用户名: 密码: 验证码:
焦化废水外排水中残余组分的环境行为及臭氧氧化过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水是一种有机质构成复杂、污染物分子结构特异的典型工业废水,已成为水污染控制中的一个难题。虽然经过多级水处理过程,可使焦化废水达到国家的排放标准,但是外排达标水中依然存在TOC约30mg·L-1的有机组分,也构成了对生态环境及人类健康的严重威胁。针对焦化废水达标外排水中残留的毒性、活性组分,由于环保法律法规和分析测试技术的限制,对焦化废水外排达标水水质构成特别是其中有机组分的存在缺乏全面的认识,目前采用的焦化废水控制指标不足以反映该类废水的污染特性。对达标外排水中典型有机污染物认识的匮乏使对残留环境行为的评价缺乏深入理解,导致深度处理焦化废水的选择具有盲目性,焦化废水污染依旧是煤化工行业发展的制约因素。
     本文在焦化废水常规控制指标分析的基础上应用XAD-8、Dowex50和AmbR900树脂多级分离技术和超滤过滤方法,将焦化废水达标排水中的有机物进行分离,利用消毒副产物势能指标评估各组分中残留有机组分的环境风险,通过建立固相萃取富集方法辅以硅胶-氧化铝分离技术,利用GC-MS分析手段对具有高风险的组分中有机物进行全面分析,筛选出具有高风险的消毒副产物前体物特性的有机物。结果表明,大于100kDa组分的有机物和小于1kDa组分的有机物同时具有很高的三卤甲烷(THMs)和卤乙腈(HANs)类消毒副产物生成势能,焦化废水外排水中亲水酸性有机物所占比例最高,约占45%。通过三维荧光光谱分析和GC-MS定性分析,发现焦化废水外排水中含有微生物代谢产物,浓度不高但具有较高的荧光响应。在<1kDa分子量分布的有机物中筛选出约120种消毒副产物前体物,包括腈类、胺类、含氮杂环类含氮消毒副产物前体物以及酚类、烃类、酯类、酸类、醇类、多环芳烃类和含氧杂环类有机化合物等含碳消毒副产物前体物。
     臭氧(O3)氧化作用可以实现达标外排水中消毒副产物前体物的削减,其削减量与O3的投加量成正比。O3氧化作用将外排水中大分子有机物氧化为小分子,继续对小分子有机物产生矿化作用,将不饱和价键的有机物转变为氯反应惰性的有机物,改变尾水中有机物的官能团结构,使THMs和HANs的总生成潜能大幅度降低,表现为被氧化后外排水中DOC、UV254、SUVA、荧光强度和其他含氮无机组分包括氨氮、氰化物和硫氰化物等的同步降低或去除、O3氧化过程中有机物的种类发生了变化,外排水中主要的含氮有机物包括含氮杂环、腈类等快速被O3氧化,胺类物质出现先增多后减少的过程,随着反应时间的延长也能够被氧化;烯烃、酚类等含不饱和官能团的有机物也能被选择性氧化。O3氧化过程中会形成有机酸类、烷烃类等中间产物,该类物质具有较低的HANs和THMs生成潜能,O3氧化过程可有效减少外排水的环境风险。
     以焦化废水中具有特殊分子构型的多环芳烃(PAHs)作为研究对象,成功设计和开发了紫外光臭氧流化床反应器应用于处理焦化废水外排水中低浓度多环芳烃(PAHs)。通过条件实验优化,环境风险评估和成本分析表明:紫外光耦合臭氧催化过程可以增强PAHs的降解效率,约为45.4%;方差分析显示pH条件对臭氧氧化的影响具有显著性,碱性条件也有利于提高PAHs的去除率。对目标PAHs的降解过程进行拟一级动力学方程拟合,线性回归系数大于0.920,符合拟一级动力学方程模型。降解速率与初始浓度成正相关关系。在连续运行条件下,水力停留时间为2h时,紫外光臭氧流化床可以削减毒性当量为0.432g·L-1的致癌物质进入地表水环境,此时需要$0.16每吨水的处理费用,占整个污水处理站运行费用的13.5%左右。
     利用焦化污泥作为研究对象,对比臭氧流化床反应器在两相和三相中的处理效率,分析污泥中残留的PAHs同步降解过程。该过程受到臭氧投加量、过氧化氢(H2O2)投加量和pH的影响。随着臭氧投加量的增加,多环芳烃的分解速率提高,当臭氧投加量500mg O3·g-1SS时,去除率达到95%以上。耦合H2O2氧化过程,会产生协同效应从而提高去除效率,各PAH的协同增强值S分布在4.57到26.68之间。pH的提高会加速溶液中羟基自由基的生成从而提高多环芳烃的分解速率。多环芳烃在焦化污泥上的吸附性直接影响其臭氧氧化过程。整个氧化分解动力学过程符合拟一级动力学模型。强化传质过程有效提高臭氧流化床中O3氧化PAHs的O3利用效率。
     对焦化废水外排水中残余活性、毒性组分的系统分析,以消毒副产物前体物势能作为评价指标分析残余组分的环境行为,为研究焦化废水深度处理工艺提供了理论依据。以PAHs作为典型污染物,臭氧流化床反应器对焦化废水外排水和剩余污泥中的多环芳烃的氧化过程,为构建焦化废水深度处理的臭氧流化床成套装置提供发展方向。
Coking wastewater is generated from coal coking, coal gas purification, andby-product recovery processes of coking. It contains lots of inorganic pollutants andorganic pollutants, such as ammonium, sulfate, cyanide, thiocyanate, phenoliccompounds, polycyclic aromatic hydrocarbons (PAHs), nitrogen-, oxygen, andsulfur-containing heterocyclic compounds. Most of these compounds are refractory,toxic mutative, and carcinogenic, thus the pollution caused by coking wastewater is aserous problem in the world. Although the coking wastewater effluent meet thenational discharge standard after a multistage water treatment process, the TOCremains always about30mg·L-1. For the residual toxicity, active substance in cokingwastewater discharge, because of the limitation of environmental regulations andanalysis technique, it is a lack of comprehensive understanding of the environmentalbehavior of it. Therefore, the treatment of coking wastewater discharge is a challengetask in coking industry and a better understanding of the the composition of theindustrial wastewater and the behaviors and fate of specific compounds during thewastewater treatment will be helpful to optimize the system for controlling andminimizing the amount of PAHs discharged to environment.
