用户名: 密码: 验证码:
壳寡糖基生物材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳寡糖是一种来源丰富的天然高分子,它具有良好的生物相容性、生物降解性和生物活性。但是由于分子间的氢键相互作用,使其具有难融难溶的性质,因而大大限制了壳寡糖这一天然资源的有效利用。化学改性是改善壳寡糖性能的有效途径,特别是利用良好亲水性及带有生物活性基团的壳寡糖和具有优越机械性能及生物降解性的聚己内酯、以及含生物活性物质胆甾醇的液晶单体,制备的新型壳寡糖基生物材料,具有重要的科学参考价值和巨大的应用前景。将在生物降解材料、药物控释载体和组织工程材料方面获得应用。
     本论文是在查阅了国内外大量相关文献的基础上,为了改善壳寡糖溶解性差、不能熔融、不具备成型加工性能的缺点,对壳寡糖的-NH2或-OH进行化学改性,设计并合成了两种壳寡糖衍生物中间体及四种壳寡糖基生物材料。两种中间体是:邻苯二甲酰化壳寡糖(PHCSO)和O,O-双十二酰化壳寡糖。四种壳寡糖基生物材料分别是:1.热塑性N,O酰化壳寡糖;2.含活性氨基的邻苯二甲酰化壳寡糖接枝聚己内酯;3.热塑性壳寡糖接枝聚己内酯;4.胆甾醇酯支化的壳寡糖接枝聚己内酯。文中所设计并合成的壳寡糖基生物材料在国内外未见报道,研究成果具有创新性。
     采用FT-IR、1H NMR、DSC、TGA、POM、SEM及X射线衍射等技术研究了壳寡糖基生物材料的化学结构和物理性能。主要内容和研究成果如下:
     1.对壳寡糖进行酰化改性,即在甲烷磺酸的均相反应体系中,通过甲烷磺酸对壳寡糖氨基的保护作用,采用月桂酰氯直接与壳寡糖的羟基反应,制备了羟基(-OH)被取代而保留活性氨基的O,O-双十二酰化壳寡糖。O,O-双十二酰化壳寡糖在有机溶剂中的溶解性得到改善,SEM表明壳寡糖的片层结构发生变化,且表面变得粗糙,XRD和热分析表明月桂酸基长链的引入改变了壳寡糖分子的结构,酰化壳寡糖形成了新的结晶结构,O,O-双十二酰化壳寡糖的热降解温度低于壳寡糖。
     2.在合成了O,O-双十二酰化壳寡糖的基础上,又通过改变月桂酰氯与壳寡糖的摩尔比使壳寡糖分子结构中的氨基(-NH2)也参与了反应,从而制备了取代度不同的N,O-双十二酰化壳寡糖,研究结果表明月桂酸基长链的引入削弱了壳寡糖分子间的氢键作用力,改变了壳寡糖分子的结构,酰化壳寡糖形成了新的结晶微区;当壳寡糖的氨基和羟基几乎被完全取代时,N,O-双十二酰化壳寡糖具有热塑性,其热降解温度为167.3℃,而且在偏光显微镜下能够观察到颗粒状紧密排列的结晶结构。
     3.通过邻苯二甲酸酐保护壳寡糖的氨基,而保留羟基制备了反应中间体邻苯二甲酰化壳寡糖(N-phthaloyl-chitosan oligosaccharide,简称PHCSO)。在壳寡糖的接枝反应中以邻苯二甲酰化壳寡糖为中间体,采用辛酸亚锡催化剂催化ε-己内酯开环聚合制备了邻苯二甲酰化壳寡糖接枝聚己内酯(PHCSO-g-PCL),这种接枝反应路线可实施壳寡糖的定位接枝改性。另外,采用水和肼脱掉了N-邻苯二甲酰亚胺基保护基从而恢复了壳寡糖的游离氨基。结果表明随着ε-己内酯(ε-CL)与壳寡糖投料比的增加,接枝率提高,并且壳寡糖分子的结晶结构被破坏,侧链聚己内酯在接枝共聚物中已形成了新的结晶区,该结晶区具有熔点。
     4.以PHCSO为中间体,采用辛酸亚锡催化剂催化ε-己内酯开环聚合,当ε-己内酯与邻苯二甲酰化壳寡糖的配比为15:1(mL/g)时,制备了热塑性壳寡糖接枝聚己内酯复合材料(TPHCSO-g-PCL)。TGA、WAXD、SEM、DSC用来表征壳寡糖-接枝-聚己内酯的物理性能,表征结果表明聚己内酯在壳寡糖上的接枝在一定程度上破坏了壳寡糖原有的结晶形态,聚己内酯接枝侧链在壳寡糖的刚性骨架上已经形成大量的结晶区。壳寡糖、均聚物聚己内酯(PCL)及热塑性接枝共聚物在热失重为5%时的温度分别为205℃、224℃和252℃。TGA分析结果表明热塑性接枝共聚物的热稳定性均高于壳寡糖和PCL。在偏光显微镜(POM)下观察到TPHCSO-g-PCL的球晶结构。DSC曲线表明TPHCSO-g-PCL的熔点为60.2℃。
     5.以PHCSO-g-PCL为中间体,通过壳寡糖接枝聚己内酯(PHCSO-g-PCL)上的羟基与己二酸胆甾醇单酯(M1)或癸二酸胆甾醇单酯(M2)的羧基进行酰化成酯反应,合成了胆甾醇酯支化的壳寡糖接枝聚己内酯复合材料(PHCSO-g-PCL-g-Chol*,n=4,8)。其中癸二酸胆甾醇单酯支化的壳寡糖接枝聚己内酯复合材料(PHCSO-g-PCL-g-Chol*,n=8)具有热塑性,在偏光显微镜下(POM)能够观察到M1和M2的胆甾相液晶织构、PHCSO-g-PCL-g-Chol*(n=8)在熔融时出现的双折射现象,该热塑性材料在DSC曲线上的熔融峰的峰值为89℃。
Chitosan oligosaccharide is a well-known abundant natural polymer with good biodegradability, biocompatibility and bioactivity. But the insolubility in common organic solvents and non-thermal plasticity of chitosan oligosaccharide have delayed its utilization and basic research. Chemical modification of chitosan oligosaccharide is more attractive to expand the applications as functional materials. Especially, it is promising and have great value of scientific reference to combine the chitosan oligosaccharide (CSO) having good hydrophilic property and bioactive functions with poly (ε-caprolactone) which has good mechanical properties and biodegradability, and liquid crystal monomers having bioactive cholesterol to generate new biomaterials based on chitosan oligosaccharide. These materials should be applicable for biodegradable material, drug delivery systems and tissue engineering.
