用户名: 密码: 验证码:
端面配流径向柱塞式液压泵特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径向柱塞式液压泵具有额定工作压力高、耐冲击力强及功率重量比高等优点,易满足车辆静压传动系统对液压泵的高压、高速化要求。但目前径向柱塞式液压泵所采用的阀配流和轴配流方式都存在着径向力不平衡,致使转速难以提高等缺陷,不能适应液压泵高速发展的趋势。论文将端面配流应用到径向柱塞式液压泵中,以解决传统径向柱塞式液压泵径向力不平衡的问题,使径向柱塞式液压泵在保持原有高压优势的情况下,能够兼具端面盘配流的优点。论文的研究工作为高压、高速、大流量径向柱塞式液压泵的设计提供了理论基础。
     论文对端面配流径向柱塞式液压泵进行了运动学和受力分析、建立了各柱塞腔及吸排油口的瞬时压力变化模型,通过数值求解得到了压力、流量的变化规律,分析了影响压力、流量变化的因素。论文的主要研究内容如下:
     ①对端面配流径向柱塞式液压泵的主要零部件进行了运动学分析。推导了柱塞的运动轨迹、极径、速度加速度和滚子旋转速度的数学方程,分析了柱塞的几何结构对运动参数的影响。
     ②在运动学分析的基础上,对径向柱塞式液压泵的各零部件进行了受力分析。在假定柱塞泵等角速度运动的情况下对液压泵缸体、转轴、弹簧进行分析,得到力平衡方程和动量矩方程。基于柱塞缸体副之间有无间隙两种情况,建立了两种柱塞副受力模型,对柱塞在缸体运行过程中的最大接触应力、应变、应变长度、留缸长度、摩擦力和滚子与滚道的最大接触应力进行了分析研究。在分析过程中采用柱塞腔内的瞬时压力替代原有的经验压力,真实反映柱塞的受力工况。
     ③对径向柱塞式液压泵的理论流量进行了分析。基于传统流量理论对径向柱塞式液压泵的瞬时流量进行分析,推导出径向柱塞式液压泵的理论瞬时流量和流量脉动系数。根据柱塞在配流盘占据的位置来判断柱塞的吸排油工况,推导出柱塞泵的柱塞几何流量方程。通过仿真得到几何流量及其脉动系数。
     ④建立了柱塞腔与带卸荷槽配流盘最小通流面积的数学模型。通过对三角卸荷槽结构的分析,确定了三角卸荷槽的最小过流面积,推导了各柱塞腔对配流盘的最小通流面积公式,分析了三角槽几何参数和分度角对配流窗口面积的影响规律。
     ⑤建立了径向柱塞式液压泵柱塞腔、吸排油腔的瞬时压力模型。根据柱塞控制腔内的流体质量守恒定理,在考虑各摩擦副的泄漏、工作介质的可压缩性等因素的情况下,建立柱塞泵柱塞腔、吸排油腔的瞬时压力变化模型。通过数值方法求解,得出了各柱塞腔、吸排油腔的瞬时压力与瞬时流量。研究了三角槽的结构和负载压力、转速对柱塞泵各个柱塞腔、进出口压力流量变化的影响规律。
     ⑥通过对双向径向柱塞泵马达试验测试系统的改造,进行了径向柱塞泵的性能试验,为径向柱塞泵设计提供借鉴经验。对径向柱塞式液压泵的压力进行了检测并作了频域分析,由频域图显示可知:除了几何脉动频率线外,还有其他明显的频率谱线存在,这表明柱塞泵的压力脉动并不仅是几何结构脉动引起的,而是几何结构与其他因素共同作用的结果。几何脉动的频率是一个关于柱塞的个数和转速的函数f=n·z/60。
Radial piston hydrostatic pump has several advantages like high rated working pressure, strong anti pulsation and high ratio of power to weight, which are suit to the need of vehicle hydrostatic transmission system—higher pressure and rotational speed. Nowadays, valve distribution and axis distribution are adopted in the development of radial piston hydrostatic pump, but they have problems like the imbalance radial force which cause they hard to enhance rotational speed. So, both of them are not suit to the trend of development of higher pressure and rotational speed hydrostatic pump. The dissertation introduces valve plate to design radial piston hydrostatic pump, which solved the imbalance radial force problem, and make it easy to enhance the rotational speed. The work could provide fundamental theory for the design of higher pressure, higher speed and larger flow rate radial piston hydrostatic pump.