     On the basis of the analysis of the conventional control indicators, the residualorganic compounds were adopted for separating by XAD-8, Dowex50and Amb-R900resin separation technology and ultrafiltration method. It is the first time to use thedisinifection by-products formation potential to evaluate the environmental risk oftoxicants in coking wastewater discharge. The high risk of disinfection by-productsprecursors was screen by coupling the solid phase extraction enrichment method withsilica-alumina extraction technology and GC-MS analysis. Results showed thatorganic matter>100kDa and <1kDa parts have a higher trihalomethanes (THMs) andhalogen acetonitrile (HANs) formation potential. The hydrophilic acidic organicmatters in coking wastewater have the highest proportion. According to the threedimensional flurescence spectrum and GC-MS analysis, microbial metabolitesexhibited high fluorescence response though not high in concentration. Among <1kDaarganic matter, about120kinds of disinfection by-product precursors were indentified, including nitrile, amine, nitrogen heterocyclic nitrogen, phenols, hydrocarbons, esters,acids, alcohols, polycyclic aromatic hydrocarbons and oxygen heterocyclic organiccompounds.
     Ozonation significantly reduced the amount of precursors of DBPs in cokingwastewater effluent. Furthermore, it was found that higher concentration of O3resulted in lower amounts of precursors. The results of DOC, UV254and SUVAshowed that O3preferentially decomposed DOM that had unsaturated and aromaticcomponents. The results of MW and3DEEM showed that small MW (<1kDa) DOMwas more easily degraded by O3as compared to large MW (>1kDa) DOM. Thespecies of organic compounds in effluent have been changed by ozonation.Nitrogenous orginc compounds such as nitrogen-containing heterocylic compoundsand nitrile can be oxidated fastly. Amine presented a trend that increased at thebeginning and than decreased. Olefin and phenol which contain unsaturatedfunctional groups can be also oxidated selectively by ozonation. On the other hand,organic acids and alkane have been formed in the process of ozonation. But theseintermediate compounds showed relatively low formation potential of HAN and THM.Therefore, precursors of HAN and THM can be mineralization or be converted toorganic compounds which have lower disinfection byproducts formation potential. Allthe results provided evidence that treatment of coking wastewater effluent byozonation was effective in minimizing the disinfection byproducts formation potential(DBPFP). Ozonation can reduce the environmental risk of the effluent of cokingwastewater treatment plants, and improve the security of water supply.
     Coking wastewater treatment plant (CWWTP) represents a point source ofpolycyclic aromatic hydrocarbons (PAHs) to environment. A pilot-scale O3/ultraviolet(UV) fluidized bed reactor (O3/UV FBR) was designed to enhance the removal ofresidual PAHs. Different operation factors including UV irradiation intensity, pH,initial concentration, contact time, and hydraulic retention times (HRTs) wereinvestigated at an ozone level of240g·h-1and25±3℃. The health risk evaluationand cost analysis were studied under the continuous-flow mode. Results indicated that18target PAHs were effectively removed in O3/UV FBR due to synergistic effects.Either increased reaction time or increased pH was beneficial for the removal of PAHs.The degradation of the target PAHs within8h can be well fitted by the pseudo first-order kinetics (R2>0.920). The reaction rate was also positively correlated withthe initial concentration of PAH. The health risk assessment showed that the totalamount of carcinogenic substance exposure to surface water was reduced by0.432g·d-1. The economic analysis showed that the O3/UV FBR was able to remove18target PAHs at a cost of0.16USD per cubic meter. These results suggest that O3/UVFBR is efficient in removing residuals from WWTP, thus reducing the accumulationof persistent pollutant in surface water.
     Activated coking wastewater sludge is a significant problem, due to thehydrophobic organic micro-pollutants which are adsorbed on it. This work discussesan O3fluidized bed reactor (FBR) process to stabilize and reduce coking sludge andremove16target polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the sludgeduring this process. The degradation efficiencies and influential factors affectingsludge ozonation were investigated. The results indicated that the target PAHs presentin activated coking sludge can be effectively removed by O3, especially the highmolecular weight PAHs. However, the dose of O3that is applied should be carefullycontrolled, because a low dose (e.g.,300mg O3g-1SS) can lead to an increase in theconcentrations of PAHs in the liquid phase of activated coking sludge. Furthermore,the addition of H2O2or an increase in pH can improve the removal of most of thetarget PAHs, because of a synergistic effect (S>0). The degradation kinetics of thetarget PAHs were assigned to a pseudo first-order model. By this process it becamepossible to reduce the amount of activated coking sludge, as well as achieve removalof PAHs adsorbed on it, with a minimal O3dosage.
     The results from this study enrich the knowledge of coking wastewater discharge,which promises to be useful for the research of advanced treatment technology. Theidentification of DBPFP can be applied as an index for the environment behaviors ofcoking wastewater discharge. The assessment of removal of residual PAHs in thedischarge and sludge of coking wastewater by O3fluidized bed reactor provideprospectives for advanced treatment of WWTP.
引文
[1]王绍文,钱雷,秦华,等.焦化废水无害化处理与回用技术[M].冶金工业出版社,2005.
    [2]任源,韦朝海,吴超飞,等.焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报,2007,27(7):1094-1100.
    [3]卫正义,樊生才.煤焦油加工技术进展及产业化评述[J].煤化工,2007,35(1):7-10.
    [4]韦朝海,贺明和,任源,等.焦化废水污染特征及其控制过程与策略分析[J].环境科学学报,2007(07):1083-1093.
    [5]韦朝海.煤化工中焦化废水的污染、控制原理与技术应用[J].环境化学,2012(10):1465-1472.
    [6]张万辉,韦朝海,晏波,等.焦化废水中溶解性有机物组分的特征分析[J].环境化学,2012,31(005):702-707.
    [7]谢成,晏波,韦朝海,等.焦化废水Fenton氧化预处理过程中主要有机污染物的去除[J].环境科学学报,2007,27(7):1101-1106.
    [8] Yuan X, Sun H, Guo D. The removal of COD from coking wastewater usingextraction replacement–biodegradation coupling[J]. Desalination,2012,289:45-50.
