Applied Mathematics and Computation,2007,185(2):976-988
    [57]魏震.网络控制系统在线时延估计及其控制的综合研究[D].上海:上海交通大学博士学位论文,2002.43-76
    [58]Liu C L,Layland J W.Scheduling algorithms for multiprogramming in a hard-real-time environment[J].Journal of the ACM,1973,20(1):46-61
    [59]Seto D,Lehoczky J P,Sha L,et al.On task schedulability in real-time control systems[A].Proceedings of the IEEE Real-Time Systems Symposium[C].Washington,USA:IEEE,1996.13-21
    [60]Lee C,Lehoczky J P,Siewiorek D,et al.A scalable solution to the multi-resource QoS problem[A].Proceedings of the IEEE Real-Time Systems Symposium[C].Phoenix,USA:IEEE,1999.315-326
    [61]Cervin A,Eker J.Feedback scheduling of control tasks[A].Proceedings of the 39th IEEE Conference on Decision and Control[C].Sydney,Australia:IEEE,2000.4871-4876
    [62]Lu C,Stankovic J A,Tao G.Feedback control real-time scheduling:framework,modeling,and algorithms[J].Real-Time Systems Journal,Special Issue on Control-theoretical Approaches to Real-Time Computing,2002,23(1/2):85-126
    [63]Altman E,Basar T,Srikant R.Congestion control as a stochastic control problem with action delays[J].Automatica,1999,35(12):1937-1950
    [64]Mascolo S.Classical control theory for congestion avoidance in high-speed Internet[A].Proceedings of the 38th IEEE Conference on Decision and Control[C].Phoenix,USA:1EEE,1999(3).2709-2714
    [65]Yang C Q,Reddy A V S.A taxonomy for congestion control algorithms in packet switching networks[J].IEEE Network,1995,9(4):34-45
    [66]IEEE.802.4:Token passing bus access method[S].New York:IEEE,1985
    [67]Dirvin R A,Miller A R.The MC68824 token bus controller:VLSI for the factory LAN[J].IEEE Micro,1986,6(3):15-25
    [68]IEEE.802.5:Token ring access method IS].New York:IEEE,1985
    [69]Latif A,Rowlance E J,Adams R H.The IBM 8209 LAN bridge[J].IEEE Network,1992,6(3):28-37
    [70]Franklin G F,Powell J D,Workman M L.Digital control of dynamic systems(3rd edition) [M].Reading,MA:Addison-Wesley,1998
    [71]窦强.分布式强实时系统中可调度性分析算法的研究[D].长沙:国防科学技术大学博士论文,2001
    [72]Joseph M,Pandya E Finding response times in a real-time system[J].The Computer Journal 1986,29(5):390-395
    [73]Audsley N,Bums A,Richardson M,Wellings A.Hard real-time scheduling:the deadline monotonic approach[A].Proceedings of 1EEE Workshop on Real-time Operating Systems and Software[C].Atalanta,USA:1EEE,1991.133-137
    [74]Katcher D,Arakawa H,Stronsnider J.Engineering and analysis of fixed priority schedulers [J].IEEE Transaction on Software Engineering,1993,19(9):920-934
    [75]Branicky M S,Phillips S M,Zhang W.Scheduling and feedback co-design for networked control systems[A].Proceeding of IEEE Conference on Decision and Control[C],Las Vegas,USA:1EEE,2002(2).1211-1217
    [76]Velasco M,Martí P,Frigola M.Bandwidth management for distributed control of highly articulated robots[A].Proc.of the 2005 IEEE International Conference on Robotics and Automation[C].Barcelona,Spain:IEEE,2005.265-270
    [77]Hristu D,Morgansen K.Limited communication control[J].Systems & Control Letters,1999,37(4):193-205
    [78]Hristu D.Optimal control with limited communication control[D].Ph.D dissertation,Cambridge,Massachusetts:Harvard University,1999
    [79]何坚强,张焕春.基于遗传算法的网络控制系统调度优化研究[J].工业仪表与自动化装置,2004,36(4):37-39
    [80]Xia F,Sun Y X.Neural network based feedback scheduling of multitasking control systems [J].Lecture Notes in Artificial Intelligence,2005,3682:193-199
    [81]Brockett W.Minimum attention control[A].Proceedings of the 36th IEEE Conference on Decision and Control[C].San Diego,USA:IEEE,1997.2628-2632
