用户名: 密码: 验证码:
微池自润滑刀具的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据干切削刀具的摩擦磨损特性、微孔表面结构以及固体润滑材料的优异摩擦性能,基于微池润滑的技术思想,结合干切削刀具技术、刀具结构设计、固体润滑技术和摩擦学知识,提出微池自润滑刀具的设计理论和制备方法,研制开发具有减摩润滑作用的新型微池自润滑干切削刀具,并探索其减摩润滑机理。
     通过对固体润滑技术及切削加工润滑机理的分析,提出了微池自润滑刀具的概念,即:在刀具表面的刀具-切屑、刀具-工件接触部位设计加工一定形状和尺寸的微孔,并在其中填充固体润滑剂,在切削过程中微孔中的固体润滑剂受热膨胀以及切屑的摩擦挤压作用在刀具表面拖覆形成固体润滑膜,使摩擦发生在润滑膜内部,产生“微池润滑”效应,从而实现刀具的自润滑。根据干切削刀具的摩擦磨损特点,提出了微池自润滑刀具的设计思路。
     建立了微池自润滑自润滑刀具的切削力和切削温度模型,研究了微池自润滑刀具的切削力和切削温度理论。分析表明:切削力和切削温度与刀具前刀面摩擦副平均剪切强度τc和刀屑接触长度lf变化趋势相同。降低刀具前刀面平均剪切强度τc或刀屑接触长度lf,均可有效降低切削过程中的切削力和切削温度。
     进行了微池自润滑刀具的结构设计。确定了不同切削状态下的微孔分布位置,结合微孔结构参数对微池自润滑刀具应力分布状态的影响及作用规律,得出了最佳的微孔形状及结构尺寸:孔形为圆孔,孔数N为4,孔径为Φ0.15±0.02 mm,孔中心距主、副切削刃的距离L1、L2以及孔间距L3都约为0.3 mm,孔深H为0.30mm,孔偏心距L4取为0.05 mm。
     通过对微池自润滑刀具的制备方法进行分析,选择微细电火花加工方法进行微池自润滑刀具的微孔加工。微细电火花加工试验表明,在加工电压为125 V、电容为4.45 nF时,能够加工出满足微池自润滑刀具要求的微孔,同时分析了微细电火花加工参数(电压和电容)对微孔加工质量的影响及作用规律。
     为考察微池自润滑刀具的摩擦磨损特性,对制备的具有相同结构的微池自润滑刀具试样进行了摩擦磨损试验,分析了微孔结构参数、固体润滑剂等因素对微池自润滑刀具试样摩擦磨损特性的影响及作用规律。结果表明:微池自润滑刀具试样MP-MS的摩擦系数和磨损率比YT14普通试样的显著降低,其中摩擦系数降低了55%-65%,磨损率降低了约40%-50%。孔径/孔间距之比为0.4-0.5时微池自润滑刀具试样MP-MS具有最佳的减摩润滑特性。分析了刀具试样以及对磨球的磨损形貌、表面成分,并结合刀具试样的摩擦摩擦特点,认为在相对摩擦过程中,存储于微孔中的固体润滑剂受到相对摩擦和挤压作用而粘着、拖覆在摩擦副表面,并在摩擦副表面形成一层转移膜,使摩擦发生在转移膜之间进行,从而降低了摩擦副之间的摩擦系数,改善了试样的摩擦磨损特性。
     对制备的不同型号的微池自润滑刀具以及YT14传统刀具进行了切削45号钢的对比试验。试验表明,与传统YT14刀具相比,MPR-4MS刀具和MPR-4MH微池自润滑刀具的切削力、切削温度以及前刀面平均摩擦系数显著降低,MPR-4MS刀具的前刀面耐磨性最好,MPF-4MS刀具的后刀面耐磨性最好。试验同时表明,微孔结构对刀具的切削性能有影响。靠近刀尖及主切削刃的孔对微池自润滑刀具切削性能的影响较大,离刀尖较远的孔对自润滑刀具切削性能影响较小。填充不同固体润滑剂的微池自润滑刀具的切削性能明显不同,且所适用的切削速度范围存在差异:切削速度小于100 m/min时,刀具MPR-4MS的切削性能最好;切削速度高于100 m/min时,MPR-4CF刀具的切削力显著降低;刀具MPR-4C受切削速度的影响最小,显示了较稳定的切削性能。在切削速度高于220m/min时,切屑易堵塞微孔,微池刀具将无法实现自润滑,因此微池自润滑刀具适合的切削速度范围低于200 m/min。
     分析了微池自润滑刀具的减摩润滑机理,在切削过程中,微池自润滑刀具微孔中的固体润滑剂受热膨胀以及切屑的摩擦挤压作用,拖覆在刀具表面,形成固体润滑膜,固体润滑膜具有较低的剪切强度,能够减小前刀面平均剪切强度τc,从而降低前刀面的平均摩擦系数,降低切削力和切削温度;其次微池自润滑刀具前刀面微孔的存在能够减小刀-屑接触长度lf,同样减小切削力和切削温度。其中前者起主要作用。
Micro-pool self-lubricating tools were designed and developed based on micro-pool lubricating idea, excellent tribological properties of solid lubricating materials, the tribological behaviors and wear mechanisms of dry cutting tools. The lubricating mechanism of micro-pool lubricating tools were detailed studied as well as its preparation methods and design theory.
