用户名: 密码: 验证码:
纳米碳/半导体材料的制备及光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅速发展,环境污染问题日趋严重,由于半导体材料可广泛应用于有机污染物的处理,如今越来越受到人们的关注,但是由于其较低的可见光利用率及光催化过程中迅速的光生电子-空穴复合限制了它的应用。在此背景下,本论文充分利用纳米碳材料的高比表面积及优良的导电性能,构建了多种纳米碳半导体复合体系,并系统探索了催化材料的合成及其催化性能。主要展开以下几方面的研究。
     (1)通过湿化学方法并借助微波辅助加热,制备了石墨烯负载有序介孔硫化锌棒复合物。扫描研究结果表明硫化锌棒直径50nm,长度几百nm左右,且均匀地分布在石墨烯的表面,进一步的透射研究结果发现硫化锌为有序介孔结构。荧光发射谱和光电子能谱证实硫化锌和石墨烯之间形成了紧密的接触。讨论了微波加热功率、微波加热时间以及氧化石墨烯含量对复合物形貌的影响,催化结果表明这种复合材料充分利用了石墨烯优良的导电性和有序介孔结构高的比表面积,能够有效地分解水中的有机污染物。
     (2)以石墨烯为载体,硫化锌/硫化铜异质纳米颗粒为负载物,制备了具有可见光响应效应的光催化剂。扫描、透射和高分辨研究结果表明硫化锌/硫化铜异质结颗粒均匀分布在石墨烯表面。光催化反应前后的光电子能谱分析证实催化过程中存在电子由硫化锌到硫化铜转移的现象。研究了微波加热功率、微波加热时间、氧化石墨烯含量对复合物形貌的影响。可见光催化结果表明,这种催化剂通过异质纳米颗粒内部的界面电子转移现象,实现了对可见光的有效利用。
     (3)通过静电自组装并利用微波加热制备了碳纳米管/石墨烯嵌入的氧化亚铜复合球。扫描和透射研究结果表明:碳纳米管/石墨烯嵌入氧化亚铜基体内部,形成了三维的网络结构,与基体共同组成复合球。分别分析了碳纳米管和氧化石墨烯在复合球成形过程中的作用,提出了复合球的形成机理。探讨了微波加热功率、碳纳米管和氧化石墨烯含量以及它们之间的质量比对复合球形貌的影响,光催化实验结果表明纳米碳材料的嵌入,克服了光生电子迁移过程中电子与空穴容易复合的问题,提高了光催化效率。
     (4)利用喷雾干燥技术制备了碳纳米管/氧化石墨烯/铜盐的球形粉末,并通过煅烧工艺得到碳纳米管/石墨烯球负载氧化铜/氧化亚铜颗粒的复合物。扫描和透射研究结果证明形成碳纳米管/石墨烯球,并在球表面均匀分布大量的纳米颗粒,给出了这种结构的成形过程示意图。探讨了低温煅烧温度、碳纳米管与氧化石墨烯的含量以及它们之间的质量比对复合物形貌的影响,光催化实验结果表明制备的碳纳米管/石墨烯球复合纳米催化颗粒,可进一步提高铜的氧化物的光催化效果,同时还简化了生产工艺,提高了生产效率。
With the rapid development of industry, the environmental pollution has becomemore and more serious. As semiconductors can be used to treat organic pollutants,they have attracted considerable attention. However, it has still not been applied inpractice due to its low visible light utilization rate and higher recombination rate ofphotoinduced electron-hole pairs. Under this background, we aim to develop nanocarbon/semiconductor materials based on carbon with excellent electronicconductivity and high specific areas. The synthesized strategy and their photocatalyticperformance were also analyzed. It mainly focusses on the following aspects:
     (1) Ordered mesoporous ZnS rods decorated graphene nanocomposites weresuccessfully synthesized by wet chemical method with the assistance of microwave.Scanning electron microscopy and transmission electron microscopy confirmed thatthe as-formed ordered mesoporous ZnS rods, about50nm in diameter and severalhundreds of nanometers in length, were distributed on graphene sheets. Fluorescentemission spectra and X-ray photoelectron spectroscopy confirmed that ZnS andgraphene intimately contact with each other. The effects of reaction temperature,reaction time and mass content of graphene oxides on the microstructure andphotocatalytic activity were investigated. The experimental results indicated that thisnanocomposites can decompose MO effectively and it is ascribed to the combinationof excellent conductivity of graphene and high specific area of mesoporous ZnS.
     (2) The nanocomposites of reduced graphene oxides (rGO) loaded-ZnS/CuSheteronanostructures had been successfully prepared. Scanning electron microscopyand transmission electron microscopy confirmed that ZnS/CuS heteronanostructureswere decorated on the surface of rGO. X-ray photoelectron spectroscopies of thesamples before and after photocatalytic reaction confirmed visible light irradiationinduced interfacial charge transfer from the valence band (VB) of ZnS to CuS clusters.The effects of reaction temperature, reaction time and mass content of graphene onthe microstructure and photocatalytic activity were investigated. The experimentalresults reveal that the high visible light photocatalytic activity is realized due to thephotoinduced interfacial charge transfer inside the heteronanostructures.