    [82]Xu Y,Hespanha J P.Optimal communication logics in networked control systems[A].Proceedings of the 43rd IEEE Conference on Decision and Control[C].Nassau,Bahamas:IEEE,2004.3527-3532
    [83]Xu Y.Communication scheduling methods for estimation over networks[D].Ph.D dissertation,Santa Barbara:University of California,Santa Barbara,2006
    [84]Hristu D.Stabilization of LTI systems with communication constraint[A].Proceedings of the American Control Conference[C].Chicago,Illinois:IEEE,2000.2342-2346
    [85]Sha L,Rajkumar R,Lehoczky J.Priority inheritance protocols:an approach to real-time synchronization[J].IEEE Transactions on Computers,1990,39(9):1175-1185
    [86]Lehoczky J,Sha L,Ding Y.The rate monotonic scheduling algorithm:exact characterization and average case behavior[A].Proceedings of the 11th Real-Time Systems Symposium[C].Santa Monica,USA:IEEE,1989.237-250
    [87]Baker T.Stack-based scheduling of priority real-time[J].Real-Time Systems,1991,3(1):67-79
    [88]纪志成,赵维一,谢林柏.时延网络控制系统的协同设计方法研究[J].系统科学与数学,2007,27(3):440-450
    [89]Yépez J,Martí P,Fuertes J M,Control loop scheduling paradigm in distributed control systems[A].Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society[C].Roanoke,USA:IEEE Press,2003.1441-1446
    [90]Xia Feng,Dai Xiaohua,Wang Zhi,Sun Youxian.Feedback based network scheduling of networked control systems[A].International Conference on Control and Automation[C].Budapest,Hungary:IEEE Press,2005.1231-1236
    [91]Walsh G C,Ye H,Bushnell L G.Stability analysis of networked control systems[J].IEEE Transactions on Control Systems Technology,2002,10(3):438-446
    [92]Wang Zhiming and Zhu Xuemei.EI based scheduling for thermal process control[A].International Conference on Control and Automation[C].Budapest,Hungary:IEEE Press,2005.656-660
    [93]彭晨,岳冬.网络控制系统中基于时延辨识的模糊控制器研究[J].信息与控制,2004,33(5):584-589
    [94]李祖欣,王万良,雷必成,陈惠英.网络控制系统中基于模糊反馈的消息凋度[J].自动化学报.2007.33(11):1299-1232
    [95]Ishii H.H_∞ control with limited communication and message losses[J].Systems & Control Letters,2008,57(4):322-331
    [96]宗群,王鹤,李然.一种网络控制系统的随机通信逻辑设计与分析[J].控制与决策,2007,22(7):795-799
    [97]Brockett R.Stabilization of motor networks[A].Proceedings of the 34th IEEE Conference on Decision and Control[C].New Orleans,USA:IEEE,1995.1484-1488
    [98]Hong S H.Bandwidth allocation scheme for cyclic-service fieldbus networks[J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(2): 197-204
    [99] Hong S H, Kim Y C. Implementation of a bandwidth allocation scheme in a token-passing field-bus network [J]. Instrumentation and Measurement, 2002, 51(2):246-251
    [100] Kim Y H, Kwon W H, Park H S. Stability and a scheduling method for network-based control systems [A]. The 22nd Annual Conference of the IEEE Industrial Electronics Society [C]. Taipei: IEEE, 1996(2). 934- 939
    [101] Kim Y H, Park H S, Kwon W H. A scheduling method for network-based control systems [A]. Proceedings of the American Control Conference [C]. Philadelphia, Pennsylvania, USA: IEEE Press, 1998(2). 718-722
    [102] Park H S, Kim Y H, Kim D S, Kwon W H. A scheduling method for network-based control systems [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3):318-330
    [103] Kim D S, Lee Y S, Kwon W H, et al. Maximum allowable delay bounds of networked control systems [J]. Control Engineering Practice, 2003, 11(11): 1301-1313
    [104] Branicky M S, Phillips S R, Zhang W. Stability of networked control systems: explicit analysis of delay [A]. Proceedings of the American Control Conference [C]. Chicago, Illinois, USA: IEEE, 2000(4). 2352-2357