     The concept and design ideas of the micro-pool self-lubricating tool was proposed based on the analysis of solid lubricanting technology and cutting lubricanting mechanism. Micro-holes were made on the rake face or the flank face of tool inserts. Solid lubricants were embedded into the micro-holes to form micro-pool self-lubricating cutting tool. During cutting processes, the chip slides against the tool rake face at a high speed, and induces high cutting temperature. Under high cutting temperature and chip friction, the solid lubricants may be released from the micro-holes, smeared on the tool face. Then a thin lubricating film may create on the tool face which achieve the micro-pool lubricating and reduce the tool wear. The designed models of micro-pool self-lubricating cutting tool were established under the analysis of tribological behaviors and wear mechanisms of dry cutting tools.
     The Finite Element Analysis (FEA) modeling for analysis of cutting temperature and cutting forces distribution of micro-pool self-lubricating tool were established and used to analyze the theory of cutting temperature and cutting forces of micro-pool self-lubricating cutting tool. Analysis results indicated that three cutting force components and cutting temperature are both proportional to the average shear strengthτc and the tool-chip contact length If. A reduction of average shear strengthτc or the tool-chip contact length If will both result in the reduced cutting forces and cutting temperature during cutting processes.
     The micro-holes structure of the micro-pool self-lubricating tools were studied. The effect of micro-holes on stress distribution of the cutting tools were analyzed and the appropriate micro-holes structural parameters were put forward:the micro-holes are circular; the number of micro-holes is 4; the diameter of micro-holes is 0.15±0.02 mm; the distance L1 is about 0.3mm; the distance L2 is about 0.3mm; the distance L36 is about 00.3 mm; the depth H is 0.30 mm; the axis distance L4 is 0.05 mm.
     Micro-EDM method was choosed to prepare micro-holes of the micro-pool self-lubricating tools after analysis of micro-holes preparing methods. The appropriate process parameters of EDM was determined:the machining voltage is 125 V, the processing capacitance is 4.45 nF. The influence of processing paremeters on processing quality was analyzed.
     In order to investigate tribological behaviors of the micro-pool self-lubricating tool, friction and wear tests were conducted on the micro-pool self-lubricating tool samples with the same micro-holes structures as the micro-pool self-lubricating tool. The influence of micro-holes structure and the solid lubricants embedded in the micro-holes on the wear behaviors were studied. Results indicated that friction coefficient and wear rate of the micro-pool self-lubricating tools sample MP-MS are both lower than those of the traditinal sample YT14, the friction coefficient can be decreased about 55%-65% and the wear rate can be reduced about 40%-50%. The best antifriction lubricating properties appeared when the ratio of pool depth and pool spacing was 0.4 to 0.5 and the pools were filled with solid lubricant MoS2. The tribological mechanism of micro-pool self-lubricating tool filled with solid lubricant was put forward:the solid lubricant was squeezed out or smeared on the interface during sliding process, a lubricating film is formed to lead to reduce the friction coefficient between the contact interface, and the friction and wear behaviors of micro-pool self-lubricating tool samples were improved.
     Cutting tests on 45# steel were carried out with cutting tool MPR-4MS, cutting tool MPR-4MH, MPF-4MS, cutting tool MPF-4MH and traditional tool YT14. The results showed that, compared with the traditional cutting tool YT14, cutting with cutting tool MPR-4MS and cutting tool MPR-4MH could result in obviously reduced cutting forces, cutting temperature and average friction coefficient on the rake face. The cutting tool MPR-4MS had the best rake wear resistance and the cutting tool MPF-4MS had the best flank wear resistance.