     Kinematical analysis, force analysis, instantaneous pressure model of inside piston/cylinder chamber, suction and discharge chamber of valve plate hydrostatic pump are studied in the dissertation. And the change laws of pressure and flow rate are deduced through mathematic calculation. Then causes of pressure and flow rate change are analyzed in the dissertation. The main investigation work focuses on the flowing several aspects:
     ①Kinematical analysis of radial piston pump's key components were studied. Equations of the position, polar distance, velocity and acceleration of the piston were inferred. Then, the effect of varied geometry structures were analyzed by comparing kinematic parameters.
     ②Based on the kinematical analysis, the forces acted on hydrostatic machine parts were analyzed. Force and momentum equations of main parts were deduced on the assumption that the pump remains in a constant angular speed. Then, utilizing two force models to study the contract stress and deformation, piston length remained inside, friction force, contract force between the two friction pairs. During the investigation processing, the traditional hydraulic pressure was replaced by the instantaneous pressure in the piston chamber, which make the calculation result close to the real operating condition.
     ③The theoretical flow-ripple of a radial piston valve plate type hydrostatic pump was studied. Based on the traditional theory, the instantaneous flow ripple formula was deduced. Then, based on the real relative position of the piston and valve plate, the piston chamber participate the discharge or suction processing can be judged. The actual flow ripple equations of a radial piston pump were presented. Flow ripple and flow ripple frequency were acquired by using simulation calculation.
     ④The model of the discharge area of the piston chamber to the discharge port in the valve plate were analyzed. The smallest cross-section areas were computed by analyzing the geometry of tetrahedral structured slot. Then, formulas of the valve plate opening area for each piston port were deduced. Based on these formulas, the relationship between the valve plate opening area and slot structure were created.
     ⑤The model of instantaneous pressure inside the piston/cylinder chamber, suction, and discharge chamber is created. Based on the conservation laws, taking leakage passed through the pairs clearance, and liquid compressibility into consideration, the piston kinematical volume change, the volumetric volume causing by the leakage happened in the clearance of the friction pairs is considered. The instantaneous pressure formulas were created. Then, get the pressure pulsation and flow ripple in all controlled volume by numerical calculation. The relations between pressure pulsation and flow ripple and slot structure were investigated.
     ⑥According to researching and manufacturing of the radial piston pump test system, some references for developing new radial piston valve plate type pump were acquired. FFT analyzing method was adopted to acquire a frequency-domain plot, which shows that there are other distinc frequencies in discharge pressure spectrogram and suction pressure spectrogram besides the piston kinematical frequency. It means that not only the kinematical frequency but also some other factors are the reason to achieve this result. The kinematical frequency depends on the piston's number and rotate speed,ω. The equitation of frequency is f = n·z /60 .
引文
[1]IVANTYSYN J,IVANTYSYNOVA M.Hydrostatic pumps and motors[M].New Dehli:Academic Books International,2001.
    [2]杨华勇,张斌,徐兵.轴向柱塞泵/马达技术的发展演变[J].机械工程学报,2008,10(44):1-7.
    [3]徐绳武.轴向柱塞泵和马达的发展动向[J].液压气动与密封,2003,(4):10-15.
    [4]Einem Urteil.History of Water Machines[OL].http://www.hp-gramatke.net/history/english/page0600.htm,2003-10-29.
    [5]俞云飞.液压泵的发展展望[J].液压气动与密封,2002,(1):2-6.
    [6]乔世珊.静压传动系统在工程车辆上的应用[J].水利电力机械,1990,(05):11-16.
    [7]钟炜生.静液压传动叉车评述[J].工程机械与维修,2000,(8):38-39.
    [8]王意.车辆及各种行走机械用液压传动与控制技术的发展趋势[J].工程机械与维修,1997,(5):22-24.
    [9]王意.车辆及各种行走机械用液压传动与控制技术的发展趋势[J].工程机械与维修,1997,(6):24-26.
    [10]Hydrostatic transmissions.A special report by the editor on recent developments in closed loop hydrostatic transmissions for mobile applications[Z].Hydraulic & Air Engineering,1978,11.
    [11]滕明涛.浅谈叉车的两种传动系统[J].工程机械,1998,(9):19-21.
    [12]程海林.径向柱塞式液压马达等接触应力内曲线的研究[D].杭州:浙江工业大学,2004.
    [13]张有颐,陈莺.车辆静压传动的新发展[A].'93液压气动与密封年会论文集[C].上海:中国液压气动密封件工业协会,1993.