    [105] Walsh G. C and Ye H. Scheduling of networked control systems [J]. IEEE Control Systems Magazine, 2001, 21(1): 57-65
    [106] Zhang W, Branicky M S, Phillips S M. Stability of networked control systems [J]. IEEE Control Systems Magazine, 2001, 21(1): 84-99
    [107] Velasco M, Fuertes J M, Lin C, Marti P, Brandt S. A control approach to bandwidth management in networked control systems [A]. The 30th Annual Conference of the IEEE Industrial Electronics Society [C]. Busan, Korea: IEEE Press, 2004. 2343-2348
    [108] Astrom K J, Wittenmark B. Computer-controlled systems: theory and design (third edition) [M]. Englewood Cliffs, NJ: Prentice Hall, 1997
    [109] Walsh G C, Ye H, Bushnell L. Stability analysis of networked control systems [A]. Proceedings of American Control Conference [C]. San Diego, USA: IEEE, 1999. 2876-2880
    [110] Ye H. Research on networked control systems [D]. Ph.D. dissertation, College Park, Maryland, USA: University of Maryland, 2000
    [111] Cervin A, Eker J, Bernhardsson B, et al. Feedback-feedforward scheduling of control tasks [J]. Real-Time Systems, 2002, 23(1):25-53
    
    [112] 刘宁,刘怀,费树崛. 网络控制系统中任务与信息的优化调度[J]. 东南大学学报(自然) 科学版),2007,37(4):605-609
    [113]Bai Tao and Wu Zhi-Ming.Hybrid bandwidth scheduling for CAN-based networked control systems[J].Acta Automatica Sinica,2007,33(9):963-967
    [114]Xia F,Sun Y.Control-scheduling codesign:a perspective on integrating control and computing[A].Dynamics of Continuous,Discrete and Impulsive Systems-Series B:Applications and Algorithms,Special Issue on ICSCA'06[C].Waterloo,Canada:Watam Press,2006.1352-1358
    [115]Ryu M,Hong S,Saksena M.Streamlining real-time controller design:from performance specifications to end-to-end timing constraints[A].Proceedings of the IEEE Real-Time Technology and Applications Symposium[C].Montreal,Canada:IEEE Press,1997.91-99
    [116]Ryu M,Hong S.Toward automatic synthesis of schedulable real-time controllers[J].Integrated Computer-Aided Engineering,1998,5(3):261-277
    [117]Kim N,Ryu M,Hong S,H Shin.Experimental assessment of the period calibration method:a case study[J].Real-Time Systems.1999,17(1):41-64
    [118]Seto D,Lehoczky J P,Sha L,Shin K G.Trade-off analysis of real-time control performance and schedulability[J].Real-time Systems,2001,21(3):199-217
    [119]Arzén K E,Cervin A,Eker J.An introduction to control and scheduling co-design[A].Proceedings of the 39th IEEE Conference on Decision and Control,Sydney[C].Australia:IEEE Press,2000(5).4865-4870
    [120]Xia F,Liu L,Sun Y.Flexible quality-of-control management in embedded systems using fuzzy feedback scheduling[A].Proceedings of SPIE-The International Society for Optical Engineering[C].San Jose,USA:SPIE Press,2006.624-633
    [121]Lu Z,Lach J,Stan M,Skadron K.Reducing multimedia decode power using feedback control [A].Proceedings 21st International Conference on Computer Design[C].San Jose,CA:IEEE,2003.489-496
    [122]Kandasamy N,Abdelwahed S,Sharp G,Hayes J.An online control framework for designing self-optimizing computing systems:application to power management[J].Lecture Notes in Computer Science,2005,3460:174-188
    [123]Xia F,Dai X,Wang X,Sun Y.Feedback scheduling of real-time control tasks in power-aware embedded systems[A].Proc.2nd Int.Conf.on Embedded Software and Systems[C].Xi'an,China:IEEE,2005.513-518
    [124]王艳,陈庆伟,吴晓蓓,胡维礼.网络控制系统中动态调度策略与控制器的综合设计[J]. 控制与决策,2007,22(6):680-684
    [125]王玉龙,杨光红.具有时变采样周期的网络控制系统的 H_∞控制[J].信息与控制,2007,36(3):278-284
    [126]彭晨,岳东.网络环境下基于网络QoS的网络控制器优化设计[J].自动化学报,2007,33(2):214-217