    [9] Bai X. Adsorption of organic pollutants from coking wastewater by activatedcoke[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,362(1):140-146.
    [10] Ghose M K. Complete physico-chemical treatment for coke plant effluents[J].Water Research,2002,36(5):1127-1134.
    [11] Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP)for water purification and recovery[J]. Catalysis today,1999,53(1):51-59.
    [12] Lai P, Zhao H, Wang C, et al. Advanced treatment of coking wastewater bycoagulation and zero-valent iron processes[J]. Journal of Hazardous Materials,2007,147(1):232-239.
    [13] Jianlong W, Xiangchun Q, Libo W, et al. Bioaugmentation as a tool to enhancethe removal of refractory compound in coke plant wastewater[J]. ProcessBiochemistry,2002,38(5):777-781.
    [14] Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrialwastewaters by chemical oxidation pre‐treatment[J]. Journal of ChemicalTechnology and Biotechnology,2004,79(5):431-454.
    [15] Chu L, Wang J, Dong J, et al. Treatment of coking wastewater by an advancedFenton oxidation process using iron powder and hydrogen peroxide[J].Chemosphere,2012,86(4):409-414.
    [16] Yu Z, Mohn W W. Bioaugmentation with resin-acid-degrading bacteriaenhances resin acid removal in sequencing batch reactors treating pulp milleffluents[J]. Water research,2001,35(4):883-890.
    [17] Lu Y, Yan L, Wang Y, et al. Biodegradation of phenolic compounds fromcoking wastewater by immobilized white rot fungus Phanerochaetechrysosporium[J]. Journal of hazardous materials,2009,165(1):1091-1097.
    [18]陈长松,李天增,张宝林,等. A/O工艺处理焦化废水的工程实践[J].环境科学与技术,2006,29(10):85-87.
    [19] Zhao W, Huang X, Lee D. Enhanced treatment of coke plant wastewater usingan anaerobic–anoxic–oxic membrane bioreactor system[J]. Separation andPurification Technology,2009,66(2):279-286.
    [20] Zhang M, Tay J H, Qian Y, et al. Comparison between anaerobic-anoxic-oxicand anoxic-oxic systems for coke plant wastewater treatment[J]. Journal ofEnvironmental Engineering,1997,123(9):876-883.
    [21] Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater bybiofilm systems for removal of organic compounds and nitrogen[J].Chemosphere,2003,52(6):997-1005.
    [22] Maranon E, Vazquez I, Rodriguez J, et al. Treatment of coke wastewater in asequential batch reactor (SBR) at pilot plant scale[J]. Bioresource technology,2008,99(10):4192-4198.
    [23] Zhang M, Tay J H, Qian Y, et al. Coke plant wastewater treatment by fixedbiofilm system for COD and NH3-N removal[J]. Water Research,1998,32(2):519-527.
    [24] Lai P, Zhao H, Zeng M, et al. Study on treatment of coking wastewater bybiofilm reactors combined with zero-valent iron process[J]. Journal of HazardousMaterials,2009,162(2):1423-1429.
    [25]张志杰,姜少亭.应用生物强化技术处理焦化废水难降解有机物[J].城市环境与城市生态,2000,13(6):42-44.
    [26] Jeong Y, Chung J S. Simultaneous removal of COD, thiocyanate, cyanide andnitrogen from coal process wastewater using fluidized biofilm process[J].Process Biochemistry,2006,41(5):1141-1147.
    [27] Nutt S G, Melcer H, Pries J H. Two-stage biological fluidized bed treatment ofcoke plant wastewater for nitrogen control[J]. Journal (Water Pollution ControlFederation),1984:851-857.
    [28] Sutton P M, Hurvid J, Hoeksema M. Biological fluidized-bed treatment ofwastewater from byproduct coking operations: full-scale case history[J]. Waterenvironment research,1999,71(1):5-9.
    [29]韦朝海,贺明和,吴超飞.生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用[J].环境科学学报,2007,7(27):1107-1112.
    [30] Melcer H, Nutt S, Marvan I, et al. Combined treatment of coke plant wastewaterand blast furnace blowdown water in a coupled biological fluidized bedsystem[J]. Journal (Water Pollution Control Federation),1984:192-198.
    [31]朱小彪.焦化废水强化处理工艺特性和机理及排水生物毒性研究[D].清华大学,2012.
    [32] Alvares A, Diaper C, Parsons S A. Partial oxidation by ozone to removerecalcitrance from wastewaters-a review[J]. Environmental Technology,2001,22(4):409-427.
    [33] Hoigné J, Bader H. Rate constants of reactions of ozone with organic andinorganic compounds in water—II: dissociating organic compounds[J]. Waterresearch,1983,17(2):185-194.
    [34] Rodrigues F, Santos E F, Feitosa J, et al. Ozonation of unstretched naturalrubber: Part I. Effect of film thickness[J]. Rubber chemistry and technology,2001,74(1):57-68.
    [35]储金宇,吴春笃,陈万金.臭氧技术与应用[M].北京:化学工业出版社,2002.
    [36] Zaror C, Carrasco V, Perez L, et al. Kinetics and toxicity of direct reactionbetween ozone and1,2-dihydrobenzene in dilute aqueous solution[J]. WaterScience&Technology,2001,43(2):321-326.
    [37] Zhang F, Yediler A, Liang X. Decomposition pathways and reactionintermediate formation of the purified, hydrolyzed azo reactive dye C.I. ReactiveRed120during ozonation[J]. Chemosphere,2007,67(4):712-717.
    [38] Dilmeghani M, Zahir K O. Kinetics and mechanism of chlorobenzenedegradation in aqueous samples using advanced oxidation processes[J]. Journalof environmental quality,2001,30(6):2062-2070.
    [39] Staehelin J, Hoigne J. Decomposition of ozone in water in the presence oforganic solutes acting as promoters and inhibitors of radical chain reactions[J].Environmental Science&Technology,1985,19(12):1206-1213.
    [40] Elovitz M S, von Gunten U, Kaiser H. Hydroxyl radical/ozone ratios duringozonation processes. II. The effect of temperature, pH, alkalinity, and DOMproperties[J]. Ozone: science&engineering,2000,22(2):123-150.