     (3) Carbon nanotubes/reduced graphene oxides (CNTs/rGO) implanting cuprousoxide (Cu2O) composite spheres had been successfully prepared via an electrostatic self-assemble with microwave-assistance. Scanning electron microscopy andtransmission electron microscopy observations confirmed that the hybrid of CNTs andrGO were implanted into Cu2O matrix and formed a three-dimensional embeddedmicrometer sphere structure. The contribution of CNTs, GO to the formation ofspheres was analyzed and the possible formation mechanism of this architecture werealso proposed. The effects of reaction temperature, proportion of carbonnanotubes/graphene oxides and mass content of carbon nanotubes/graphene on themicrostructure and photocatalytic activity were investigated. The experimental resultsindicated that the high visible photocatalytic performances were attributed to carbonmaterials implanted structure.
     (4) CNTs/rGO sphere decorated with CuxO nanoparticles composite wassuccessfully synthesized by spray drying and post-calcinating method. Scanningelectron microscopy and transmission electron microscopy confirmed that CNTs/rGOformed a spherical micrometer structure and CuxO (x=1or2)nanoparticles weredecorated on their surface. The effects of decomposition temperature, the proportionof carbon nanotubes/graphene oxides and mass content of carbon nanotubes/grapheneon the microstructure and photocatalytic activity were investigated. The experimentalresults indicated that CNTs/rGO sphere decorated with CuxO nanoparticles enhancedphotocatalytic performance as well as simplified technological process and improvedproduction efficiency
引文
[1]时桂杰.光催化氧化处理水中污染物的研究现状及发展趋向[J].环境科学与技术,1998,3:1-4
    [2] Marin M L, Santos-Juanes L, Arques A, et al. Organic photocatalysts for theoxidation of pollutants and model compounds[J]. Chem. Rev.,2012,112(3):1710-50
    [3] Yang J, Wang D, Han H, Li C. Roles of Cocatalysts in Photocatalysis andPhotoelectrocatalysis[J]. Accounts Chem Res.,2013,7:541-549
    [4] Abe R. Recent progress on photocatalytic and photoelectrochemical watersplitting under visible light irradiation[J]. J. Photoch. Photobio. C.,2010,11:179-209
    [5] Fujishima A, Honda K. TiO2photoelectrochemistry and photocatalysis[J].Nature.,1972,238:37-38
    [6] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in thepresence of titanium dioxide in aqueous suspensions [J]. B. Environ. Contam.Tox.,1976,16:697-701
    [7]刘鸿,成少安,王琪全等.无水条件下气相三氯乙烯的光催化降解机理[J].环境科学,1998,19:62-65
    [8]韩文亚,张彭义,祝万鹏等.水中微量消毒副产物的光催化降解[J].环境科学,2005,26:92-95
    [9]高大彬,尹静梅,郭明等.1-癸烯光催化氢甲酯化反应中醋酸钠的促进作用[J].催化学报,1999,20:290-292
    [10]沈伟韧,赵文宽,贺飞. TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10:349-361
    [11]岳林海,郑遗凡.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报,2000,27:69-74
    [12]刘只欣,于迎春,刘建军等. AgBr/TiO2异质结型复合可见光催化剂的制备及其光催化活性[J].化学研究,2010,21:62-67
    [13]唐剑文,吴平霄,曾少等.二氧化钛可见光光催化剂研究进展[J].现代化工,2005,25:25-28
    [14] Irie H, Maruyama Y, Hashimoto K. Ag+-and Pb2+-doped SrTiO3photocatalysts.A correlation between band structure and photocatalytic activity[J]. J. Phys.Chem. C,2007,111:1847-1852
    [15] Miseki Y, Kusama H, Sugihara H, et al. Cs-modified WO3photocatalystshowing efficient solar energy conversion for O2production and Fe (III) ionreduction under visible light[J]. J. Phys. Chem. Lett.,2010,1:1196-1200
    [16]杨亚辉,陈启元,尹周澜等. Fe3+和Cr3+掺杂对K4Nb6O17光催化活性的影响[J].中国稀土学报,2004,22:647-650
    [17]田蒙奎,上官文峰,欧阳自远等.光解水制氢半导体光催化材料的研究进展[J].功能材料,2005,10:1489-1550
    [18]刘晔,戴长虹,马峻峰等.钒酸盐类光催化剂的研究进展[J].硅酸盐通报,2009,28:1220-1224
    [19]张雷,李兆乾,陈学太.金属锗酸盐微纳米材料的研究进展[J].无机化学学报,2012,28:1075-1083
    [20] Muruganandham M, Kusumoto Y. Synthesis of N. C codoped hierarchicalporous microsphere ZnS as a visible light-responsive photocatalyst[J]. J. Phys.Chem. C,2009,113:16144-16150
    [21] Maeda K, Domen K. Photocatalytic water splitting: recent progress and futurechallenges[J]. J. Phys. Chem. Lett.,2010,1:2655-2661
    [22] Zhang H, Yang D, Ma X, et al. Synthesis of flower-like ZnO nanostructures byan organic-free hydrothermal process[J]. Nanotechnology,2004,15:622-635
    [23] Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2photoelectrode for photogenerated cathodic protection of metals[J]. Electrochim.Acta,2010,55:8717-8723
    [24]戈磊,张宪华.微乳液法合成新型可见光催化剂BiVO4及光催化性能研究[J].无机材料学报,2009,24:453-456