    [127]Miki T.The potential of photonic networks[J].IEEE Communications Magazine,1994,32(12):23-27
    [128]Ian F.Akyildiz,Dario Pompili,Tommaso Melodia.Underwater acoustic sensor networks:research challenges[J].Ad Hoc Networks,2005,3(3):257-279
    [129]Liu X H,Goldsmith A.Wireless medium access control in networked control systems[A].In Proceedings of the 23rd American Control Conference[C].Boston,USA:IEEE,2004(4).3605-3610
    [130]李祖欣,王万良,雷必成,陈惠英.网络控制系统中的调度问题[J].计算机工程与应用,2007,43(16):241-245
    [131]彭晨,岳东.网络控制系统综合模型研究.南京师范大学学报(工程技术版)[J].2005,5(3):24-27
    [132]Yue D,Han Q L,Peng C.State feedback controller design of networked control systems[J].IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs,2004,51(11):640-644
    [133]Peng C,Yue D.Maximum allowable equivalent delay bound of networked control systems [A].Proceedings of the 6th World Congress on Intelligent Control and Automation[C].Dalian,China:IEEE,2006.4547-4550
    [134]谢林柏,方华京,王华.网络化控制系统的信息调度与稳定性研究[J].控制与决策,2004,19(5):589-591
    [135]Zhang L,Hristu-Varsakelis D.LQG control under limited communication[A].Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference[C].Seville,Spain:IEEE,2005.185-190
    [136]Bemporad A,Morari M.Control of systems integrating logic,dynamics,and constraints[J].Automatica,1999,35(3):407-427
    [137]Goodwin G C,Haimovich H,Quevedo D E,Welsh J S.A moving horizon approach to networked control systems design[J].IEEE Transaction on Automatic Control,2004,49(9):1562-1572
    [138]Gahinet P,Apkarian P.A linear matrix inequality approach to H_∞ control[J].International Journal of Robust and Nonlinear Control. 1994, 4(4):421-448
    
    [139] 俞立. 鲁棒控制——线性矩阵不等式处理方法 [M]. 北京:清华大学出版社, 2002.49-50
    
    [140] Bittanti S, Cuzzola F A. An LMI approach to periodic discrete-time unbiased filtering [J]. Systems & Control Letters, 2001, 42(1): 21-35
    [141] Yan W Y, Bitmead R R. Control of linear discrete-time periodic systems: a decentralized control approach [J]. IEEE Transactions on Automatic Control, 1992, 37(10): 1644-1648
    [142] Souza C E, Trofino A. An LMI approach to stabilization of linear discrete-time periodic systems [J]. International Journal of Control, 2000, 73(8): 696-703
    [143] Abeni L, Palopoli, L, Lipari G, Walpole J. Analysis of a reservation-based feedback scheduler [A]. Proc. of the 23rd IEEE RTSS [C], Austin, Texas, USA: IEEE Press, 2002. 71-80
    [144] Li Y Q, Fang H J. Control methodologies of large delays in networked control systems [A]. International Conference on Control and Automation [C]. Budapest, Hungary: IEEE, 2005. 1225-1230
    
    [145] Hong S H, Kim W H. Bandwidth allocation scheme in CAN protocol [J]. IEE Proceedings- Control Theory and Applications, 2000, 147(1):37-44
    [146] Xia F, Li S B, Sun Y X. Neural network based feedback scheduler for networked control system with flexible workload [A]. Proceedings of ICNC'05, Lecture Notes in Computer Science[C]. Heidelberg: Springer-Verlag, 2005. 242-251
    [147] Xia F, Liu L P, Li S B, et al. Integrated feedback scheduling of networked control systems [A]. Proceedings of ICSCA'06, Dynamics of Continuous, Discrete and Impulsive Systems - Series B: Applications and Algorithms [C]. Waterloo, Canada, 2006. 3274-3280
    [148] Ren X D, Li S B, Wang Z, et al A QoS management scheme for paralleled networked control systems with CAN bus [A]. The 29th Annual Conference of the IEEE Industrial Electronics Society [C]. Virginia, USA: IEEE, 2003. 842-847