    [41] Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation byhydroxide ions and hydrogen peroxide[J]. Environmental Science&Technology,1982,16(10):676-681.
    [42] Nemes A, Fábián I, Gordon G. Experimental aspects of mechanistic studies onaqueous ozone decomposition in alkaline solution[J]. Ozone: Science&Engineering: The Journal of the International Ozone Association,2000,22(3):287-304.
    [43] Hofmann R, Andrews R C. Potential side effects of using ammonia to inhibitbromate formation during the ozonation of drinking water[J]. Journal ofEnvironmental Engineering and Science,2007,6(6):739-743.
    [44] Haag W R, Yao C D. Rate constants for reaction of hydroxyl radicals withseveral drinking water contaminants[J]. Environmental Science&Technology,1992,26(5):1005-1013.
    [45] Udrea I, Avramescu S. Catalytic Oxidation of SCN–and CN–Ions fromAqueous Solutions[J]. Environmental technology,2004,25(10):1131-1141.
    [46] Wang L, Wang B, Wang D, et al. Performance of advanced water treatmentplant for removing Fe, Mn and organic pollutants from raw water.[J]. Aqua,2002,51:209-216.
    [47] Masuda J, Fukuyama J, Fujii S. Ozone injection into an activated carbon bed toremove hydrogen sulfide in the presence of concurrent substances[J]. Journal ofthe Air&Waste Management Association,2001,51(5):750-755.
    [48] Turhan K, Turgut Z. Reducing chemical oxygen demand and decolorization ofdirect dye from synthetic textile wastewater by ozonization in a batch bubblecolumn reactor[J]. Fresenius Environmental Bulletin,2007,16(7):821-825.
    [49]金鹏康,王晓昌.水中天然有机物的臭氧氧化处理特性[J].环境化学,2002,21(3):250-263.
    [50]胡翔,李进,皮运正,等.臭氧氧化产物甲醛的产生机理研究[J].环境科学学报,2007,27(4):643-647.
    [51] Weiss S, Jakobs J, Reemtsma T. Discharge of three benzotriazole corrosioninhibitors with municipal wastewater and improvements by membrane bioreactortreatment and ozonation[J]. Environmental science&technology,2006,40(23):7193-7199.
    [52] Chedeville O, Debacq M, Ferrante Almanza M, et al. Use of an ejector forphenol containing water treatment by ozonation[J]. Separation and PurificationTechnology,2007,57(2):201-208.
    [53]史惠祥,赵伟荣,汪大翚.偶氮染料的臭氧氧化机理研究[J].浙江大学学报:工学版,2004,37(6):734-738.
    [54] Anotai J, Wuttipong R, Visvanathan C. Oxidation and detoxification ofpentachlorophenol in aqueous phase by ozonation[J]. Journal of environmentalmanagement,2007,85(2):345-349.
    [55]陈岚,史惠祥,汪大翚.臭氧与2,4-二氯苯氧乙酸的直接反应动力学[J].化工学报,2006,56(11):2204-2206.
    [56] Seredyńska-Sobecka B, Tomaszewska M, Morawski A W. Removal of humicacids by the ozonation–biofiltration process[J]. Desalination,2006,198(1):265-273.
    [57]贾瑞宝,刘军,王珂,等.气浮/微絮凝/臭氧/活性炭工艺除藻效果[J].中国给水排水,2003,19(10):47-48.
    [58]朱光灿,吕锡武.紫外-微臭氧工艺降解微囊藻毒素的动力学特性[J].东南大学学报:自然科学版,2005,35(3):438-441.
    [59] Tsai T, Okawa K, Nakano Y, et al. Decomposition of trichloroethylene and2,4-dichlorophenol by ozonation in several organic solvents[J]. Chemosphere,2004,57(9):1151-1155.
    [60]周琳琳,孟长功,周硼.臭氧氧化-光催化降解水中的五氯酚[J].石油化工,2007,36(7):739-743.
    [61]钱正刚,黄新文,何志桥,等.臭氧氧化处理苯胺废水[J].水处理技术,2006,32(3):29-31.
    [62]徐斌,高乃云,芮旻,等.饮用水中内分泌干扰物双酚A的臭氧氧化降解研究[J].环境科学,2006,27(2):294-299.
    [63]王红娟,齐飞,封莉,等.污泥基活性炭催化臭氧氧化降解水中微量布洛芬的效能研究[J].环境科学,2012(05):1591-1596.
    [64]赵兴利,兰淑澄.固定化微生物流化床反应器的研究进展[J].环境科学,1997,1.
    [65] Heijnen J J, Hols J, Van Der Lans R, et al. A simple hydrodynamic model forthe liquid circulation velocity in a full-scale two-and three-phase internal airliftreactor operating in the gas recirculation regime[J]. Chemical EngineeringScience,1997,52(15):2527-2540.
    [66] Feng W, Wen J, Liu C, et al. Modeling of local dynamic behavior of phenoldegradation in an internal loop airlift bioreactor by yeast Candida tropicalis[J].Biotechnology and bioengineering,2007,97(2):251-264.
    [67] Jia X, Wen J, Zhou H, et al. Local hydrodynamics modeling of a gas–liquid–solid three‐phase bubble column[J]. AIChE journal,2007,53(9):2221-2231.
    [68]王兴,乔晓磊,王旭涛,等.金属镁渣在流化床反应器内脱硫性能的实验研究[J].再生资源与循环经济,2011,4(5):31-35.
    [69]张浩,程世庆,胡云鹏,等.流化床反应器石灰石固硫特性研究[J].环境工程学报,2011,5(2):395-398.
    [70]韩力平,王建龙,刘恒,等.固定化细胞流化床反应器处理难降解有机物喹啉的试验研究[J].环境科学,2001,22(1):78-80.
    [71]竺美,杨平,郭勇,等.一体式厌氧-好氧流化床反应器同步脱氮除硫实验[J].环境科学学报,2008,28(10):1993-1999.
    [72]黎玉香,汪晓军,邓睿,等.以甲基橙废水验证Fenton流化床反应器的研究[J].水处理技术,2012,38(003):91-93.
    [73]解立平,王能亮,黄伟.一体式光催化氧化-膜分离流化床反应器性能的研究[J].环境工程学报,2007,9(1):20-24.