     Micro-hole structure of micro-pool self-lubricating tool affects the cutting performance. Based on cutting tests with micro-pool self-lubricating cutting tool MPR-4MS, the micro-holes filled with MoS2 near the tool tip and the main cutting edge have larger effect on cutting performance than other holes for the MPR-4MS tools. The cutting performance of micro-pool self-lubricating cutting tool vary with the different solid lubricant additives, and are affected by cutting speed obviously. when the cutting speed is less than 100 m/min, the cutting performance of the MPR-4MS cutting tool is best; the cutting performance of the MPR-4CF cutting tool significantly slows down when the cutting speed is higher than 100 m/min; the MPR-4C cutting tool has steady cutting performance, which is affected lightly by the cutting speed. Micro-pool self-lubricating cutting tools will not be able to achieve self-lubricating when the cutting speed is higher than 220 m/min, for severe chip adhesives on the micro-holes. Therefore, the micro-pool self-lubricating cutting tools are fit to cutting whthin cutting speed of 200 m/min.
     The self-lubricating mechanism of micro-pool self-lubricating cutting tool is put forward. on the one hand, during cutting processes, the chip slides against the tool rake face at a high speed, and induces high cutting temperature. Under high cutting temperature and chip friction, the solid lubricants may be released from the micro-holes, smeared on the tool face. Then a thin lubricating film may create on the tool face, which results in reduced average shear stressτc and coefficient of friction on the rake face, increasd shear angle, reduced cutting forces, the cutting heat and the cutting temperature; on the other hand, the reduced contact length lf at the tool-chip interface results in a reduction in cutting forces and cutting temperature, which is contributed to the decrease of tool wear. The former factor is primary.
引文
[1]Owen J V. Environmentally conscious manufacturing[J]. Manufacturing Engineering.1993, 36(10):44-55.
    [2]Batchelor A W, Stachowiak G W. Tribology in materials processing[J]. Journal of Materials Processing Technology.1995,48(1-4):503-515.
    [3]Rigney D A, Hirth J P. Plastic deformation and sliding friction of metals[J]. Wear.1979,53(2): 345-370.
    [4]Bowden F P, Tabor D. The friction and lubrication of solids[M]. Part 1. Oxford:Oxford University Press,1954.
    [5]叶茂盛.金属切削液[M].北京:机械工业出版社,1994:5-35.
    [6]Baradie M A El. Cutting fluids:Part I. Characterization[J]. Journal of Materials Processing Technology.1996,56(1-4):786-797.
    [7]陈日耀.金属切削原理[M].第2版.北京:机械工业出版社,1993:33-42 82-86 137-142.
    [8](日)樱井俊男.切削液和磨削液[M].刘镇昌.北京:机械工业出版社,1987:5-30.
    [9]张自卫.切削液的使用现状及有关问题[J].精密制造与自动化.1984,(2):2-9.
    [10]周建,陶德华,张建华.切削液及其添加剂的进展[J].化学世界.2001,(12):659-661.
    [11]Avila R F, Abrao A M. The effect of cutting fluids on the machining of hardened AISI 4340 steel[J]. Journal of Materials Processing Technology.2001,119(1-3):21-26.
    [12]张月兰.金属切削液[M].上海:上海科学技术出版社,1989:1-17 149-214.
    [13]刘镇昌.切削液技术[M].北京:机械工业出版社,2008:18-65.
    [14]林雅琴.切削液的作用机理与性能评定方法[J].润滑油.1992,(4):35-38.
    [15]依·吉·耶·阿玛雷哥,阿·荷·布(澳).金属切削学[M].北京:机械工业出版社,1986:4-30.
    [16]贾晓鸣,张秀玲,杜明华.切削液对切削力的影响[J].润滑与密封.1999,(4):29-51.
    [17]猪谷彦太郎..利用高压注液高效率切削难加工材料[J].蒋修治.国外金属加工.1999,(3):43-47.
    [18]TonshoffH K, Denkena B. Wear of ceramic tools in milling[J]. Lubrication Engineering.1991, 47(9):772-778.
    [19]邓建新,葛培琪,艾兴.切削加工润滑技术研究现状及展望[J].摩擦学学报.2003,23(6):546-549.
    [20]夏淦珍,林正勇.新型润滑冷却液在当代切削加工中的应用[J].工具技术.1992,26(2):21-26.
    [21]刘信芳,谷川羲博.用切削液超高压注入法提高刀具寿命的研究[J].江苏理工大学学报.1997,18(2):48-53.
    [22]黄文轩,张英华.固体润滑剂添加剂综述[J].润滑油.1999,14(5):5-11.
    [23]石淼森.第六讲固体润滑剂的应用[J].制造技术与机床.1996,(12):53-55.
    [24]Johnson R. A review of the early use of molybdenum disulfide as a lubricant[J]. NLGI Spokesman.1988,52(8):298-305.
    [25]Burtz W J, Oppelt J. Lubricating effectiveness of oil-soluble additives and molybdenum sulfide dispersed in mineral oil[J]. Lubrication. Engineering.1980,36(10):579-585.
