用户名: 密码: 验证码:
高分子传热元件用于露点蒸发海水淡化装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
露点蒸发淡化技术以空气为载体,通过海水或苦咸水对其增湿和去湿来制取淡水,同时将去湿过程的冷凝潜热传递至增湿侧以促进盐水的气化,强化增湿过程。
     基于露点蒸发过程特定的工艺条件,本文首次将石墨聚丙烯和聚丙烯材质的传热管用于管壳式露点蒸发淡化装置,并通过管内表面的粗糙化处理促进盐水形成液膜,增加气-液两相接触面积。
     通过一系列工艺实验和传热实验,考察了淡化装置在不同操作条件下的产水能力。结果表明,进口盐水的温度越高,淡水产率越高,而进料盐水、载气和外加蒸汽的流量则应控制在一定的范围之内。在盐水进口温度为70~90°C的条件下,石墨聚丙烯装置的淡水产率为0.05~0.30 kg m-2 h-1,适宜的进料盐水、载气和外加蒸汽的流量分别是0.008~0.012 kg m-1 s-1、0.66~1.00 kg m-2 s-1和0.006~0.014 kg m-2 s-1;聚丙烯装置淡水产率可以达到0.10~0.68 kg m-2h-1,盐水、载气和外加蒸汽适宜操作流量为0.008~0.012 kg m-1s-1、0.70~1.30 kg m-2s-1和0.006~0.014 kg m-2s-1。两套淡化装置的淡水水质优良,含盐量均在10 mg L-1以下。考察了不同的热量回收模式下淡化系统的运行规律。用冷凝回收和载气循环的方式分别实现了露点蒸发过程中尾气的回用,并考察了这两种操作模式对整个淡化系统的影响。对包括冷凝器在内的整个露点蒸发过程而言,结合良好的热量回收措施,淡化系统的造水比可以达到4以上。
     基于经典的化工传递理论,建立了描述露点蒸发淡化过程的数学模型。在模拟的基础上,对淡化柱内各流体物性参数(气相和水相的温度、壳程载气中不凝气的含量、气相雷诺数、传质系数、传热系数、盐水和淡化水流量)的局部分布进行了理论分析,进一步从理论上讨论了淡化过程中操作条件对淡化柱运行性能的影响。结果表明石墨聚丙烯淡化柱的总传热系数90~430 W m-2°C-1,聚丙烯淡化柱的总传热系数则达到了250~1100 W m-2°C-1,传热效果不低于金属材质的淡化柱。
The dewvaporation is a novel desalination process, in which air is used as a carrier gas to carry water vapor from feed saline water and to produce fresh water by the following condensation, and the condensation latent heat is transferred to the evaporation side to provide evaporative latent heat for the saline water.
     In this work, two baffled shell-tube desalination columns (one was equipped with carbon-filled-polypropylene heat transfer tubes and the other was polypropylene tubes) were designed and built to carry out the dewvaporation process. The inside surfaces of these tubes were roughened, which greatly improved their wetting states.
     The effects of several operating parameters (feed water temperature, water flow rate, carrier air flow rate and external steam flow rate) on the productivity of the two columns were investigated experimentally. The fresh water productivity of the carbon-filled-polypropylene column was usually 0.05~0.30 kg m-2h-1, and the experimental results showed that the feed water temperature had an positive effect on the productivity, while the flow rates of feed water, carrier air and external steam should be optimized in the range of 0.008~0.012 kg m-1s-1, 0.66~1.00 kg m-2s-1and 0.006~0.014 kg m-2s-1, respectively. As for the polypropylene column, the productivity could be achieved about 0.10~0.68 kg m-2h-1, and the suitable operating ranges for the flow rates of feed water, carrier air and external steam were 0.008~0.012 kg m-1s-1, 0.70~1.30 kg m-2s-1 and 0.006~0.014 kg m-2s-1, respectively.
     The salinity of the produced water was determined to be fewer than 10 mg L-1, which was comparable to that of the traditional thermal desalting processes.
     The discharged heat energy of the humid air was recovered by recycling or condensing the exhaust gas. When the carrier gas was condensed, it was found that the gained out ratio of the whole desalination system had been improved to above 4.