    [74]刘桂萍,魏剑峰,刘长风,等.固定化细胞流化床处理含酚废水的研究[J].环境科学与技术,2010,33(5):147-150.
    [75]许庆利,蓝平,周明,等.在流化床反应器中生物油轻组分模拟物催化重整制氢[J].石油化工,2010,39(7):718-723.
    [76]齐国祯,谢在库,陈庆龄.流化床反应器中甲醇制烯烃反应性能分析[J].石油与天然气化工,2013,42(3):242-247.
    [77] Chang C, Hsieh Y, Lin Y, et al. The organic precursors affecting the formationof disinfection by-products with chlorine dioxide[J]. Chemosphere,2001,44(5):1153-1158.
    [78] Wang J, Liu X, Ng T W, et al. Disinfection byproduct formation fromchlorination of pure bacterial cells and pipeline biofilms[J]. Water research,2013,47(8):2701-2709.
    [79] Chang E E, Chiang P, Ko Y, et al. Characteristics of organic precursors andtheir relationship with disinfection by-products[J]. Chemosphere,2001,44(5):1231-1236.
    [80] Díaz F J, Chow A T, O Geen A T, et al. Effect of constructed wetlandsreceiving agricultural return flows on disinfection byproduct precursors[J].Water research,2009,43(10):2750-2760.
    [81] Lyon B A, Dotson A D, Linden K G, et al. The effect of inorganic precursors ondisinfection byproduct formation during UV-chlorine/chloramine drinking watertreatment[J]. Water research,2012,46(15):4653-4664.
    [82] Chuang Y, Lin A Y, Wang X, et al. The contribution of dissolved organicnitrogen and chloramines to nitrogenous disinfection byproduct formation fromnatural organic matter[J]. Water research,2013,47(3):1308-1316.
    [83] Li L, Gao N, Deng Y, et al. Characterization of intracellular&extracellularalgae organic matters (AOM) of Microcystic aeruginosa and formation ofAOM-associated disinfection byproducts and odor&taste compounds[J]. Waterresearch,2012,46(4):1233-1240.
    [84] Bond T, Templeton M R, Graham N. Precursors of nitrogenous disinfectionby-products in drinking water––A critical review and analysis[J]. Journal ofhazardous materials,2012,235:1-16.
    [85] Liu J, Li X. Biodegradation and biotransformation of wastewater organics asprecursors of disinfection byproducts in water[J]. Chemosphere,2010,81(9):1075-1083.
    [86] Liu H, Liu R, Tian C, et al. Removal of natural organic matter for controllingdisinfection by-products formation by enhanced coagulation: a case study[J].Separation and Purification Technology,2012,84:41-45.
    [87] Kaplan Bekaroglu S S, Yigit N O, Karanfil T, et al. The adsorptive removal ofdisinfection by-product precursors in a high-SUVA water using ironoxide-coated pumice and volcanic slag particles[J]. Journal of hazardousmaterials,2010,183(1):389-394.
    [88] Lyon B A, Cory R M, Weinberg H S. Changes in dissolved organic matterfluorescence and disinfection byproduct formation from UV and subsequentchlorination/chloramination[J]. Journal of hazardous materials,2014,264:411-419.
    [89] Korshin G, Chow C W, Fabris R, et al. Absorbance spectroscopy-basedexamination of effects of coagulation on the reactivity of fractions of naturalorganic matter with varying apparent molecular weights[J]. Water Research,2009,43(6):1541-1548.
    [90] Leenheer J A. Comprehensive approach to preparative isolation andfractionation of dissolved organic carbon from natural waters and wastewaters[J].Environmental Science&Technology,1981,15(5):578-587.
    [91] Malcolm R L, MacCarthy P. Quantitative evaluation of XAD-8and XAD-4resins used in tandem for removing organic solutes from water[J]. EnvironmentInternational,1992,18(6):597-607.
    [92] Lin Y, Chiang P, Chang E E. Reduction of disinfection by-products precursorsby nanofiltration process[J]. Journal of hazardous materials,2006,137(1):324-331.
    [93] Ates N, Yilmaz L, Kitis M, et al. Removal of disinfection by-product precursorsby UF and NF membranes in low-SUVA waters[J]. Journal of MembraneScience,2009,328(1):104-112.
    [94] Mosqueda-Jimenez D B, Narbaitz R M, Matsuura T. Manufacturing conditionsof surface-modified membranes: effects on ultrafiltration performance[J].Separation and purification technology,2004,37(1):51-67.
    [95] Kitis M, Karanfil T, Wigton A, et al. Probing reactivity of dissolved organicmatter for disinfection by-product formation using XAD-8resin adsorption andultrafiltration fractionation[J]. Water research,2002,36(15):3834-3848.
    [96] Aiken G R, McKnight D M, Thorn K A, et al. Isolation of hydrophilic organicacids from water using nonionic macroporous resins[J]. Organic Geochemistry,1992,18(4):567-573.
    [97] Zhao Z, Gu J, Fan X, et al. Molecular size distribution of dissolved organicmatter in water of the Pearl River and trihalomethane formation characteristicswith chlorine and chlorine dioxide treatments[J]. Journal of hazardous materials,2006,134(1):60-66.
    [98] Chiang P, Chang E E, Liang C H. NOM characteristics and treatabilities ofozonation processes[J]. Chemosphere,2002,46(6):929-936.
    [99] Chon K, Lee Y, Traber J, et al. Quantification and characterization of dissolvedorganic nitrogen in wastewater effluents by electrodialysis treatment followed bysize-exclusion chromatography with nitrogen detection[J]. Water research,2013,47(14):5381-5391.
    [100] Bond T, Goslan E H, A S, et al. A critical review of trihalomethane andhaloacetic acid formation from natural organicmatter surrogates[J]. Environmental Technology Reviews,2012,1(1):93-113.
    [101] Wang Y, Wang Q, Gao B, et al. The disinfection by-products precursorsremoval efficiency and the subsequent effects on chlorine decay for humic acidsynthetic water treated by coagulation process and coagulation–ultrafiltrationprocess[J]. Chemical Engineering Journal,2012,193:59-67.
    [102] Diemert S, Wang W, Andrews R C, et al. Removal of halo-benzoquinone(emerging disinfection by-product) precursor material from three surface watersusing coagulation[J]. Water research,2013,47(5):1773-1782.