    [25] Ye J, Zou Z, Matsushita A. A novel series of water splitting photocatalystsNiM2O6(M=Nb, Ta) active under visible light [J]. Int. J. Hydrogen Energ.,2003,28:651-655
    [26] Henderson M A. A surface science perspective on photocatalysis[J]. Surf. Sci.Rep.,2011,66:185-297
    [27] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic Materials: Possibilities andChallenges[J]. Adv. Mater.,2012,24:229-251
    [28]张浩,钱付平. Ce掺杂TiO2催化剂的光催化性能[J].过程工程学报,2011,11:514-518
    [29] Parent Y, Blake D, Magrini-Bair K, et al. Solar photocatalytic processes for thepurification of water: state of development and barriers to commercialization[J].Sol. Energy,1996,56:429-437
    [30]张青红,高濂,郭景坤.二氧化钛纳米晶的光催化活性研究[J].无机材料学报,2000,15:556-560
    [31]吴凤清,阮圣平,李晓平等.一种新型纳米TiO2涂膜及其光催化性能的研究[J].高等学校化学学报,2000,21:1578-1580
    [32] Zhang X, Liu Q. Visible-light-induced degradation of formaldehyde over titaniaphotocatalyst Co-doped with nitrogen and nickel[J]. Appl. Surf. Sci.,2008,254:4780-4785
    [33] Nosaka Y, Matsushita M, Nishino J, et al. Nitrogen-doped titanium dioxidephotocatalysts for visible response prepared by using organic compounds[J]. Sci.Technol. Adv. Mat.,2005,6:143-148
    [34]钟起权,黄妙良,王金颖等. Zn2+掺杂BiFeO3粉体的制备及其可见光光催化性能研究[J].材料导报,2013,27:89-93
    [35] Yu H, Yu J, Cheng B, et al. Novel preparation and photocatalytic activity ofone-dimensional TiO2hollow structures[J]. Nanotechnology,2007,18:065604.
    [36] Zhang X, Pan J H, Du A J, et al. Combination of one-dimensional TiO2nanowire photocatalytic oxidation with microfiltration for water treatment[J].Water Res.,2009,43:1179-1186
    [37] Liu G, Jimmy C Y, Lu G Q M, et al. Crystal facet engineering of semiconductorphotocatalysts: motivations, advances and unique properties[J]. Chem.Commun.,2011,47:6763-6783
    [38] Zeng J H, Jin B B, Wang Y F. Facet enhanced photocatalytic effect with uniformsingle-crystalline zinc oxide nanodisks[J]. Chem. Phys. Lett.,2009,472:90-95
    [39] Jiang H, Dai H, Meng X, et al. Porous olive-like BiVO4: Alcoho-hydrothermalpreparation and excellent visible-light-driven photocatalytic performance forthe degradation of phenol[J]. Appl. Catal. B-environ.,2011,105:326-334
    [40] Liu S, Yu J, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2microspheres composed of anatase polyhedra with exposed {001} facets[J]. J.Am. Chem. Soc.,2010,132:11914-11916
    [41] Shen S, Zhang Y, Peng L, et al. Matchstick-Shaped Ag2S-ZnSHeteronanostructures Preserving both UV/Blue and Near-InfraredPhotoluminescence [J]. Angew Chem Intedit.,2011,123:7253-7256
    [42] Park K H, Lee Y W, Kim D, et al. Synthesis and Photocatalytic Properties ofCu2S–Pd4S Hybrid Nanoplates [J]. Chem-Eurj.,2012,18:5874-5878
    [43] Qian J, Liu P, Xiao Y, et al. TiO2-Coated Multilayered SnO2HollowMicrospheres for Dye-Sensitized Solar Cells [J]. Adv Mater.,2009,21:3663-3667
    [44] Liu S, Zhang N, Tang Z R, et al. Synthesis of One-Dimensional CdS@TiO2Core–Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Roleof TiO2Shell [J]. Acs Appl Mater Inter.,2012,4:6378-6385
    [45] Xin B, Jing L, Ren Z, et al. Effects of simultaneously doped and deposited Agon the photocatalytic activity and surface states of TiO2[J]. J Phys Chem C.,2005,109:2805-2809
    [46] Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalyticactivity by metal deposition: characterisation and photonic efficiency of Pt, Auand Pd deposited on TiO2catalyst [J]. Water Res.,2004,38:3001-3008
    [47] Sun B, Vorontsov A V, Smirniotis P G. Role of platinum deposited on TiO2inphenol photocatalytic oxidation [J]. Langmuir.,2003,19:3151-3156
    [48] Yogi C, Kojima K, Takai T, et al. Photocatalytic degradation of methylene blueby Au-deposited TiO2film under UV irradiation [J]. J Mater Sci.,2009,44:821-827
    [49] Chen W T, Hsu Y J. l-Cysteine-Assisted Growth of Core-Satellite ZnS-AuNanoassemblies with High Photocatalytic Efficiency [J]. Langmuir,2009,26:5918-5925
    [50] Liu G, Zhao J. Photocatalytic degradation of dye sulforhodamine B: acomparative study of photocatalysis with photosensitization [J]. New J Chem.,2000,24:411-417
    [51] Robert D. Photosensitization of TiO2by MxOyand MxSynanoparticles forheterogeneous photocatalysis applications [J]. Catal Today.,2007,122:20-26
    [52] Chatterjee D, Mahata A. Photoassisted detoxification of organic pollutants onthe surface modified TiO2semiconductor particulate system [J]. Catal Commun.,2001,2:1-3
    [53] Arefinia Z, Asgari A. Two-dimensional gas of massless Dirac fermions ingraphene [J]. nature,2005,438:197-200