    [26]Muller K. How to reduce fretting corrosion-influence of lubricants[J]. Tribology International. 1975,8(2):57-64.
    [27]文东辉,刘献礼,杨兴,等.硬态切削中的冷却润滑技术[J].制造技术与机床.2001,(12):28-30.
    [28]Brinksmeier, Walter A, Janssen R, et al. Aspects of cooling lubrication reduction in machining advanced materials[J]. Proceedings of the Institution of Mechanical Engineers. 1999,213(8):769-778.
    [29]张伯霖,夏红梅,黄晓明.新世纪干切削技术[J].制造技术与机床.2001,(10):5-7.
    [30]Klocke F, Eisenblatter G. Dry Cutting[C]. Proceedings of CIRP Improving Machine Tool Perfomances, Span:Obra Publicationa,1988:621-632. Klocke F, Eisenblatter G. Dry Cutting[J]. CIRP Annals-Manufacturing Technology.1997,46(2):519-526.
    [31]何立东,闫通海.气液两相流体润滑机理的试验研究[J].润滑与密封.1996,(1):33-36.
    [32]王凡,何立东.油、气润滑系统中两相流体的输送及其润滑特性[J].润滑与密封.1990,(3):44-47.
    [33]贾晓鸣,王宝中,冯喜京.绿色切削加工技术分析[J].润滑与密封.2002,(6):83-85.
    [34]陈德成,铃木康夫,酒井克彦.微量润滑油润滑和冷风冷却加工法对高硅铝合金切削面的影响[J].机械工程学报.2000,36(11):70-74.
    [35]Soderberg S. Advances in metal cutting tool materials[J]. Journal of Metallurgy.1997,26(1): 65-70.
    [36]Klocke F, Krieg T. Coated tools for metal cutting-features and applications[J]. CIRP Annals-Manufacturing Technology.1999,48(2):515-525.
    [37]Klocke F, Krieg T, Gerschwiler K, et al. Improved cutting processes with adapted coating systems[J]. CIRP Annals-Manufacturing Technology.1998,47(1):65-68.
    [38]Klocke F, Krieg T, Lugscheider E, et al. Testing and design of tool coatings with properties adapted to the use of biodegradable cutting fluids[J]. CIRP Annals-Manufacturing Technology.2001,50(1):57-60.
    [39]程宇航.刀具涂层材料的使用概况[J].材料导报.1998,12(6):45-47.
    [40]周兰英,阎胜天.TiN涂层高速钢的边界摩擦磨损特性[J].润滑与密封.1994,(3):30-36.
    [41]Grimanelis D, Yang S, Bohme O, et al. Carbon based coatings for high temperature cutting tool applications[J]. Diamond and Related Materials.2002,11(2):176-184.
    [42]Stappen M V, Stals L M, Kerkhofs M, et al. State of the art for the industrial use of ceramic PVD coatings[J]. Surface and Coatings Technology.1995,74-75(2):629-633.
    [43]庞思勤.CVD涂层硬质合金刀具的耐磨性和破损特性[J].兵工学报.1997,18(2):139-142.
    [44]庞思勤.涂层硬质合金刀具的切削机理与性能特点[J].北京理工大学学报.1994,14(4):45-49.
    [45]郭源君,杨禹华.硬质合金涂层及其自润滑处理后的减摩效果[J].润滑与密封.1995,(5):4345.
    [46]荆阳,庞思勤,张学恒,等.TiAlN-MoS2/TiAlN硬质润滑膜研究[J].北京理工大学学报.2002,22(4):457-459.
    [47]Rigato V, Maggioni G, Boscarino D, et al. Performance and limitations of MoS2/Ti composite coated inserts[J]. Surface and Coatings Technology.2003,172:13-23.
    [48]Rigato V, Maggioni G, Boscarino D, et al. Coating characteristics and tribological properties of sputter-deposited MoS2 metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology.2000,127:24-37.
    [49]Rigato V, Maggioni G, Boscarino D, et al. A study of the structural and mechanical properties of Ti/MoS2 coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology.1999,116-119:176-183.
    [50]Fox V, Renevier N M, Teer D G, et al. The structure of tribological improved MoS2/metal composite coatings and their industrial applications[J]. Surface and Coatings Technology. 1999,116-119:492-497.
    [51]Fox V, Hampshire J, Teer D. MoS2/metal composite coatings deposited by closed-field unbalanced magnetron sputtering:tribological properties and industrial uses[J]. Surface and Coatings Technology.1999.112:118-122.