    [103] Matilainen A, Veps l inen M, Sillanp M. Natural organic matter removal bycoagulation during drinking water treatment: A review[J]. Advances in Colloidand Interface Science,2010,159(2):189-197.
    [104] Liu S, Lim M, Fabris R, et al. Removal of humic acid using TiO2photocatalyticprocess–Fractionation and molecular weight characterisation studies[J].Chemosphere,2008,72(2):263-271.
    [105] Karnik B S, Davies S H, Baumann M J, et al. The effects of combinedozonation and filtration on disinfection by-product formation[J]. Water research,2005,39(13):2839-2850.
    [106] Ji Q, Liu H, Hu C, et al. Removal of disinfection by-products precursors bypolyaluminum chloride coagulation coupled with chlorination[J]. Separation andPurification Technology,2008,62(2):464-469.
    [107] Chu W, Gao N, Yin D, et al. Ozone–biological activated carbon integratedtreatment for removal of precursors of halogenated nitrogenous disinfectionby-products[J]. Chemosphere,2012,86(11):1087-1091.
    [108] Vila-Escalé M, Vegas-Vilarrúbia T, Prat N. Release of polycyclic aromaticcompounds into a Mediterranean creek (Catalonia, NE Spain) after a forestfire[J]. Water research,2007,41(10):2171-2179.
    [109] Chen Y, Sheng G, Bi X, et al. Emission factors for carbonaceous particles andpolycyclic aromatic hydrocarbons from residential coal combustion in China[J].Environmental Science&Technology,2005,39(6):1861-1867.
    [110] Tao S, Li X, Yang Y, et al. Dispersion modeling of polycyclic aromatichydrocarbons from combustion of biomass and fossil fuels and production ofcoke in Tianjin, China[J]. Environmental science&technology,2006,40(15):4586-4591.
    [111] Maier M, Maier D, Lloyd B J. Factors influencing the mobilisation ofpolycyclic aromatic hydrocarbons (PAHs) from the coal-tar lining of watermains[J]. Water Research,2000,34(3):773-786.
    [112] Murakami M, Nakajima F, Furumai H. Modelling of runoff behaviour ofparticle-bound polycyclic aromatic hydrocarbons (PAHs) from roads androofs[J]. Water Research,2004,38(20):4475-4483.
    [113] Zhang Y, Tao S, Cao J, et al. Emission of polycyclic aromatic hydrocarbons inChina by county[J]. Environmental science&technology,2007,41(3):683-687.
    [114] Kwamena N A, Clarke J P, Kahan T F, et al. Assessing the importance ofheterogeneous reactions of polycyclic aromatic hydrocarbons in the urbanatmosphere using the Multimedia Urban Model[J]. Atmospheric Environment,2007,41(1):37-50.
    [115] Shemer H, Linden K G. Aqueous photodegradation and toxicity of thepolycyclic aromatic hydrocarbons fluorene, dibenzofuran, anddibenzothiophene[J]. Water research,2007,41(4):853-861.
    [116] Albinet A, Leoz-Garziandia E, Budzinski H, et al. Polycyclic aromatichydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of theMarseilles area (South of France): concentrations and sources[J]. Science of theTotal Environment,2007,384(1):280-292.
    [117] Wang K, Shen Y, Zhang S, et al. Application of spatial analysis andmultivariate analysis techniques in distribution and source study of polycyclicaromatic hydrocarbons in the topsoil of Beijing, China[J]. Environmentalgeology,2009,56(6):1041-1050.
    [118] Ma J, Horii Y, Cheng J, et al. Chlorinated and parent polycyclic aromatichydrocarbons in environmental samples from an electronic waste recyclingfacility and a chemical industrial complex in China[J]. Environmental science&technology,2009,43(3):643-649.
    [119] Zhang Y, Tao S. Global atmospheric emission inventory of polycyclic aromatichydrocarbons (PAHs) for2004[J]. Atmospheric Environment,2009,43(4):812-819.
    [120] Xu S, Liu W, Tao S. Emission of polycyclic aromatic hydrocarbons in China[J].Environmental Science&Technology,2006,40(3):702-708.
    [121] Zhang W, Wei C, Chai X, et al. The behaviors and fate of polycyclic aromatichydrocarbons (PAHs) in a coking wastewater treatment plant[J]. Chemosphere,2012,88(2):174-182.
    [122] Kasprzyk-Hordern B, Zió ek M, Nawrocki J. Catalytic ozonation and methodsof enhancing molecular ozone reactions in water treatment[J]. Applied CatalysisB: Environmental,2003,46(4):639-669.
    [123] Kreetachat T, Damrongsri M, Punsuwon V, et al. Effects of ozonation processon lignin-derived compounds in pulp and paper mill effluents[J]. Journal ofHazardous Materials,2007,142(1):250-257.
    [124] Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation byhydroxide ions and hydrogen peroxide[J]. Environmental Science&Technology,1982,16(10):676-681.
    [125] Staehelin J, Hoigne J. Decomposition of ozone in water in the presence oforganic solutes acting as promoters and inhibitors of radical chain reactions[J].Environmental Science&Technology,1985,19(12):1206-1213.
    [126] Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminatedsediments by chemical oxidation[J]. Journal of Hazardous Materials,2008,152(1):128-139.
    [127] Yang B, Zhang Y, Meng J, et al. Heterogeneous reactivity of suspendedpirimiphos-methyl particles with ozone[J]. Environmental science&technology,2010,44(9):3311-3316.
    [128] Vogelsang C, Grung M, Jantsch T G, et al. Occurrence and removal of selectedorganic micropollutants at mechanical, chemical and advanced wastewatertreatment plants in Norway[J]. Water research,2006,40(19):3559-3570.
    [129] Hong P A, Chao J. A polar-nonpolar, acetic acid/heptane, solvent medium fordegradation of pyrene by ozone[J]. Industrial&engineering chemistry research,2004,43(24):7710-7715.
    [130] Kornmüller A, Wiesmann U. Ozonation of polycyclic aromatic hydrocarbons inoil/water-emulsions: mass transfer and reaction kinetics[J]. Water research,2003,37(5):1023-1032.