    [54] Geim A K, Novoselov K S. The rise of graphene [J]. Nat Mater.,2007,6:183-191
    [55] Xu T, Zhang L, Cheng H, et al. Significantly enhanced photocatalyticperformance of ZnO via graphene hybridization and the mechanism study [J].Appl Catal B-Environ.,2011,101:382-387
    [56] LiáZhang L. Photocatalytic degradation of dyes over graphene-goldnanocomposites under visible light irradiation [J]. Chem Commun.,2010,46:6099-6101
    [57] Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-lightBiVO4photocatalyst for an enhanced photoelectrochemical water splitting [J]. JPhys. Chem. Lett.,2010,1:2607-2612
    [58] Liang Y, Wang H, Casalongue H S, et al. TiO2nanocrystals grown on grapheneas advanced photocatalytic hybrid materials [J]. Nano Research.,2010,3:701-705
    [59] Zhang Y, Tang Z R, Fu X, et al. TiO2-Graphene Nanocomposites for Gas-PhasePhotocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-GrapheneTruly Different from Other TiO2-Carbon Composite Materials.[J]. Acs Nano,2010,4:7303-7314
    [60] Liu J, Bai H, Wang Y, et al. Self-Assembling TiO2Nanorods on Large GrapheneOxide Sheets at a Two-Phase Interface and Their Anti-Recombination inPhotocatalytic Applications [J]. Adv Funct Mater.,2010,20:4175-4181
    [61] Zhang J, Xiong Z, Zhao X S. Graphene-metal-oxide composites for thedegradation of dyes under visible light irradiation [J].J Mater. Chem.,2011,21:3634-3640
    [62] Li B, Cao H. ZnO@graphene composite with enhanced performance for theremoval of dye from water [J]. J Mater. Chem.,2011,21:3346-3349
    [63] Gao E, Wang W, Shang M, et al. Synthesis and enhanced photocatalyticperformance of graphene-Bi2WO6composite [J]. Phys Chem Chemphys.,2011,13:2887-2893
    [64] Zhang H, Fan X, Quan X, et al. Graphene sheets grafted Ag@AgCl hybrid withenhanced plasmonic photocatalytic activity under visible light [J]. Environ. Sci.Technol.,2011,45:5731-5736
    [65] Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X=Br, Cl)nanocomposite as a highly efficient visible-light plasmonic photocatalyst [J].ACS nano.,2011,5:4529-4536
    [66] Zhang X, Quan X, Chen S, et al. Constructing graphene/InNbO4composite withexcellent adsorptivity and charge separation performance for enhancedvisible-light-driven photocatalytic ability [J]. Appl. Catal. B-Environ.,2011,105:237-242
    [67] Wang P, Jiang T, Zhu C, et al. solvothermal synthesis of graphene-CdS andgraphene-ZnS quantum dot nanocomposites and their interesting photovoltaicproperties [J]. Nano Research,2010,3:794-799
    [68] Liu S, Tian J, Wang L, et al. One-pot synthesis of CuO nanoflower-decoratedreduced graphene oxide and its application to photocatalytic degradation ofdyes [J]. Cataly. Sci. Tech.,2012,2:339-344
    [69] Li B, Cao H, Yin G, et al. Cu2O@reduced graphene oxide composite forremoval of contaminants from water and supercapacitors [J]. J Mater Chem.,2011,21:10645-10648
    [70] Fu Y, Xiong P, Chen H, et al. High photocatalytic activity of magneticallyseparable manganese ferrite–graphene heteroarchitectures [J]. Ind Eng ChemRes.,2012,51:725-731
    [71] Fu Y, Chen H, Sun X, et al. Graphene-supported nickel ferrite: A magneticallyseparable photocatalyst with high activity under visible light [J]. AIChE J,2012,58:3298-3305
    [72] Fu Y, Wang X. Magnetically Separable ZnFe2O4-Graphene Catalyst and its HighPhotocatalytic Performance under Visible Light Irradiation [J]. Ind Eng ChemRes.,2011,50:7210-7218
    [73] Li Q, Guo B, Yu J, et al. Highly efficient visible-light-driven photocatalytichydrogen production of CdS-cluster-decorated graphene nanosheets [J]. J AmChem Soc.,2011,133:10878-10884
    [74] Zhang Y, Zhang N, Tang Z R, et al. Graphene Transforms Wide Band Gap ZnSto a Visible Light Photocatalyst. The New Role of Graphene as aMacromolecular Photosensitizer [J]. ACS nano.,2012,6:9777-9789
    [75] Zhang J, Yu J, Jaroniec M, et al. Noble Metal-Free Reduced GrapheneOxide-ZnxCd1–xS Nanocomposite with Enhanced Solar PhotocatalyticH2-Production Performance [J]. Nano lett.,2012,12:4584-4589
    [76] Dong B, Cao L, Su G, et al. Mn/ZnS core/shell nanoparticles prepared by anovel two-step method [J]. J Alloy Compd.,2010,492:363-36
    [77] Zhang Z, Li J, Jian J, et al. Preparation of Cr-doped ZnS nanosheets with roomtemperature ferromagnetism via a solvothermal route [J]. J Cryst Growth,2013,372:39-42.