    [52]Fox V, Jones A, Renevier N M, et al. Hard lubricating coatings for cutting and forming tools and mechanical components[J]. Surface and Coatings Technology.2000,125(1-3):347-353.
    [53]Renevier N M, Lobiondo N, Fox V C, et al. Performance of MoS2/metal composite coatings used for dry machining and other industrial applications[J]. Surface and Coatings Technology. 2000,123(1):84-91.
    [54]Renevier N M, Fox V C, Teer D G, et al. Properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology.2000,131:206-210
    [55]Renevier N M, Fox V C, Teer D G, et al. Performance of low friction MoS2 Titanium composite coatings used in forming applications[J]. Materials and Design.2000,21:337-343.
    [56]Renevier N M, Hamphire J, Fox V C, et al. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings[J]. Surface and Coatings Technology.2001,142-144: 67-77.
    [57]Renevier N M, Oosterling H, Konig U, et al. Performance and limitation of hybrid PECVD (hard coating)-PVD magnetron sputtering (MoS2/Ti composite) coated inserts tested for dry high speed milling of steel and grey cast iron[J]. Surface and Coatings Technology.2003, 163-164:659-667.
    [58]Liu Y R, Liu J J, Du Z. The cutting performance and wear mechanism of ceramic cutting tools with MoS2 coating deposited by magnetron sputtering[J]. Wear.1999,231(2):285-292.
    [59]Deng J X, Song W L, Zhang H, et al. Friction and wear behaviours of MoS2/Zr coatings against hardened steel[J]. Surface Engineering.2008,24(6):410-415.
    [60]赵金龙,邓建新,宋文龙.MoS2/Zr复合涂层形貌、结构及摩擦磨损性能研究[J].摩擦学学报.2009,29(3):238-245.
    [61]Deng J X, Song W L, Zhang H, et al. Performance of PVD MoS2/Zr-coated carbide in cutting processes[J]. International Journal of Machine Tools and Manufacture.2008,48(14): 1546-1552.
    [62]薛群基,刘惠文.陶瓷摩擦学Ⅱ.陶瓷材料的润滑[J].摩擦学学报.1996,16(2):184-192.
    [63]Wei W, Lankford J, Kossowsky R. Friction and wear of ion-beam-modified ceramics for use in high temperature adiabatic Engines[J]. Materials Science and Engineering.1987,90: 307-315.
    [64]Lankford J, Wei W,. Friction and wear behavior of ion beam modified ceramics[J]. Journal of Materials Science.1987,22(6):2069-2078.
    [65]Erdemir A, Busch D E, Erck R A, et al. Ion-beam-assisted deposition of sliver films on zirconia ceramics for improved tribological behavior[J]. Lubrication Engineering.1991,47(3): 179-184.
    [66]Julthongpiput D, Ahn H S, Sidorenko A, et al. Towards self-lubricated nanocoatings[J]. Tribology International.2002,35(12):829-836.
    [67]Deng J X, Ai X, Li Z Q. Friction and wear behavior of AI2O3/TiB2 composite against cemented carbide in various atmospheres at elevated temperature[J]. Wear.1996,195(12): 128-132.
    [68]邓建新,艾兴,冯益华.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究[J].机械工程学报.2002,38(4):40-45.
    [69]Yamamoto Y, Ura A. Influence of interposed wear particles on the wear and friction of silicon carbide in different dry atmospheres[J]. Wear.1992,154(1):141-150.
    [70]Deng J X, Ai X, Li Z Q. Friction and wear behavior of Al2O2/TiB2 composite against cemented carbide in various atmospheres at elevated temperature[J]. Wear.1996,195(1-2): 128-132.
    [71]Deng J X, Ai X. Wear behavior and mechanisms of alumina-based ceramic tools in machining of ferrous and non-ferrous alloys[J]. Tribology International.1997,30(11):807-813.
    [72]邓建新,艾兴.氧化对Al203-TiB2陶瓷刀具材料磨损特性的影响[J].硅酸盐学报.1996,24(2):160-165.
    [73]邓建新,曹同坤,艾兴.Al203/TiC/CaF2自润滑陶瓷刀具切削过程中的减摩机理[J].机械工程学报.2006,42(7):109-113.
    [74]Deng J X, Cao T K. Self-lubricating mechanisms via the in situ formed tribofilm of sintered ceramics with CaF2 additions when sliding against hardened steel[J]. International Journal of Refractory Metals and Hard Materials.2007,25(2):189-197.
    [75]Deng J X, Cao T K, Sun J L. Microstructure and mechanical properties of hot-pressed Al2O3/TiC ceramic composites with the additions of solid lubricants[J]. Ceramics International.2005,31(2):249-256.