    [14]闻德生.开路式柱塞泵[M].北京:航空工业出版社,2002.
    [15]Rexroth Bosch Group.Fixed displacement radial piston pump[OL].http://www.boschrexroth.com/RDSearch/rd/r-11263/re11263_2005-10.pdf,2005-10.
    [16]MOOG RKP.RADIAL PISTON PUMPS RKP.RKP/Rev 2/de,en[OL].www.moog.com/radial piston pumps,2003-03.
    [17]吴远库.径向柱塞泵重要摩擦副的技术研究[D].西安:西北工业大学,2005.
    [18]刘小红.新型径向柱塞泵动力学分析及变量控制研究[D].西安:西北工业大学,2004.
    [19]赵亚风.高压低噪声机电控制式径向柱塞泵(JBP系列)的结构特点及性能[J].重型机械,2001,(01):13-14.
    [20]王伟健.低噪声双作用径向柱塞泵的设计与研究[D].兰州:兰州理工大学,2006.
    [21]徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1985.
    [22]杨国来,王伟健,王连波,张守印.低噪声径向柱塞泵的设计与研究[J].机床与液压,2007,(2):1-3.
    [23]杨国来,王伟健,张守印,赵亚风.新型双作用径向柱塞泵的定子曲线设计及流量脉动分析[J].机床与液压,2005,(11):123-124.
    [24]杨国来,王伟健,张守印,卢堑.新型双作用柱塞泵减振三角槽的研究[J].液压与气动,2005,(12):62-64.
    [25]杨国来,王伟健,张守印,吴艳玲.新型双作用径向柱塞泵的设计[J].液压与气动,2005,(6):78-79.
    [26]赵亚风.国产新型径向柱塞泵取代引进轴向柱塞泵[J].液压与气动,2003,(02):34-35.
    [27]赵亚风.高压低噪声径向柱塞泵JBP系列产品的结构特点及性能指标[J].工程机械,2001,06.
    [28]赵亚风.新型径向柱塞泵[J].机电产品市场,2001(12):21-22.
    [29]POLYHYDRON.RADIAL PISTON PUMP[OL].http://www.polyhydron.com/ppl_page/l pumps_index.htm,2009-1-14.
    [30]ATOS.Radial piston pumps type PFR[OL].http://www.tokimec.co.kr/hydraulics/upload_goods/A045.pdf,2008-12-31.
    [31]BIERI SWISS HYDRAULICS.Radial piston pumps[OL].http://www.bierihydraulics.com/standard-components/pumps.html,2007-4-5.
    [32]Maryland Metrics.Radial Piston Pumps[OL].http://mdmetric.com/pt1/pumps.html,2008-12-31..
    [33]崔扣彪.国产新型径向柱塞泵研制成功[J].液压气动与密封,2000,(6):7-9.
    [34]RADIAL PISTON PUMPS RKP-Ⅱ[OL].http://www.moog.com/media/l/RKP-Ⅱ_en_3_2007.pdf,2009-2-11.
    [35]Dr,-Ing,Dirk Becher.Low Noise,increased reliability,digital control-a new generation of radial piston pumps[OL].http://www.moog.com/media/l/NewGenerationRadialPistonPumps-techpaper.pdf,2009-1-9.
    [36]李月梅,王明智.新型径向柱塞泵运动学分析[J].矿山机械,1994,(9):25-28.
    [37]李月梅.新型径向柱塞泵变量的结构特点及变量分析[J].机械设计,1994,(4):8-11.
    [38]贾跃虎,王明智.JBP-4径向柱塞泵配流轴与转子配合间隙的研究[J].太原重型机械学院学报,1999,(12):318-321.
    [39]贾跃虎,文彤民,刘志奇.新型径向柱塞泵降噪机理分析[J].液压气动与密封,2000,(6):14-15.
    [40]安高成,吕翠萍,王明亮等.柱塞泵配流副三角槽的分析设计[J].太原重型机械学院学报,2004,25(4):246-249.
    [41]韩雪梅,王荣哲,王平.新型径向柱塞泵摩擦副泄漏原因分析与改进[J].液压气动与密封,2000,(6):12-13.
    [42]KOC E,HOOKE C J.Source investigation into the effects of orifice size,offset and overclamp ratio on the lubrication of slipper bearings[J].Tribology International,1996,29(4):299-305.