    [78] Farhangfar S, Yang R B, Pelletier M et al. Atomic layer deposition of ZnSnanotubes [J]. Nanotechnology.,2009,20:325602
    [79] Chen R, Li D, Liu B, et al. Optical and excitonic properties of crystalline ZnSnanowires: toward efficient ultraviolet emission at room temperature [J]. Nanolett.,2010,10(12):4956-4961
    [80] Fang X, Bando Y, Liao M, et al. Single-Crystalline ZnS Nanobelts asUltraviolet-Light Sensors [J]. Adv. Mater.,2009,21:2034-2039
    [81] Kole A K, Tiwary C S, Kumbhakar P. Ethylenediamine assisted synthesis ofwurtzite zinc sulphide nanosheets and porous zinc oxide nanostructures: Whitelight photoluminescence emission and visible light driven photocatalyticactivity [J]. CrystEngComm,2013,15:5515-5525
    [82] Kim M S, Bhattacharjya D, Fang B, et al. Morphology dependent Li storageperformance of ordered mesoporous carbon as anode material[J]. Langmuir,2013,29:6754-6761
    [83] Michorczyk P, Ku trowski P, Kolak A, et al. Ordered mesoporous Ga2O3andGa2O3-Al2O3prepared by nanocasting as effective catalysts for propanedehydrogenation in the presence of CO2[J]. Catal. Commun.,2013,35:95-100.
    [84] Ding Y, Yin G, Liao X, et al. A convenient route to synthesize SBA-15rods withtunable pore length for lysozyme adsorption [J]. Microporous MesoporousMater.2012,170:45-51
    [85] Bai S, Shen X. Graphene–inorganic nanocomposites [J]. RSC Adv.2012,2:64-98
    [86] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem.Soc.,1958,80:1339-1339
    [87] Zheng Z, Huang B, Wang Z, et al. Crystal faces of Cu2O and their stabilities inphotocatalytic reactions [J]. J. Phys. Chem. C,2009,113:14448-14453
    [88] Yu H, Yu J, Liu S, et al. Template-free hydrothermal synthesis of CuO/Cu2Ocomposite hollow microspheres [J]. Chem. Mater.,2007,19:4327-4334
    [89] Bai H, Xu Y, Zhao L, et al. Non-covalent functionalization of graphene sheetsby sulfonated polyaniline [J]. Chem. Commun.,2009,9:1667-1669
    [90] Zhou M, Zhai Y, Dong S. Electrochemical sensing and biosensing platformbased on chemically reduced graphene oxide [J]. Anal. Chem.,2009,81:5603-5613
    [91] Vanderkooy A, Chen Y, Gongzaga F, et al. Silica shell/gold core nanoparticles:correlating shell thickness with the plasmonic red shift upon aggregation [J].Acs Appl. Mater. Inter.,2011,3:3942-3947
    [92] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphenenanosheets [J]. Nat. Nanotechnol.,2008,3:101-105
    [93] Zeng B, Chen X H, Ning X T, et al. Electrostatic-assembly three-dimensionalCNTs/rGO implanted Cu2O composite spheres and its photocatalytic properties.Appl. Surf. Sci.,2013,276:482-486
    [94] Xue L, Shen C, Zheng M, et al. Hydrothermal synthesis of graphene-ZnSquantum dot nanocomposites [J]. Mater. Lett.,2011,65:198-200
    [95] Vogel R, Pohl K, Weller H. Sensitization of highly porous, polycrystalline TiO2electrodes by quantum sized CdS [J]. Chem. Phys. Lett.,1990,174:241-246
    [96] Sher Shah MSA, Park A R, Zhang K, et al. Green Synthesis of BiphasicTiO2-Reduced Graphene Oxide Nanocomposites with Highly EnhancedPhotocatalytic Activity [J]. ACS Appl. Mater. Inter.,2012,4:3893-3901
    [97] Han L, Wang P, Dong S. Progress in graphene-based photoactivenanocomposites as a promising class of photocatalyst [J]. Nanoscale,2012,4:5814-5825
    [98] Hu A, Chen X, Tang Y, et al. Self-assembly of Fe3O4nanorods on graphene forlithium ion batteries with high rate capacity and cycle stability [J]. Electrochem.Commun.,2013,28:139-142
    [99] Hu J S, Ren L L, Guo Y G, et al. Mass production and high photocatalyticactivity of ZnS nanoporous nanoparticles [J]. Angew. Chem.,2005,117:1295-1299
    [100] He T, Ma H, Zhou Z, et al. Preparation of ZnS-Fluoropolymer nanocompositesand its photocatalytic degradation of methylene blue [J]. Polym. Degrad. Stabil.,2009,94:2251-2256
    [101] Neppolian B, Choi H C, Sakthivel S, et al. Solar/UV-induced photocatalyticdegradation of three commercial textile dyes [J]. J. Hazard. Mate.,2002,89:303-317