     The modeling investigation of such a desalination process was also presented. A heat-mass transfer model is established in order to study the correlations among productivity, thermal efficiency, physicochemical parameters (gas/liquid phase temperatures, heat/mass transfer coefficients, Reynolds number, etc) and operating conditions (the temperature of feed water, the flow rates of external steam, feed water and air); at the same time, the effects of operating conditions on the productivity and thermal efficiency of the column are investigated both theoretically and experimentally. Furthermore, the heat transfer coefficient of the carbon-filled-polypropylene dewvaporation column is in the range of 90~430 W m-2°C-1, and that of polypropylene column is 250~1100 W m-2°C-1, which demonstrates that the heat transfer performance of the plastic element is not lower than that of the coppery element.
引文
[1] 中华人民共和国国务院. 全国海洋经济发展规划纲要,2003-5
    [2] 国家发展和改革委员会. 国家海洋局,财政部,海水利用专项规划,2005-7
    [3] World Meteorological Organization (WMO). Comprehensive Assessment of the Freshwater Resources of the World, WMO, Geneva, Switzerland, 1997
    [4] 中华人民共和国水利部. 2004 年中国水资源公报, http://www.mwr.gov.cn /xygb /szygb /qgszygb /20050914000000e65830.aspx
    [5] 国家气象信息中心. 中国地面气候示意图图集, http://cdc.cma.gov.cn /static /atlas /search /pre.htm
    [6] 国家气象信息中心. 中国地面气候示意图图集, http://cdc.cma.gov.cn /static /atlas /search /evp.htm
    [7] 中华人民共和国水利部. 中国各流域人均水资源量与亩均水资源量比较, http:// www. mwr. gov. cn /weiye /fubiao /biao4.html
    [8] 吴传钧. 中国经济地理. 北京: 科学出版社,1998, 67
    [9] 钱正英, 张光斗主编. 中国可持续发展水资源战略研究综合报告及各专题报告. 北京: 中国水利水电出版社, 2001
    [10] 王世昌主编. 海水淡化工程. 北京: 化学工业出版社, 2003, 179-180
    [11] Wangnick K. Business good in 2002/3 but no new records, Desalination and Water Reuse, 2004, 14(1): 10
    [12] International Desalination Association (IDA). New Inventory Released, IDA News, 2004, 13(7/8): 1
    [13] Wiseman R. Book review. Desalination and water reuse, 2004, 14(1): 43
    [14] Miller J E. Review of Water Resources and Desalination Technologies, Sandia (Sandia National Laboratories) report, SAND 2003-0800: 29
    [15] Van der Bruggen B, Vandecasteele C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination, 2002, 143(3): 207-218
    [16] Locke Bogart S. Water Desalination as a Possible Opportunity for the GT- and H2-MHR, 2004 International Congress on Advances in Nuclear Power Plants (ICAPP '04), Pittsburgh, USA, 2004
    [17] K Wangnick. 1998 IDA Worldwide Desalting Plants Inventory Report No. 15. Topsfield, MA, 1998
    [18] 王世昌. 对发展我国海水淡化产业的几点考虑. 2004 海水淡化及利用技术国际研讨会(中国-天津), 2004.4
    [19] Birkett J D. North America. Desalination and Water Reuse, 2002, 12(1): 24-26
    [20] Tolaro Goto, East and South East Asia. Desalination and Water Reuse, 2002, 12(1): 28-30
    [21] 国伟. 国外海水淡化技术的发展及启示 . http://www.coi.gov.cn /oceannews /2006 /hyb1532 /45.htm
    [22] Pique G G. Desalination Market Analysis 2003. Desalination & Water Reuse, 2005, 15(3): 47
    [23] http://news.xinhuanet.com/newscenter/2006-05/24/content_4594952.htm
    [24] http://www.sdmu.com.cn/news_view4.asp?newsid=253
    [25] 国家海洋局. 关于发布“十一五”国家科技支撑计划“海水淡化与综合利用成套技术研究和示范”重大项目申请指南的通知. 海科字[2006]38号, 2006-6
    [26] Ejjeh G. Desalination: a reliable source of new water. International Conference on Spanish Hydrologic Plan and Sustainable Water Management, Aragon, Spain, June 13-14, 2001