    [43]Manring,N.D.The control and containment forces on the swash plate of an axial-piston pump[J].A SME Journal of Dynamic Systems,Measurement,and Control,1999,121(12):599-605.
    [44]Manring,N.D.Friction forces within the cylinder bores of swash-plate type axial-piston pumps and motors[J].ASME Journal of Dynamic Systems,Measurement,and Control,1999,121(9):531-537.
    [45]Wieczorek Uwe,Simulation of the gap flow in the sealing and bearing gaps of axial piston machines [A].FPNI-PhD Symposium[C],Hanburg,2000.
    [46]Lassaar Rolf,The influence of the microscopic and macroscopic gap geometry on the energy dissipation in the bubricationg gaps of displacement machines[A].FPNI-PhD Symposium[C],Hanburg,2000.
    [47]Lasaar.R.and Ivantysynova,Gap geometry variations in displacement machines and their effect on the energy dissipation[A].Proc.of 5th International Conference on Fluid Power Transmission and Control (ICFP'2001)[C].Hangzhou,2001,296-301.
    [48]Ivantysynova,M.,Huang,C.and Behr,R.Measurements of elastohydro-dynamic pressure field in the gap between piston and cylinder[J].Bath Workshop on Power Transmission and Motion Control PTMC 2005,Bath,2005:451-465.
    [49]翟培祥.斜盘式轴向柱塞泵设计[M].北京:煤炭工业出版社,1978.
    [50]何存兴.液压元件[M].北京:机械工业出版社,1982.
    [51]曾祥荣编著.液压嗓声控制[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [52]郭卫东,王占林.斜盘式轴向柱塞泵受力分析[J].机床与液压,1994,(5):264-266.
    [53]贺小峰,张铁华,余祖耀.水压柱塞泵摩擦副的试验研究[J].机械设计与制造,2000,(2):49-50.
    [54]余祖耀,张铁华,李壮云.柱塞泵中柱塞与缸孔环形缝隙的泄漏流量计算[J].机械工程师,2000,(8):32-33.
    [55]余祖耀,李壮云,聂松林.水压柱塞泵中柱塞与缸孔接触比压的分析与探讨[J].中国机械工程,2002,(2):78-81.
    [56]赵连春,刘春节.轴向柱塞泵流量特性与配流副结构研究[J].淮南矿业学院学报,1997,(3):59-63.
    [57]许贤良,赵连春,王传金.轴向柱塞泵的流量脉动[J].中国矿业大学学报,1992,(21):72-82.
    [58]许贤良,赵连春,杨奇顺.轴向柱塞泵流量脉动的理论研究[J].淮南矿业学院学报,1993,(13):69-81.
    [59]刘春节.轴向柱塞泵流量特性的研究[D].安徽:淮南矿业学院,1998.
    [60]刘小华.斜盘式轴向柱塞泵流量脉动的理论与实验研究[D].安徽:安徽理工大学,2002.
    [61]叶敏.轴向柱塞泵流量脉动的理论分析[J].机床与液压,1990,(3):41-46.
    [62]常真卫.带斜盘夹角的轴向柱塞泵流量脉动分析[J].液压气动与密封,1999,(4):26-28.
    [63]Wieczorek,U.and Ivantysynova,M.,CASPAR - A Computer Aided Design Tool for Axial Piston Machines[J].Proc.Bath Workshop on Power transmission and Motion Control PTMC 2000:113-126.
    [64]Ivantysynova,M.et al.Prediction of swash plate moment using the simulation tool CASPAR[A].ASME International Mechanical Engineering Congress[C].New Orleans:IMECE2002,2002,39322.
    [65]Huang,C.and Ivantysynova,M.,A new approach to predict the load carrying ability of the gap between valve plate and cylinder block[J].Bath Workshop on Power transmission and Motion Control PTMC 2003.2003:225-239.
    [66]Ivantysynova M.,Seeniraj G.,Huang C.Comparison of different valve plate designs focusing on oscillating forces and flow pulsation[J].Proc.9th Scandinavian International Conference on Fluid Power,Link(?)ping,Sweden,2005.
    [67]Bahr khalil M.K.,Svoboda J.V.Bhat R.B.Dynamic load on the drive shaft bearings of a swash plate axial piston pump with conical cylinder block[J].Transcation of the CSME/de la.SCGM,2004,(27):309-318.
    [68]Manring N.D.The discharge flow ripple of an axial-piston swash-plate type hydrostatic pump[J].ASME Journal of Dynamic Systems,Measurement,and Control,2000,122(6):263-268.