    [76]Deng J X, Cao T K, Liu L L. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel[J]. Journal of the European Ceramic Society.2005, 25(7):1073-1079.
    [77]Deng J X, Cao T K, Ding Z L, et al. Tribological behaviors of hot-pressed Al2O3/TiC ceramic composites with the additions of CaF2 solid lubricants[J]. Journal of the European Ceramic Society.2006,26(8):1317-1323.
    [78]Deng J X, Cao T K, Sun J L. Mechanical properties and microstructure of self-lubricating ceramic cutting tool materials[J]. Materials Science Forum.2004,471-472:221-224.
    [79]Deng J X, Liu L L, Yang X F, et al. Self-lubrication of Al2O3/TiC/CaF2 ceramic composites in sliding wear tests and in machining processes[J]. Materials & Design.2007,28(3):757-764.
    [80]Deng J X, Cao T K, Yang X F, et al. Wear behavior and self tribofilm formation of hot-pressed Al2O3/TiC/CaF2 ceramic composites sliding against cemented carbide[J]. Ceramics International.2007,33(2):213-220.
    [81]曹同坤.自润滑陶瓷刀具的设计开发及其自润滑机理研究[D].山东大学博士学位论文,2005:2-17.
    [82]Fleischer J, Masuzawa T. New applications for micro-EDM[J]. Journal of Materials Processing Technology.2004,149(1-3):246-249.
    [83]Leao F N, Pashby I R. A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining[J]. Journal of Materials Processing Technology.2004,149(1-3): 341-346.
    [84]贾振元,顾丰,王福吉,等.基于信噪比与灰关联度的电火花微小孔加工工艺参数的优化[J].机械工程学报.2007,43(7):63-67.
    [85]王振龙,朱保国,田锡清.气体介质中深小孔电火花加工技术研究[J].航空学报.2007,28(2):460-463.
    [86]贾振元,周明,杨连文,等.电火花微小孔加工工艺参数的优化研究[J].机械工程学报.2003,39(2):106-111.
    [87]Jahan M P, Wong Y S, Rahman M. A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials[J]. Journal of Materials Processing Technology.2009,209:3956-3967.
    [88]朱派龙,戚长政,温志远,等.超大深径比深小孔的工艺方法和电极研制[J].机械工程学报.2006,42(2):198-204.
    [89]Yu Z Y, Rajurkar K P, Shen H. High Aspect Ratio and Complex Shaped Blind Micro Hole by Micro EDM[J]. CIRP Annals-Manufacturing Technology.2002,51(1):359-362.
    [90]韩福柱,陈丽,周晓光,等.微细电火花加工用脉冲电源技术的基础研究[J].电加工与模具.2005,(6):9-11.
    [91]Egashira K, Matsugasako A, Tsuchiya H, et al. Electrical discharge machining with ultralow discharge energy[J]. Precision Engineering.2006,30(4):414-420.
    [92]李文卓,颜国正,蔡彬,等.RC脉冲电源维持电压问题的研究[J].电加工与模具.2005,(4):10-13.
    [93]王振龙,赵万生,迟关心,等.微三维结构型腔的微细电火花加工[J].微细加工技术.2000,(1):71-74.
    [94]赵万生,李志勇,王振龙,等.微三维结构电火花铣削关键技术研究[J].微细加工技术.2003,(3):49-55.
    [95]王吉团.保证安全,保护环境,促进特种加工技术的持续发展[J].中国机械工程.2001,12(7):832-834.
    [96]Yeo S H, Tan H C, New A K. Assessment of waste streams in electric-discharge machining for environmental impact analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.1998,212(5):393-401.
    [97]Chen S L, Yan B H, Huang F Y. Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6A1-4V[J]. Journal of Materials Processing Technology.1999,87(1-3):107-111.
    [98]Jahan M P, Wong Y S, Rahman M. A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator[J]. Journal of Materials Processing Technology.2009,209(4):1706-1716.
    [99]Lee S H, Li X P. Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide[J]. Journal of Materials Processing Technology.2001,115(3):344-358.
    [100]Mahdavinejad R A, Mahdavinejad A. ED machining of WC-Co[J]. Journal of Materials Processing Technology.2005,162-163:637-643.
    [101]李文卓,刘加光,于云霞.微细电火花加工机床关键技术[J].机械工程学报.2007,43(1):170-175.
    [102]赵万生,李文卓,王振龙.高精度微细电火花加工系统的研制[J].电加工与模具.2004, (1):6-8.
    [103]李文卓,颜国正,蔡彬,等.一种新型永磁电动操作机构[J].上海交通大学学报.2007,41(3):492-496.