    [27] Bruggen B V. Desalination by distillation and by reverse osmosis-trends towards the future. Membrane technology, 2003, 2: 6-9
    [28] Aly N H, El-Fiqi. Mechanical vapor compression desalination system - a case study. Desalination, 2003, 158: 143-150
    [29] El-Dessouky H, Ettouney H. Single-Effect Thermal Vapor-Compression Desalination Process: Thermal Analysis. Heat transfer engineering, 1999, 20(2): 52-68
    [30] J Walton, H M Lu, C Turner, et al. Solar and waste heat desalination by membrane distillation. Desalination and Water Purification Research and Development Program Report No.81. U.S. Department of the Interior Bureau of Reclamation. 2004-4
    [31] Warren Rice, David S C Chau. Freeze desalination using hydraulic refrigerant compressors. Desalination, 1997, 109: 157-164
    [32] 耿昌全, 裘俊红, 朱菊香. 水合物技术. 化工进展. 2001, 20(11): 14-17
    [33] 高从堦, 陈国华 主编. 海水淡化技术与工程手册. 北京: 化学工业出版社. 2004-4
    [34] Andelman M D. Method of separating ionic fluids with a flow-through capacitor. US Patent, No.5547581, 1996
    [35] Anddelman M. The flow through capacitor: a new tool in wastewater purification. Filtration & Separation, 1998, 35(4): 345-348
    [36] Sanabelle Water, Inc. Flow through capacitor technology. http://www.sanabellewater.com
    [37] T J Welgemoed, C F Schutte. Capacitive Deionization Technology TM: An alternative desalination solution. Desalination, 2005, 183(1-3): 327-340
    [38] Bino M, Kuran S, Andelman M, et al. Flow through capacitor technology. The international workshop on marine pollution and the impact of seawater desalination plants on the coastal environment, at the International Center for Biosaline Agriculture Headquarters, Dubai, UAE, 2003-12-1
    [39] Andelman M D. Charge barrier flow-through capacitor. US Patent, No.6709560B2, 2004
    [40] 人民日报-华南新闻. 2003-2-11
    [41] http://www.waterchina.com/docc/infocenter/contentpop.php?id=44694
    [42] http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=82962
    [43] Bourouni K, Chaibi M T, Tadrist L. Water desalination by humidification and dehumidification of air: state of the art. Desalination, 2001, 137(1): 167-176
    [44] Parekh S, Farid M M, Selman J R, et al. Solar desalination with a humidification-dehumidification technique-a comprehensive technical review. Desalination, 2004, 160(22): 167-186
    [45] García-Rodríguez, L. Seawater desalination driven by renewable energies: a review. Desalination, 2002, 143(2): 103-113
    [46] Farid M, Al-Hajaj A W. Solar desalination with a humidification-dehumidification cycle. Desalination, 1996, 106(1): 427-429
    [47] Veza J M, Ruiz N. Solar distillation in forced convection simulation and experience. Renewable Energy, 1993, 3(6-7): 691-699
    [48] Bourouni K, Martin R, Tadrist L, et al. Experimental investigation of evaporation performances of a desalination prototype using the aero-evapo-condensation process. Desalination, 1997, 114(2): 111-128
    [49] Bourouni K, Deronzier J C, Tadrist L. Experimentation and modelling of an innovative geothermal desalination unit. Desalination, 1999, 125(1): 147-153
    [50] Bourouni K, Martin R, Tadrist L, et al. Modelling of heat and mass transfer in a horizontal-tube falling-film evaporator for water desalination. Desalination, 1998, 116(2): 165-184