    [131] Luster-Teasley S, Ubaka-Blackmoore N, Masten S J. Evaluation of soil pH andmoisture content on in-situ ozonation of pyrene in soils[J]. Journal of hazardousmaterials,2009,167(1):701-706.
    [132] Chu S N, Sands S, Tomasik M R, et al. Ozone Oxidation of Surface-AdsorbedPolycyclic Aromatic Hydrocarbons: Role of PAH Surface Interaction[J].Journal of the American Chemical Society,2010,132(45):15968-15975.
    [133] Rivas J, Gimeno O, De la Calle R G, et al. Ozone treatment of PAHcontaminated soils: Operating variables effect[J]. Journal of hazardous materials,2009,169(1):509-515.
    [134] Choi Y, Hong A. Ozonation of polycyclic aromatic hydrocarbon in hexane andwater: identification of intermediates and pathway[J]. Korean Journal ofChemical Engineering,2007,24(6):1003-1008.
    [135] Chiu C, Chen Y, Huang Y. Removal of naphthalene in Brij30-containingsolution by ozonation using rotating packed bed[J]. Journal of hazardousmaterials,2007,147(3):732-737.
    [136] Miller J S, Olejnik D. Photolysis of polycyclic aromatic hydrocarbons inwater[J]. Water Research,2001,35(1):233-243.
    [137] Woo O T, Chung W K, Wong K H, et al. Photocatalytic oxidation of polycyclicaromatic hydrocarbons: Intermediates identification and toxicity testing[J].Journal of hazardous materials,2009,168(2):1192-1199.
    [138] Hidalgo M D, Garc a-Encina P A. Biofilm development and bed segregation ina methanogenic fluidized bed reactor[J]. Water research,2002,36(12):3083-3091.
    [139] Zhang T, Wei C, Feng C, et al. A novel airlift reactor enhanced by funnelinternals and hydrodynamics prediction by the CFD method[J]. Bioresourcetechnology,2012,104:600-607.
    [140] Manariotis I D, Karapanagioti H K, Chrysikopoulos C V. Degradation of PAHsby high frequency ultrasound[J]. water research,2011,45(8):2587-2594.
    [141] Chen S, Liao C. Health risk assessment on human exposed to environmentalpolycyclic aromatic hydrocarbons pollution sources[J]. Science of the TotalEnvironment,2006,366(1):112-123.
    [142] Tsai P, Shieh H, Lee W, et al. Health-risk assessment for workers exposed topolycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturingindustry[J]. Science of the total environment,2001,278(1):137-150.
    [143] Petry T, Schmid P, Schlatter C. The use of toxic equivalency factors inassessing occupational and environmental health risk associated with exposure toairborne mixtures of polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere,1996,32(4):639-648.
    [144] Frontistis Z, Daskalaki V M, Hapeshi E, et al. Photocatalytic (UV-A/TiO2)degradation of17α-ethynylestradiol in environmental matrices: Experimentalstudies and artifcial neural network modeling[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2012,240:33-41.
    [145] Rivas F J, Beltrán F J, Gimeno O, et al. Fluorene oxidation by coupling ofozone, radiation, and semiconductors: a mathematical approach to the kinetics[J].Industrial&engineering chemistry research,2006,45(1):166-174.
    [146] Wols B A, Hofman-Caris C. Review of photochemical reaction constants oforganic micropollutants required for UV advanced oxidation processes inwater[J]. Water research,2012,46(9):2815-2827.
    [147] Kriek E, Rojas M, Alexandrov K, et al. Polycyclic aromatic hydrocarbon-DNAadducts in humans: relevance as biomarkers for exposure and cancer risk[J].Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1998,400(1):215-231.
    [148] Strickland P, Kang D, Sithisarankul P. Polycyclic aromatic hydrocarbonmetabolites in urine as biomarkers of exposure and effect.[J]. Environmentalhealth perspectives,1996,104(Suppl5):927.
    [149] Tyagi V K, Lo S. Sludge: A waste or renewable source for energy and resourcesrecovery?[J]. Renewable and Sustainable Energy Reviews,2013,25:708-728.
    [150] Kondo T, Tsuneda S, Ebie Y, et al. Improvement of nutrient removal andphosphorus recovery in the anaerobic/oxic/anoxic process combined with sludgeozonation and phosphorus adsorption.[J]. Journal of Water and EnvironmentTechnology,2009,7(2):135-142.
    [151] Bai Y, Sun Q, Xing R, et al. Removal of pyridine and quinoline by bio-zeolitecomposed of mixed degrading bacteria and modified zeolite[J]. Journal ofhazardous materials,2010,181(1):916-922.
    [152] Hua L, Wu W, Liu Y, et al. Heavy metals and PAHs in sewage sludge fromtwelve wastewater treatment plants in Zhejiang Province[J]. Biomedical andEnvironmental Sciences,2008,21(4):345-352.
    [153] Hafidi M, Amir S, Jouraiphy A, et al. Fate of polycyclic aromatic hydrocarbonsduring composting of activated sewage sludge with green waste[J]. Bioresourcetechnology,2008,99(18):8819-8823.
    [154] Ju J, Lee I, Sim W, et al. Analysis and evaluation of chlorinated persistentorganic compounds and PAHs in sludge in Korea[J]. Chemosphere,2009,74(3):441-447.
    [155] Liu J J, Wang X C, Fan B. Characteristics of PAHs adsorption on inorganicparticles and activated sludge in domestic wastewater treatment[J]. Bioresourcetechnology,2011,102(9):5305-5311.
    [156] Oleszczuk P, Hale S E, Lehmann J, et al. Activated carbon and biocharamendments decrease pore-water concentrations of polycyclic aromatichydrocarbons (PAHs) in sewage sludge[J]. Bioresource technology,2012,111:84-91.
    [157] Zhang W, Wei C, Feng C, et al. Coking wastewater treatment plant as a sourceof polycyclic aromatic hydrocarbons (PAHs) to the atmosphere and health-riskassessment for workers[J]. Science of the Total Environment,2012,432:396-403.
    [158] Low E W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reducebiomass production in the activated sludge process[J]. Water Research,2000,34(12):3204-3212.