    [69]Manring,N.D.,and Y.Zhang,The improved volumetric-efficiency of an axial-piston pump utilizing a trapped-volume design[J].ASME Journal of Dynamic Systems,Measurement,and Control,2001,123(9):479-487.
    [70]Zhang,X.,Cho,J.,Nair,S.S.,and Manring N.D.,New swash plate damping model for hydraulic axial-piston pump[J].ASME Journal of Dynamic Systems,Measurement,and Control,2001,123(9):463-470.
    [71]邓斌,刘晓红,王金诺等.水压轴向柱塞泵流量脉动动态仿真[J].液压与气动,2004,(1):31-33.
    [72]邓斌,刘桓龙,柯坚等.水压轴向柱塞泵的阶梯浅腔滑靴[J].润滑与密封,2006,(2):73-75.
    [73]邓斌.水压轴向柱塞泵的特性研究与分析.博士学位论文[D].成都:西南交通大学,2004.
    [74]Olems L.Investigations of the Temperature Behaviour of the Piston Cylinder Assembly in Axial Piston Pumps[J].International Journal of Fluid Power,2000,1(1):27-38.
    [75]Ivantysynova M.,et al.Prediction of swash plate moment using the simulation tool CASPAR[A].ASME International Mechanical Engineering Congress[C].New Orleans:IMECE 2002,39322.
    [76]Manring,N.D.Valve-plate design for an axial piston pump operating at low displacements[J].ASME Journal of Mechanical Design,2003,125(3):200-205.
    [77]Cho,J.,X.Zhang,N.D.Manring,and S.Nair,Dynamic modeling and parametric studies of an indexing valve plate pump[J].International Journal of Fluid Power,2002,3(11):37-48.
    [78]Manring,N.D.,and G.R.Luecke,Modeling and designing a hydrostatic transmission with a fixed-displacement motor[J].ASME Journal of Dynamic Systems,Measurement,and Control,1998,120:45-49.
    [79]Manring,N.D.,and R.E.Johnson,Optimal orifice geometry for a hydraulic pressure-reducing valve [J].ASME Journal of Dynamic Systems,Measurement,and Control,1997,119(9):467-473.
    [80]许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].北京:北京机械工业出版社,1984.
    [81]胡新华,杨继隆,姜伟.变粘度条件下静压支承滑靴副的研究[J].润滑与密封,2003,(1):85-86.
    [82]艾青林,周华,张增猛,杨华勇.轴向柱塞泵配流副与滑靴副润滑特性试验系统的研制[J].液压与气动,2004,(11):22-25.
    [83]庄欠伟,周华,艾青林.轴向柱塞泵滑靴副润滑特性实验台的研制[J].机床与液压,2005,(3):113-114.
    [84]艾青林.轴向柱塞泵配流副润滑特性的试验研究.博士学位论文[D].杭州:浙江大学,2005.
    [85]那成烈,尹文波,那焱青.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].甘肃工业大学学报,2002,(12):5-67.
    [86]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力特性的影响[J].甘肃工业大学学报,1995,(9):36-38.
    [87]那成烈.轴向柱塞泵可压缩流体配流原理[M].北京:兵器工业出版社,2003.
    [88]李壮云.液压元件与系统[M].北京:机械工业出版社,2006.
    [89]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987.
    [90]Jiang Wei,Cheng Hailin,QiuXinguo,Zhang Youyi.Investigation into the equal contact stress cam curve of multi-stroke inner curve[A].The Sixth International Conference on Fluid Power Transmission and Control(ICFP'2005)[C].Hangzhou:International Academic Publishers LTD.,2005.
    [91]刘泽九.滚动轴承的额定负荷与寿命[M].北京:机械工业出版社,1982.
    [92]Hanrock.B J,Dowson D.Ball bearing lubrication[M].New York:John Wiley & Sons,1981.
    [93]Tedric A.Harris.Rolling Bearing Analysis[M].New York:john Wiley& Sons,1984.
    [94]裘信国.径向柱塞式液压泵受力分析及其配流机构的研究[D].浙江工业大学硕士学位论文,2005
    [95]余俊.滚动轴承计算[M].北京:高等教育出版社,1993.
    [96]Manring,N.D.,C.L.Wray,Z.Dong.Experimental studies on the performance of slipper bearings within axial-piston pumps[J].ASME Journal of Tribology,2004,126:511-518.