    [104]孟小霞.规则表面微造型的激光加工和摩擦特性研究[D].江苏大学硕士学位论文,2007:2-20.
    [105]Hamilton D B, Walowit J A., Allen C M. A Theory of Lubrication by Microirregularities[J]. ASME Journal of Basic Engineering.1996,88(1):177-185.
    [106]Wong H C, Umehara N, Kato K. The effect of surface roughness on friction of ceramics sliding in water[J]. Wear.1998,218(2):237-243.
    [107]Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication[J]. Tribology International.2005,38(3):249-256.
    [108]Damborenea J D. Surface modification of metals by high power lasers[J]. Surface and Coatings Technology.1998,100-101:377-382.
    [109]Robert C C, Crampon J, Foct J. Surface alloying of iron by laser melting:Microstructure and mechanical properties[J]. Surface Engineering.1998,14(5):381-385.
    [110]Peyre P, Scherpereel X, Berthe L, et al. Current trends in laser shock processing[J]. Surface Engineering.1998,14(5):377-380.
    [111]Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions.1999,42(3):511-516.
    [112]Kligerman Y, Etsion I. Analysis of the hydrodynamic effects in a surface textured circumferential gas seal[J]. Tribology Transactions.2001,44(3):472-478.
    [113]Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing for reciprocating automotive components[J]. Tribology Transactions.2002,45(4):444-449.
    [114]iho U, Jin L, Yoon H K, et al. Laser engraving of micro-patterns on roll surfaces[J]. ISIJ International.2002,42(11):1266-1272.
    [115]Du D, He Y F, Sui B, et al. Laser texturing of rollers by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology.2005,161(3):456-461.
    [116]Schreck S, Gahr K H Z. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties[J]. Applied Surface Science.2005,247(1-4):616-622.
    [117]Pride S, Folkert K, Guichelaar P, et al. Effect of micro-surface texturing on breakaway torque and blister formation on Cabon-graphite faces in a mechanical seal[J]. Lubrication Engineering.2002,58(10):16-21.
    [118]Etsion I. Improving tribological performance of mechanical components by laser surface texturing[J]. Tribology Letters.2004,17(4):733-737.
    [119]Ronen A, Etsion I. Friction-Reducing Surface-Texturing in Reciprocating automotive components[J]. Trbiology Transactions.2001,44(3):359-366.
    [120]Varenberg M, Halperin G, Etsion I. Different aspects of the role of wear debris in fretting wear[J]. Wear.2002,252(11-12):902-910.
    [121]Volchok A, Halperin G, Etsion I. The effect of surface regular microtopography on fretting fatigue life[J]. Wear.2002,253(3-4):509-515.
    [122]Etsion 1, Halperin G. A laser surface textured hydrostatic mechanical seal[J]. Sealing Technology.2003,2003(3):6-10.
    [123]Brizrner V, Kligerman Y, Etison I. A laser surface textured parallel thrust bearing[J]. Tribology Transactions.2003,46(3):397-403.
    [124]Kligerman Y, Shinkarenko A, Etsion I. Improving tribological performance of piston rings by partial surface texturing[C].2004 AIMETA International Tribology conference,Rome,2004: 14-17.
    [125]Mcnickle A D, Etsion I. Near-contact laser surface textured dry gas seals[J]. Journal of Tribology(Transaction of the ASME).2004,126(4):788-794.
    [126]Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International.2005, 38(3):219-225.
    [127]Wang X L, Kato K, Adachi K, et al. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed[J]. Tribology International.2001,34(10):703-711.
    [128]Fenke G, Erdemir A, Ajayi, et al. Laser surface texturing of seal faces[J]. FY2003 Annual Report,2003:79-84.
    [129]Erdemir A, Kovalchenko A, Erck R. Laser texturing of materials[J]. FY2004 progress Report, 2004:71-76.
    [130]Stephens L S, Siripuram R, Hayden M, et al. Deterministic micro asperities on bearings and seals using a modified LIGA process[J]. Journal of Engineering for Gas Turbines and power. 2004,126(1):147-154.
    [131]Ravider B S, Lyndon S S. Effect of deterministic asperity geometry on hydrodynamic lubrication[J]. Journal of Tribology.2004,126(3):527-534.
    [132]Wang X L, Kato K, Adachi K, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International.2003,36(3):189-197.
    [133]Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts[J]. Tribology International.2003,36(11):857-864.
    [134]Pettersson U, Jacobson S. Friction and properties of micro textured DLC coated surfaces in boundary lubricated sliding[J]. Tribology letters.2004,17(3):201-205.
    [135]Pettersson U, Jacobson S. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors[J]. Tribology International.2007,40(2): 355-359.