    [159] Bougrier C, Albasi C, Delgenes J P, et al. Effect of ultrasonic, thermal andozone pre-treatments on waste activated sludge solubilisation and anaerobicbiodegradability[J]. Chemical Engineering and Processing: ProcessIntensification,2006,45(8):711-718.
    [160] Qiu S, Xia M, Li Z. Ultrasonic irradiation as pretreatment for the reduction ofexcess sludge by Fenton-acclimation treatment[J]. Water Science&Technology,2013,67(8):1701-1707.
    [161] Cesaro A, Belgiorno V. Sonolysis and ozonation as pretreatment for anaerobicdigestion of solid organic waste[J]. Ultrasonics sonochemistry,2012.
    [162] An K, Chen G. Chemical oxygen demand and the mechanism of excess sludgereduction in an oxic-settling-anaerobic activated sludge process[J]. Journal ofEnvironmental Engineering,2008,134(6):469-477.
    [163] Wang G, Sui J, Shen H, et al. Reduction of excess sludge production insequencing batch reactor through incorporation of chlorine dioxide oxidation[J].Journal of hazardous materials,2011,192(1):93-98.
    [164] Liu Y. Chemically reduced excess sludge production in the activated sludgeprocess[J]. Chemosphere,2003,50(1):1-7.
    [165] Abe N, Tang Y, Iwamura M, et al. Development of an efficient process for thetreatment of residual sludge discharged from an anaerobic digester in a sewagetreatment plant[J]. Bioresource technology,2011,102(17):7641-7644.
    [166] Yan S, Zheng H, Li A, et al. Systematic analysis of biochemical performanceand the microbial community of an activated sludge process using ozone-treatedsludge for sludge reduction[J]. Bioresource technology,2009,100(21):5002-5009.
    [167] Gonzalez G, Herrera G, Garc a M T, et al. Biodegradation of phenolicindustrial wastewater in a fluidized bed bioreactor with immobilized cells ofPseudomonas putida[J]. Bioresource technology,2001,80(2):137-142.
    [168] Nicolella C, Van Loosdrecht M, Heijnen J J. Wastewater treatment withparticulate biofilm reactors[J]. Journal of biotechnology,2000,80(1):1-33.
    [169] Zhang T, Wei C, Feng C, et al. A novel airlift reactor enhanced by funnelinternals and hydrodynamics prediction by the CFD method[J]. Bioresourcetechnology,2012,104:600-607.
    [170] Salsabil M R, Laurent J, Casellas M, et al. Techno-economic evaluation ofthermal treatment, ozonation and sonication for the reduction of wastewaterbiomass volume before aerobic or anaerobic digestion[J]. Journal of Hazardousmaterials,2010,174(1):323-333.
    [171] Zhang G, Yang J, Liu H, et al. Sludge ozonation: disintegration, supernatantchanges and mechanisms[J]. Bioresource technology,2009,100(3):1505-1509.
    [172] Chiavola A, D Amato E, Gori R, et al. Techno-economic evaluation of theapplication of ozone-oxidation in a full-scale aerobic digestion plant[J].Chemosphere,2013,91(5):656-662.
    [173] Quan F, Anfeng Y, Libing C, et al. Mechanistic study of on-site sludgereduction in a baffled bioreactor consisting of three series of alternating aerobicand anaerobic compartments[J]. Biochemical Engineering Journal,2012,67:45-51.
    [174] Cheng C, Hong P K. Anaerobic digestion of activated sludge afterpressure-assisted ozonation[J]. Bioresource technology,2013,142:69-76.
    [175] Muruganandham M, Chen S H, Wu J J. Evaluation of water treatment sludge asa catalyst for aqueous ozone decomposition[J]. Catalysis Communications,2007,8(11):1609-1614.
    [176] Liu Y, Sklorz M, Schnelle-Kreis J, et al. Oxidant denuder sampling for analysisof polycyclic aromatic hydrocarbons and their oxygenated derivates in ambientaerosol: Evaluation of sampling artefact[J]. Chemosphere,2006,62(11):1889-1898.
    [177] J rvik O, Viiroja A, Kamenev S, et al. Activated sludge process coupled withintermittent ozonation for sludge yield reduction and effluent water qualitycontrol[J]. Journal of Chemical Technology and Biotechnology,2011,86(7):978-984.
    [178] Lan W, Li Y, Bi Q, et al. Reduction of excess sludge production in sequencingbatch reactor (SBR) by lysis-cryptic growth using homogenization disruption[J].Bioresource technology,2013.
    [179] Chong S, Sen T K, Kayaalp A, et al. The performance enhancements of upflowanaerobic sludge blanket (UASB) reactors for domestic sludge treatment–AState-of-the-art review[J]. Water research,2012,46(11):3434-3470.
    [180] Bedjanian Y, Nguyen M L, Le Bras G. Kinetics of the reactions of sootsurface-bound polycyclic aromatic hydrocarbons with the OH radicals[J].Atmospheric Environment,2010,44(14):1754-1760.
    [181] O Mahony M M, Dobson A D, Barnes J D, et al. The use of ozone in theremediation of polycyclic aromatic hydrocarbon contaminated soil[J].Chemosphere,2006,63(2):307-314.
    [182] Huber M M, G bel A, Joss A, et al. Oxidation of pharmaceuticals duringozonation of municipal wastewater effluents: a pilot study[J]. Environmentalscience&technology,2005,39(11):4290-4299.
    [183] Kim T, Lee S, Nam Y, et al. Disintegration of excess activated sludge byhydrogen peroxide oxidation[J]. Desalination,2009,246(1):275-284.
    [184] Von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics andproduct formation[J]. Water research,2003,37(7):1443-1467.
    [185] Wols B A, Hofman-Caris C. Review of photochemical reaction constants oforganic micropollutants required for UV advanced oxidation processes inwater[J]. Water research,2012,46(9):2815-2827.
    [186] Frontistis Z, M V, Evroula D. Photocatalytic (UV-A/TiO2) degradation of17α-ethynylestradiol in environmental matrices: Experimental studies and artifcialneural network modeling[J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,240:33-41.
    [187] Kasprzyk-Hordern B, Zió ek M, Nawrocki J. Catalytic ozonation and methodsof enhancing molecular ozone reactions in water treatment[J]. Applied CatalysisB: Environmental,2003,46(4):639-669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700