    [97]Manring,N.D.2002.Designing a control and containment device for cradle-mounted,axial-actuated swash plates[J].ASME Journal of Mechanical Design,124:456-464.
    [98]Manring N.D.,V.S.Mehta,F.J.Raab,and K.J.Graf.(Accepted April 2006).The shaft torque of a tandem axial-piston pump[R].ASME Journal of Dynamic Systems,Measurement,and Control,Technical Brief.
    [99]Manring N.D.,Damtew F.A.,The control torque on the swash plate of an axial-piston pump utilizing piston-bore springs[J].ASME Journal of Dynamic Systems,Measurement,and Control,2001,123:471-478.
    [100]Manring N.D.,The Torque on the Input shaft of an Axial-piston swash Plate Type Hydrostatic Pump[J].Journal of Dynamic Systems,Measurement and Control,1998,120(3):57-62.
    [101]Manring,N.D.,R.E.Johnson.Modeling and designing a variable displacement open-loop pump.ASME Journal of Dynamic Systems,Measurement,and Control 1996(118):267-271.
    [102]陈海明,胡新华,杨继隆,姜伟.变粘度条件下柱塞摩擦副泄漏流量的计算[J].润滑与密封,2003,(3):25-26.
    [103]Manring,N.D.,and Z.Dong,The impact of using a secondary swash-plate angle within an axial piston pump[J].ASME Journal of Dynamic Systems,Measurement,and Control,2004,126:65-74.
    [104]Manring,N.D.,Sensitivity analysis of the conical-shaped equivalent model of a bolted joint[J].ASME Journal of Mechanical Design,2003,125:642-646.
    [105]Zloto Tadeusz.Analysis of the hydrostatic load of the cylinder block in an axial piston pump[J].TEKA Kom.Energ.Roln[OL],PAN,2007,(7):302-309.
    [106]刘斌,姜伟,裘信国.双向变量液压泵试验台功率回收系统分析[J].机床与液压,2006,(12):139-140.
    [107]时连军,李新平,宋志安.液压泵试验台CAT系统设计[J].液压气动与密封,2000,(4):35-36.
    [108]肖凯鸣,张克南,白志大.液压泵性能测试装置中值得注意的问题[J].液压与气动,1996,(3):30-32.
    [109]贾跃虎,宋福荣,赵红英等.液压泵型式试验台设计分析[J].太原重型机械学院学报,2000,21(2):135-138.
    [110]刘保国.基于计算机控制的新型液压泵综合试验台设计[J].液压与气动,2003,(12):4-6.
    [111]刘志奇,段锁林,王明智.液压泵综合试验台设计[J].太原重型机械学院学报,2000,21(1):35-38.
    [112]JIANG Wei,QIU xinguo,CHAI Guozhong.Investigation of the controlled volume and the pressure pulsation of the roller radial piston pump[A].5th International Symposium on Fluid Power Transmission and Control[C].Beidaihe:International Academic Publishers LTD.,2007.
    [113]QIU xinguo,JIANG Wei,CHAI Guozhong.Stress and forces analysis between the cylinder bores and the pistons of roller radial piston pump[A].5th International Symposium on Fluid Power Transmission and Control[C].Beidaihe:International Academic Publishers LTD.,2007.
    [114]EDGE K A,DARLING J.Cylinder pressure transients in oil hydraulic pumps with sliding valces[J].Journal of Management and Engineering Manufacture,1986,200(B1):45-54.
    [115]余经洪,陈兆能,陆元章.液压柱塞泵流量脉动测试的试验研究[J].机床与液压,1992,(4): 187-193.
    [116]余经洪,陈兆能.液压泵流量脉动特性的精确评定[J].机床与液压,1993,(4):217-223.
    [117]宫嘉成.液压泵流量脉动的时序测定[J].机床与液压,1991,(3):39-43.
    [118]王荣哲,陈刚.新式径向柱塞泵[J].液压气动与密封,1996,(6):23-24.
    [119]彭佑多,刘德顺,陈艳屏.内曲线多作用径向柱塞式低速大扭矩液压马达及配流机构的发展[J].液压与气动,2002,(12):1-12.
    [120]上海煤矿机械研究所.液压泵和液压马达[M].北京:煤炭工作出版社,1976.
    [121]Atkinson R.H..Noise Reduction in Vane and Piston Pumps[J],Proceedings of National Conference on Fluid Power,1983:318-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700