    [51] Nawayseh N K, Farid M M, Omar A A, et al. A simulation study to improve the performance of a solar humidification- dehumidification desalination unit constructed in Jordan. Desalination, 1997, 109(3): 277-284
    [52] Al-Hallaj, Farid M M, Tamimi A R. Solar desalination with a humidification - dehumidification cycle: performance of the unit. Desalination, 1998, 120(3): 273-280
    [53] E. Korngold, E. Korin, I. Ladizhensky. Water desalination by pervaporation with hollow fiber membranes. Desalination, 1996, 107(2): 121-129
    [54] Muller-Holst H, Engelhardt M, Herve M, et al. Solarthermal seawater desalination systems for decentralised use. Renewable Energy, 1998, 14(3): 311-318
    [55] Muller-Holst H, Engelhardt M, Scholkopf W. Small-scale thermal seawater desalination simulation and optimization of system design. Desalination, 1999, 122(2): 255-262
    [56] Dai Y J, Zhang H F. Experimental investigation of a solar desalination unit with humidification and dehumidification. Desalination, 2000, 130(2): 169-175
    [57] Dai Y J, Wang R Z, Zhang H F. Parametric analysis to improve the performance of a solar desalination unit with humidification and dehumidification. Desalination, 2002, 142(2): 107-118
    [58] Chafik E. A new seawater desalination process using solar energy. Desalination, 2003, 153(1): 25-37
    [59] Hashemifard S A, Azin R. New experimental aspects of the carrier gas process(CGP). Desalination, 2004, 164(2): 125-133
    [60] Mousa K, Arabi A, Reddy K V. Performance evaluation of desalination processes based on the humidification/dehumidification cycle with different carrier gases. Desalination, 2003, 156(1): 281-293
    [61] Vlachogiannis M, Bontozoglou V, Georgalas C, Litinas G. Desalination by mechanical compression of humid air. Desalination, 1999, 122(1): 35-42
    [62] Albers W F, Beckman J R. Brackish and seawater desalination by a new carrier-gas process. NWSIA 1998 Conf., San Diego, CA, USA
    [63] Beckman J R. Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas. WO Patent, 01/07134 A1, 2001
    [64] Bassem M H. A theoretical and experimental study of seawater desalination using dewvaporation: Ph.D. Thesis, USA: Arizona State University, 2001
    [65] 熊日华, 王志, 王世昌. 露点蒸发淡化技术. 水处理技术, 2004, 30(4): 246-248
    [66] Wahlgren R V. Atmospheric water vapour processor designs for potable water production: a review. Water Research, 2001, 35(1): 1-22
    [67] Abualhamayel H I, Gandhidasan P. A method of obtaining fresh water from the humid atmosphere. Desalination, 1997, 113(1): 51-63
    [68] Goosen M F A, Sablani S S, Paton C, et al. Solar energy desalination for arid coastal regions: development of a humidification-dehumidification seawater greenhouse. Solar Energy, 2003, 75(5): 413-419
    [69] Beckman J R, Hamieh B M. Desalination by a dewvaporation process. IDA San Diego World Congress, 1999
    [70] Hamieh B M, Beckman J R, Ybarra M D. The dewvaporation tower: an experimental & theoretical study with economic analysis. Desalination & Water Reuse, 2000, 10(2): 35-43
    [71] Larson R, Albers W, Beckman J R, Freeman S. The carrier-gas process—a new desalination and concentration method. Desalination, 1989, 73: 119