    [149] Moon Y S, Park P G., Kwon W, et al. Delay dependent robust stabilization of uncertain state-delayed systems [J]. International Journal of Control, 2001, 74(14): 1447-1455
    [150] Marti P, Brandt S A, Velasco M, Fuertes J M. Optimal state feedback based resource allocation for resource-constrained control tasks [A]. In 25th IEEE International Real-Time Systems Symposium (RTSS'04) [C]. Lisbon, Portugal: IEEE, 2004. 161-172
    [151] Hagan M T, Menhaj M. Training feed-forward networks with the Marquardt algorithm [J]. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993
    [152] Ham F M, Kostanic 1. Principles of neurocomputing for science and engineering [M]. New York: McGraw-Hill, 2001. 132-136
    [153] Chow M Y, Tipsuwan Y. Gain adaptation of networked DC motor controllers based on QoS variations [J]. IEEE Transactions on Industrial Electronics, 2003, 50(5):936- 943
    [154] Ryu S, Rump C, Qiao C. Advances in internet congestion control [J]. IEEE Communications Surveys and Tutorials, 2003, 5(1):28-39
    [155] Xia F, Shen X, Liu L, Wang Z, Sun Y. Fuzzy logic based feedback scheduler for embedded control systems [J]. Lecture Notes in Computer Science, 2005, 3645: 453-462
    [156] Bhattacharya A, Parlos A G, Atiya A F. Prediction of MPEG-coded video source traffic using recurrent neural networks [J]. IEEE Transactions on Signal Processing, 2003, 51(8): 2177-2190
    [157] Zhao W H, Xia F. A neural network approach to QoS management in networked control systems over Ethernet [J]. Lecture Notes in Control and Information Sciences, 2006, 344: 444-449
    
    [158] 王艳,蔡骅,陈庆伟,胡维礼. 网络控制系统反馈调度器的设计[J]. 电子学报, 2007, 35(2): 379-384
    [159] Takens F. Detecting strange attractors in fluid turbulence [A]. In: Dynamical Systems and Turbulence [C]. D. Rand and L. S. Young editors, Belin: Springer-Verlag, 1981. 366-381
    [160] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors [J]. Physica D, 1983, 9(1/2): 189-208
    [161] Kennel M B, Brown R, Abarbanel H D I. Determing embedding dimension for phase-space reconstruction using a geometrical construction [J]. Physical Review A, 1992, 45(6): 3403-3411
    [162] Cao L. Practical method for determining the minimum embedding dimension of a scalar time series [J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2):43-50
    [163] Fraser A M. Information and entropy in strange attractors [J]. IEEE Transactions on Information Theory, 1989, 35(2):245-262
    [164] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length [J]. Physica D, 1996, 95(1): 13-28
    [165] Kim H S, Eykholt R, Salas J D.Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127(1/2):48-60
    [166] Gautama T, Mandic D P, Van Hulle M M. A differential entropy based method for determining the optimal embedding parameters of a signal [A]. In: Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Hong Kong:IEEE,2003(6).29-32
    [167]Suykens J A K,Vandewalle J.Least squares support vector machines classifiers[J].Neural Processing Letters,1999,9(3):293-300
    [168]Tsujinishi D,Abe S,Fuzzy least squares support vector machines for multiclass problems.Neural Networks[J].2003,16(5/6):785-792
    [169]Almeida L,Pedreiras P,Fonseca J A G.The FTT-CAN protocol:why and how[J].IEEE Transactions on Industrial Electronics,2002,49(6):1189-1201
    [170]Ferreira J,Pedreiras P,Almeida L,Fonseca J A.The FTT-CAN protocol for flexibility in safety-critical systems[J].IEEE Micro,2002,22(4):46-55
    [171]任旭东.网络控制系统可并行化方法及其调度管理[D].杭州:浙江大学硕士学位论文,2004
    [172]Muller K R,Mika S,Ratsch G,Tsuda K,Scholkopf B.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700