    [102] Zhang J, Yu J, Zhang Y, et al. Visible light photocatalytic H2-production activityof CuS/ZnS porous nanosheets based on photoinduced interfacial chargetransfer [J]. Nano. Lett.,2011,11:4774-4779
    [103] Creutz C, Brunschwig B S, Sutin N. Interfacial charge-transfer absorption:Semiclassical treatment [J]. J. Phys. Chem. B,2005,109:10251-10260
    [104] Qiu X, Miyauchi M, Yu H, et al. Visible-Light-Driven Cu (II)(Sr1-yNa y)(Ti1xMox) O3Photocatalysts Based on Conduction Band Control and Surface IonModification [J]. J. Am. Chem. Soc.,2010,132:15259-15267
    [105] Irie H, Kamiya K, Shibanuma T, et al. Visible light-sensitive Cu(II)-graftedTiO2photocatalysts: Activities and X-ray absorption fine structure analyses [J].J. Phys. Chem. C,2009,113:10761-10766
    [106] Irie H, Miura S, Kamiya K, et al. Efficient visible light-sensitive photocatalysts:Grafting Cu (II) ions onto TiO2and WO3photocatalysts [J]. Chem. Phys. Lett.,2008,457:202-205
    [107] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials [J]. Nature,2006,442:282-286
    [108] Subrahmanyam K S, Manna A K, Pati S K, et al. A study of graphene decoratedwith metal nanoparticles [J]. Chem. Phys. Lett.,2010,497:70-75
    [109] Gao Z, Liu N, Wu D, et al. Graphene-CdS composite, synthesis and enhancedphotocatalytic activity. Appl. Surf. Sci.,2012,258:2473-2478
    [110] Yan X, Cui X, Li B, et al. solution-processable graphene quantum dots as lightabsorbers for photovoltaics [J]. Nano Lett.,2010,10:1869-1873
    [111] Shen C, Zheng M, Xue L, et al. Preparation of Graphene‐ZnS Nanocompositesvia Hydrothermal Method Using Two Sulfide Sources [J]. Chinese J. Chem.2011,29:719-723
    [112] Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis ofgraphene nanosheets [J]. ACS Nano,2009,3:2653-2659
    [113] Berciaud S, Ryu S, Brus L E, et al. Probing the intrinsic properties of exfoliatedgraphene: Raman spectroscopy of free-standing monolayers [J]. Nano Lett.,2008,9:346-352
    [114] Deshpande A, Shah P, Gholap R S, et al. Interfacial and physico-chemicalproperties of polymer-supported CdS ZnS nanocomposites and their role in thevisible-light mediated photocatalytic splitting of water [J]. J. Colloid Interf. Sci.,2009,333:263-268
    [115] Dreyer D R, Park S, Bielawski C W. The chemistry of graphene oxide [J]. Chem.Soc. Rev.,2010,39:228-240
    [116] Wang Y, Ai X, Miller D, et al. Two-phase microwave-assisted synthesis of Cu2Snanocrystals [J]. CrystEngComm.,2012,14:7560-7562
    [117] Yu J, Zhang J, Liu S. Ion-exchange synthesis and enhanced visible-lightphotoactivity of CuS/ZnS nanocomposite hollow spheres [J]. J. Phys. Chem. C,2010,114:13642-13649
    [118] Zhao G, Li J, Ren X, Chen C, et al. Few-layered graphene oxide nanosheets assuperior sorbents for heavy metal ion pollution management [J]. Environ. Sci.Technol.,2011,45:10454-10462
    [119] Zhu Y W, Murali S T, Stoller M D, et al. Microwave assisted exfoliation andreduction of graphite oxide for ultracapacitors [J]. Carbon,2010,48:2106-2122
    [120] Yu J G, Zhang J, Liu S G. Ion-exchange synthesis and enhanced visible-lightphotoactivity of CuS/ZnS nanocomposite hollow spheres. J Phys. Chem. C,2010,114:13642-13649Huang J, Yang Y, Xue S, et al. Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks [J]. Appl. Phys. Lett.,1997,70:2335-2337
    [121] Liang J, Wang H, Li L, et al. Well-graphitized graphene as photoinduced chargetransport channel for improving the photocatalytic activity of AgBr [J]. New J.Chem.,2013,37:1797-1802
    [122] Wang Z, Huang B, Dai Y, et al. Highly photocatalytic ZnO/In2O3heteronanostructures synthesized by a coprecipitation method [J]. J Phys. Chem.C.,2009,113:4612-4617
    [123] Shao F, Sun J, Gao L, et al. High Efficiency Semiconductor-Liquid JunctionSolar Cells based on Cu/Cu2O [J]. Adv. Funct. Mater.,2012,22:3907-3913