    [72] Albers W F, Beckman J R. Method and apparatus for simultaneous heat and mass transfer. US Patent, No.4832115, 1989
    [73] Beckman J R, Albers W F. Energy-efficient ethanol-water fractionation by a carrier-gas method. AIChE Journal, 1991, 37(2): 281-284
    [74] Beckman J R, Hamieh B M. Carrier-gas desalination analysis using humidification-dehumidification cycle. Chemical Engineering Communications, 2000, 177: 183-193
    [75] Beckman J R. Innovative atmospheric pressure desalination-final report. US DOI, Bureau of Reclamation, DWPR Report No.52, Sep. 1999
    [76] US DOI Bureau of Reclamation. Report to Congress: Desalination and Water Purification Research and Development Program. DWPR Report No.67, May 2001
    [77] Beckman J R. Carrier gas enhanced atmospheric pressure desalinaiton-final report. US DOI, Bureau of Reclamation, DWPR Report No.92, Oct. 2002
    [78] http://www.usbr.gov/pmts/water/newsletters/03win.html
    [79] Beckman J R. Leau presentation. http://www.eas.asu.edu/~cme/cme-faculty/cmefaculty-JBeckman-project.htm
    [80] Beckman J R, Banks V, Brown J, Davis A. High recovery saline water desalination by dewvaporation. IDA Bahara World Congress, 2003
    [81] Beckman J R, Banks V, Brown J, Davis A. Seawater desalination by dewvaporation with liquid desiccant heat pumping. IDA Bahara World Congress, 2003
    [82] R H Xiong, S C Wang, Z Wang. A mathematical model for a thermally coupled humidification-dehumidification desalination process. Desalination, 2006, 196(1-3): 177-187
    [83] 朱爱梅. 露点蒸发淡化过程中含高分率不凝气的蒸汽冷凝传热研究: 博士学位论文, 天津:天津大学, 2005
    [84] 丁涛. 直接热耦合增湿-去湿过程海水淡化研究: 博士学位论文, 天津:天津大学, 2006
    [85] Hisham T El-dessouky, Hisham M Ettouney. Plastic/compact heat exchangers for single-effect desalination systems. Desalination, 1999, 122(2): 271-289
    [86] H J H Brouwers, C W M Van Der Geld. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers. International journal of heat and mass transfer, 1996, 39(2): 391-405
    [87] 王立国, 王世昌, 朱爱梅等. 塑料换热器在海水淡化中的应用. 化工进展, 2004, 23(12): 1359-1361
    [88] 周本省. 循环冷对水系统中控制结垢的方法(II). 化学清洗, 1999, 15(5): 44-48
    [89] 濮阳楠, 周本省. 聚丙烯换热器. 腐蚀与防护, 1990, 11(4): 190-193
    [90] 李培德, 刘京辉, 冯勇样, 张英杰. 石墨改性聚丙烯换热器的发展. 化工生产与技术, 2001, 8(2): 17-19
    [91] 何均敏, 张平. 石墨填充聚丙烯的研究. 工程塑料应用, 1995, 23(5): 9-11
    [92] 朱晓庆. 氟塑料换热器设计和应用基础. 有机氟工业, 1994, 6(2): 5-10
    [93] 汪琦. 氟塑料热交换器的结构. 化工设备设计, 1994, (3): 33-37
    [94] 赵永镐, 赵炜, 陈国龙. 新型聚四氟乙烯管壳式换热器. 中国专利, CN1297133A, 2001-05-30
    [95] 张留刚. 聚四氟乙烯金属复合换热器. 中国专利, CN1078802, 1993-11-24
    [96] 潘兆金. 四氟石墨复合换热器. 中国专利,CN2585166, 2003-11-5
    [97] 赵敏, 高俊刚, 邓奎林等. 改性聚丙烯新材料. 北京: 化学工业出版社, 2002, 9-14
    [98] 贾绍义, 曾林久, 姚克新. 塑料表面糙化处理对其润湿性能的影响. 中国塑料, 2001, 15(4): 48-50
    [99] 贾绍义, 吴松海, 李杰等. 聚丙烯填料表面处理对润湿及传质性能的影响. 化工学报, 2000, 51(6): 832-835
    [100] 天津大学物理化学教研室编. 物理化学, 北京: 高等教育出版社(第 3 版), 1993, 164-169
    [101] 凌敬祥. 聚丙烯塔填料的润湿和表面处理. 化学工程, 1991, 19(1): 33-36, 21
    [102] Bassem M H. A theoretical and experimental study of seawater desalination using dewvaporation: Ph.D. Thesis, USA : Arizona State University, 2001
    [103] 罗玲, 彭家惠, 陈明凤. 聚丙烯(PP)纤维表面改性技术. 纤维复合材料, 2005, 22(4): 22-24, 62
    [104] 于建, 宋宗升. 臭氧氧化处理法对聚丙烯表面涂装性的改良研究 I.聚丙烯表面的臭氧氧化反应过程. 合成树脂及塑料, 1996, 13(4): 11-15
    [105] H Y Nie, M J Walzak, B Berno, et al. Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force. Applied Surface Science, 1999, 144-145: 627-632