    [136]汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究[J].摩擦学学报.2003,23(1):52-55.
    [137]汪家道,陈大融,孔宪梅,等.面接触规则凹坑表面流体润滑计算[J].清华大学学报(自然科学版).2003,41(2):4245.
    [138]林子光.铸铁表面激光微精处理的摩擦学特性[J].表面工程.1996,(2):12-15.
    [139]杨常建.仿生非光滑表面滑动耐磨性试验及数值模拟[D].吉林大学硕士学位论文,2005:1-7.
    [140]石淼森.固体润滑技术[M].北京:中国石化出版社,1998:18-30 107-157.
    [141]石淼森.尼龙基填充型润滑材料[J].制造技术与机床.1999,(8):27-49.
    [142]胡萍,黄畴,郑化,等.固体润滑剂在轴承上的应用研究[J].润滑与密封.2003,(2):19-20.
    [143]刘朝红,黄括.板带钢卷取机摩擦衬板的镶嵌式固体润滑材料研究[J].重型机械.2007,(3):9-14.
    [144]石淼森.固体润滑材料[M].北京:化学工业出版社,2000:14-31 162-178.
    [145](日)松永正久.固体润滑手册[M].范煜.北京:机械工业出版社,1986:69-201.
    [146]石淼森.第四讲层状固体润滑材料[J].制造技术与机床.1996,(10):50-52.
    [147]刘惠文,薛群基.TZP陶瓷的高温润滑研究[J].无机材料学报.1997,12(5):681-86.
    [148]陈晓虎.固态润滑剂六方氮化硼在陶瓷摩擦材料中的应用研究[J].陶瓷学报.1999,20(3):127-130.
    [149]薛群基,吕晋军.高温固体润滑研究的现状及发展趋势[J].摩擦学学报.1999,19(1):91-96.
    [150]Bowden F P, Tabor D. The friction and lubrication of solid[M]. Oxford:Clarenden Press, 1964:431-472.
    [151]Suh N P, Saka N. Fundamentals of Tribology[M]. Cambridge:The MIT Press,1978
    [152]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:189-204.
    [153]高彩桥.摩擦金属学[M].哈尔滨:哈尔滨工业大学出版社,1988:15-55.
    [154](日)中山一雄.金属切削加工理论[M].李云芳.北京:机械工业出版社,1958:48-5793-112.
    [155]刘培德.切削力学新篇[M].大连:大连理工大学出版社,1991:12-48.
    [156](日)臼井英治,白柏高洋.金属加工力学[M].廉元国,徐东安,陈振孟.北京:国防工业出版社,1972:246-274.
    [157]刘晋春,陆纪培.特种加工[M].北京:机械工业出版社,1987:6-27.
    [158]曹凤国.电火花加工技术[M].北京:化学工业出版社,2005:3-29.
    [159]李明辉.电火花加工理论基础[M].北京:国防工业出版社,1989:4-30.
    [160]Allen D M, Almond H J A, Bhogal J S, et al. Typical Metology of Micro-hole Arrays Made in Stainless Steel Foils by Two-Stage Micro-EDM[J]. Annals of the CIRP.1999,48(1):127.
    [161]夏劲武,徐家文,赵建社.电火花加工表面质量的研究及进展[J].电加工与模具.2008,(6):11-15.
    [162]Field M, Kahles J F, Koster W P. Surface finish and surface integrity[J]. ASM Handbook. 1989,16:19-36.
    [163]Bormann F. Understanding die-sinking EDM surface integrity[J]. Carbide Tool Journal.1988, 20(6):12-16.
    [164]Lee S H, Li X P. Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide[J]. Journal of Materials Processing Technology.2003,139(1-3):315-321.
    [165]Ekmekci B, Tekkaya A E, Erden A. A semi-empirical approach for residual stresses in electric discharge machining (EDM)[J]. International Journal of Machine Tools and Manufacture. 2006,46(7-8):858-868.
    [166]张耀良,韩广才.航空材料学[M].哈尔滨:哈尔滨工程大学出版社,2002:20-40.
    [167]钱斌,杨世兴,盛美萍.利用均值导纳法研究圆柱壳组合结构的振动能量比[J].西北工业大学学报.2001,19(4):548-551.
    [168]Zheng L G, Zhou J L. The pile-up effect during EDM and its application in research of cracking behaviours of sintered carbides[C]. Proceedings of the 9th ISEM, Nagoya,1989: 267-270.
    [169]周继烈,凌湛,徐建中.硬质合金电火花加工裂纹特性分析[J].电加工与模具.2003,(6):19-22.
    [170](日)竹内洋一郎.热应力[M].李安定.北京:科学出版社,1979:405-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700