    [124] Kalidindi S B, Sanyal U, Jagirdar B R. Nanostructured Cu and Cu@Cu2O coreshell catalysts for hydrogen generation from ammonia–borane [J]. Phys. Chem.Chem. Phys.,2008,10:5870-5874
    [125] Park J C, Kim J, Kwon H, et al. Gram-Scale Synthesis of Cu2O Nanocubes andSubsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion BatteryAnode Materials [J]. Adv. Mater.,2009,21:803-807
    [126] Kondo J N. Cu2O as a photocatalyst for overall water splitting under visiblelight irradiation[J]. Chem. Commun.,1998,357-358
    [127] Huang L, Peng F, Yu H, et al. Preparation of cuprous oxides with different sizesand their behaviors of adsorption, visible-light driven photocatalysis andphotocorrosion [J]. Solid State Sci.,2009,11:129-138
    [128] Nian J N, Hu C C, Teng H. Electrodeposited p-type Cu2O for H2evolution fromphotoelectrolysis of water under visible light illumination [J]. Int. J. HydrogenEnergy.,2008,33:2897-2903
    [129] Kim Y K, Min D H. Durable large-area thin films of graphene/carbon nanotubedouble layers as a transparent electrode [J]. Langmuir.,2009,25:11302-11306
    [130] Dong X, Xing G, Chan M B, et al. The formation of a carbonnanotube–graphene oxide core–shell structure and its possible applications [J].Carbon,2011,49:5071-5078
    [131] Long S X, Chen X H, Pan W Y, et al. Electrostatic-assembly carbonnanotubes-implanted copper composite spheres [J]. Nanotechnology,2007,18:435607-435611
    [132]潘伟英,陈小华,许龙山.氧化亚铜/碳纳米管超细复合球的合成及性能研究.无机材料学报,2008,23(2):403-407
    [133] Xu L S, Chen X H, Pan W Y, et al. Thermal expansion of MWCNT-reinforcedcopper composite [J]. Trans. Nonfferrous Met. Soc. China,2007,17:1065-1069
    [134] Ai Z, Zhang L, Lee S, et al. Interfacial Hydrothermal Synthesis of Cu@Cu2OCore-Shell Microspheres with Enhanced Visible-Light-Driven PhotocatalyticActivity [J]. J Phys. Chem. C.,2009,113:20896-20902
    [135] Zhou B, Liu Z, Wang H, et al. Experimental Study on Photocatalytic Activity ofCu2O/Cu Nanocomposites Under Visible Light [J]. Catal. Lett.,2009,132:75-80
    [136] Su Q, Liang Y, Feng X, et al. Towards free-standing graphene/carbon nanotubecomposite films via acetylene-assisted thermolysis of organocobaltfunctionalized graphene sheets [J]. Chem. Commun.,2010,46:8279-8281
    [137] Yin H, Tang H, Wang D, et al. Facile synthesis of surfactant-free Aucluster/graphene hybrids for high-performance oxygen reduction reaction [J].ACS nano.,2012,6:8288-8297
    [138] Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing ofgraphene-carbon nanotube hybrid materials for high-performance transparentconductors [J]. Nano lett.,2009,9:1949-1955
    [139] Star A, Han T R, Gabriel J C P, et al. Interaction of aromatic compounds withcarbon nanotubes: Correlation to the Hammett parameter of the substituent andmeasured carbon nanotube FET response [J]. Nano lett.,2003,3:1421-1423
    [140] Chatterjee S K, Bhattacharjee I, Chandra G. Biosorption of heavy metals fromindustrial waste water by Geobacillus thermodenitrificans [J]. J hazard. Mater.,2010,175:117-125
    [141] Xiang Q, Yu J, Wong P K. Quantitative characterization of hydroxyl radicalsproduced by various photocatalysts [J]. J. Colloid Interf. Sci.,2011,357:163-167
    [142] Hirakawa T, Nosaka Y. Properties of O2-and OH formed in TiO2AqueousSuspensions by Photocatalytic Reaction and the Influence of H2O2and SomeIons [J]. Langmuir.,2002,18:3247-3254
    [143] Wang Z, Zhao S, Zhu S, et al. Photocatalytic synthesis of M/Cu2O (M=Ag, Au)heterogeneous nanocrystals and their photocatalytic properties [J]. Cryst Eng.Comm.,2011,13:2262-2267
    [144] Kou T, Jin C, Zhang C, et al. Nanoporous core–shell Cu@Cu2Onanocomposites with superior photocatalytic properties towards the degradationof methyl orange [J]. RSC Adv.,2012,2:12636-12643
    [145] Michael A. Henderson. Asurface science perspective on TiO2photocatalysis [J].Sur. Sci. Rep.,2011,66:185-297