    [106] Guido Meijers, Pieter Gijsman. Influence of environmental concentrations of ozone on thermo-oxidative degradation of PP. Polymer Degradation and Stability, 2001, 74(2): 387-391
    [107] 王香梅, 张菁, 王庆瑞. 等离子体引发接枝聚合改善聚丙烯表面的亲水性. 高分子材料科学与工程, 2005, 21(5): 78-81
    [108] 马之庚,陈开来.工程塑料手册. 北京:机械工业出版社,2004
    [109] 赵敏,高俊刚,邓奎林等. 改性聚丙烯新材料. 北京: 化学工业出版社,2002
    [110] 陈锡明. 高分子材料换热器. 太阳能, 2002, (2): 10-11
    [111] Ogorkiewicz R M.主编, 何平笙等译. 热塑性塑料的性能和设计. 北京: 科学出版社, 1986: 143
    [112] 张武最, 罗益锋, 杨维榕. 化工产品手册(第三版)合成树脂与塑料?合成纤维. 北京: 化学工业出版社, 1999
    [113] 罗河胜. 新编塑料材料手册. 广东: 广东科技出版社, 1998
    [114] 钱知勉. 塑料性能应用手册(修订版). 上海: 上海科学技术出版社, 1987
    [115] 徐铜文. 膜化学与技术教程. 合肥: 中国科学技术大学出版社,2003
    [116] 朱晓庆. 氟塑料换热器设计和应用基础. 有机氟工业, 1994, (3): 5-10
    [117] 张武最,罗益锋,杨维榕. 化工产品手册: 合成树脂与塑料.合成纤维(第三版). 北京:化学工业出版社, 1998
    [118] 利帕托夫. 聚合物物理化学手册.第二卷: 本体聚合聚合物的性质. 北京: 中国石化出版社, 1995
    [119] 王世昌, 成怀刚, 丁涛. 高分子材料小型化增湿-去湿淡化装置及制造方法, 中国专利(公开),CN 1850634A, 2006-10-25
    [120] Bird R B, Stewart W E, Lightfoot E N. 传递现象. 北京: 化学工业出版社, 1990, 39-42
    [121] 熊日华. 露点蒸发海水淡化技术研究: 博士学位论文, 天津:天津大学, 2004
    [122] A. Schagen, M. Modigell, G. Dietze, R. Kneer. Simultaneous measurement of local film thickness and temperature distribution in wavy liquid films using a luminescence technique. International Journal of Heat and Mass Transfer, 2006, 49(25-26): 5049-5061
    [123] El-Genk M S, Saber H H. Minimum thickness of a flowing down liquid film on a vertical surface. International Journal of Heat and Mass Transfer, 2001, 44(15): 2809-2825
    [124] Hughes D T, Bott T R, Minimum thickness of a liquid film flowing down a vertical tube. International Journal of Heat and Mass Transfer, 1998, 41(2): 253-260
    [125] Xiong R H, Wang S C, Xie L X, Wang Z, Li P L. Experimental investigation of a baffled shell and tube desalination column using the humidification-dehumidification process. Desalination, 2005, 180(1-3): 253-261
    [126] M M Farid, S Parekh, J R Selman, et al. Solar desalination with a humidification- dehumidification cycle: mathematical modeling of the unit. Desalination, 2002, 151(2): 153-164
    [127] Nawayseh N K, Farid M M, Omar A A, et al. Solar desalination based on humidification process-II. Computer simulation. Energy Conversion & Management, 1999, 40(13): 1441-1461
    [128] Nawayseh N K, Farid M M, Al-Hallaj S, et al. Solar desalination based on humidification process-I. Evaluating the heat and mass transfer coefficients. Energy Conversion & Management, 1999, 40(13): 1423-1439
    [129] Hamieh B M, Beckman J R, Ybarra M D. Brackish and seawater desalination using a 20 ft2 dewvaporation tower. Desalination, 2001, 140(3): 217-226
    [130] Perry R H, Green D W. Perry's Chemical Engineers' Handbook, 7th ed., New York: McGraw-Hill Inc., 1997, 5-62, 5-16, 11-8
    [131] Millero F J, Leung W H. The thermodynamics of seawater at one atmosphere. American Journal of Science, 1976, 276: 1035-1077
    [132] 姚玉英, 黄凤廉, 陈常贵等. 化工原理. 天津: 天津科学技术出版社, 1999, 258
    [133] Perry R H, Green D W. Perry's Chemical Engineers' Handbook, 7th ed., New York: McGraw-Hill Inc., 1997, 5-62
    [134] Bassem M.H. A theoretical and experimental study of seawater desalination using dewvaporation. Ph D Thesis. USA: Arizona State University, 2001, 81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700