    [146] Zhang L W, Zhu Y. A review of controllable synthesis and enhancement ofperformances of bismuth tungstate visible-light-driven photocatalysts [J]. Catal.Sci. Tech.,2012,2:694-706
    [147] Zhang L, Wang H L, Chen Z G, et al. Bi2WO6micro/nano-structures: synthesis,modifications and visible-light-driven photocatalytic applications [J]. Appl.Catal. B Environ.,2011,106,1-13
    [148] Chen C C, M W H, Z J C. Photocatalytic degradation of organic pollutants byCo-doped TiO2under visible light irradiation [J]. Curr. Org. Chem.,2010,14:630-644
    [149] Marin M L, Juanes L S, Arques A, et al. Organic photocatalysts for theoxidation of pollutants and model compounds [J]. Chem. Rev.,2012,112:1710-1750
    [150] Alhalaweh A, Velaga S P. Formation of cocrystals from stoichiometric solutionsof incongruently saturating systems by spray drying [J]. Cryst. Growth Des.,2010,10:3302-3305
    [151] Nandiyanto A B D, Okuyama K. Progress in developing spray-drying methodsfor the production of controlled morphology particles: From the nanometer tosubmicrometer size ranges [J]. Adv. Powder Technol.,2011,22:1-19
    [152] Zhang Y, Tang Z R, Fu X, et al. Engineering the Unique2D Mat of Graphene toAchieve Graphene-TiO2Nanocomposite for Photocatalytic SelectiveTransformation: What Advantage does Graphene Have over Its Forebear CarbonNanotube?[J]. ACS nano.,2011,5:7426-7435
    [153] Bekyarova E, Itkis M E, Ramesh P, et al. Chemical modification of epitaxialgraphene: spontaneous grafting of aryl groups [J]. J. Am. Chem. Soc.,2009,131:1336-1337
    [154] Zhang Y, Tian J, Li H, et al. Biomolecule-assisted, environmentally friendly,one-pot synthesis of CuS/reduced graphene oxide nanocomposites withenhanced photocatalytic performance [J]. Langmuir,2012,28:12893-12900
    [155] Luo Q P, Yu X Y, Lei B X, et al. Reduced graphene oxide-hierarchical ZnOhollow sphere composites with enhanced photocurrent and photocatalyticactivity [J]. J. Phys. Chem. C.,2012,116:8111-8117
    [156] Shen J, Hu Y, Shi M, et al. One Step Synthesis of Graphene Oxide MagneticNanoparticle Composite.[J]. J. Phys. Chem. C,2010,114:1498-1503
    [157] Sun W, Sun W, Zhuo Y, et al. Facile synthesis of Cu2O nanocube/polycarbazolecomposites and their high visible-light photocatalytic properties [J]. J. SolidState Chem.,2011,184:1638-1643
    [158] Xu J, Wang L, Zhu Y. Decontamination of Bisphenol A from Aqueous Solutionby Graphene Adsorption [J]. Langmuir,2012,28:8418-8425
    [159] Walther J H, Jaffe R, Halicioglu T. Carbon nanotubes in water: structuralcharacteristics and energetics [J]. J, Phys. Chem. B,2001,105:9980-9987
    [160] Qiu L, Yang X, Gou X, et al. Dispersing carbon nanotubes with graphene oxidein water and synergistic effects between graphene derivatives [J]. Chem-Eur. J.,2010,16:10653-10658
    [161] Yang S T, Chang Y, Wang H, et al. Folding/aggregation of graphene oxide andits application in Cu2+removal [J]. J. colloid interf. Sci.,2010,351:122-127
    [162] Zhu Y, Stoller M D, Cai W, et al. Exfoliation of graphite oxide in propylenecarbonate and thermal reduction of the resulting graphene oxide platelets [J].ACS nano.,2010,4:1227-1233
    [163] Reitz E, Jia W, Gentile M, et al. CuO nanospheres based nonenzymatic glucosesensor [J]. Electroanal.,2008,20:2482-2486
    [164] Barreca D, Fornasiero P, Gasparotto A, et al. The potential of supported Cu2Oand CuO nanosystems in photocatalytic H2production [J]. ChemSusChem.,2009,2:230-236
    [165] Hsu Y W, Hsu T K, Sun C L, et al. Synthesis of CuO/graphene nanocompositesfor nonenzymatic electrochemical glucose biosensor applications[J].Electrochimi. Acta.,2012,6:152–157
    [166] Zhang Y, Tian J, Li H, et al. Biomolecule-assisted, Environmentally Friendly,One-pot Synthesis of CuS/Reduced Graphene Oxide Nanocomposites withEnhanced Photocatalytic Performance [J]. Langmuir,2012,28(35):152–157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700