     On the base of large related information retrieval research at home and abroad, in this dissertation, we have designed and synthesized two kinds of precursors of chitosan oligosaccharide derivatives, four kinds of biomaterials based on chitosan oligosaccharide through the modification of amino groups and hydroxyl groups of CSO. The purpose of it is to improve its poor solubility in organic solvents and the limits of non-processability because it has no melting point. Two kinds of precursors are phthaloyl chitosan oligosaccharide (PHCSO) and O,O-dilauroyl chitosan oligosaccharide (LCSO), respectively. Four kinds of biomaterials based on CSO are thermoplastic N,O-dilauroyl chitosan oligosaccharide (NOCSO-2), chitosan oligosaccharide-graft-poly (ε-caprolactone) with free active amino groups, thermoplastic phthaloyl chitosan oligosaccharide-g-polycaprolactone, and phthaloyl chitosan oligosaccharide-g-polycaprolactone-g-cholesterol respectively. As far as we know, the designed biomaterials based on chitosan oligosaccharide have never been reported, they are innovative.
     The chemical structure and physical properties of biomaterials based on chitosan oligosaccharide are confirmed by fourier transform infrared (FT-IR) spectra、1H nuclear magnetic resonance, differential scanning calorimetry (DSC), thermogravimetric analyse (TGA), polarizing optical microscopy (POM), scanning electron microscope (SEM), X-ray diffraction (XRD). The main contents and results list below:
     1. Through acylation modification of chitosan oligosaccharide, O,O-dilauroyl chitosan oligosaccharide (LCSO) was synthesized by the reaction of the hydroxyl group of chitosan oligosaccharide (CSO) and suitable count of lauroyl chloride via the amino groups protection procedure in homogeneous system of methane sulfonic acid. The solubility of LCSO had been improved in organic solvents. SEM indicated that the layer structure of CSO has been changed and the surface morphology of LCSO became crude. XRD and themoanalyses indicated that the original crystal structure of CSO did change with the lauroyl acylations and had created new crystal domains of lauroyl side chains. The decomposition temperature of LCSO is lower than that of CSO.
     2. On the basis of LCSO, N,O-dilauroyl chitosan oligosaccharide (NOCSO) with different substitution were synthesized through changing the mole ratio of lauroyl chloride to chitosan oligosaccharide to make the further reaction of amino group. The results showed that the intra hydrogen bonding of CSO was weakened and the original crystal structure of CSO did change through the introduction of long lauroyl side chains and had created new crystal domain of lauroyl side chains. When almost all the amino group and hydroxyl group were substituted, NOCSO has thermoplasticity and the decomposition temperature is 167.3℃. The grain structure aligned tightly and can be observed by POM.
     3. Phthaloyl chitosan oligosaccharide precursor (PHCSO) was synthesized via the amino groups protection of CSO with phthalic anhydride. The phthaloyl chitosan oligosaccharide-g-polycaprolactone (PHCSO-g-PCL) was synthesized by coupling the hydroxyl group via the ring-opening graft copolymerization ofε-caprolactone in the presence of stannous octoate catalyst. The regioselective graft modification of CSO can be done through this method of graft polymerization, and the free amino group can be abstained through removing the protective group by hydrazine. It was found that the graft content of PCL within the graft copolymer increased with the increasing of the mole ratio ofε-caprolactone to phthaloyl chitosan oligosaccharide. Besides, new crystal domains of polycaprolactone side chains occurred and had melting endothermic peak of PCL in PHCSO-g-PCL while the crystal structure of CSO was damaged.
     4. The thermoplastic chitosan oligosaccharide-g-polycaprolactone composite (TPHCSO-g-PCL) were successfully synthesized via ring-opening polymerization ofε-caprolactone (ε-CL) using phthaloyl-chitosan as intermediate while the feed ratio ofε-caprolactone to phthaloyl chitosan oligosaccharide precursor (PHCSO) is 15:1 (mL/g). The physical properties of the graft copolymers were characterized by TGA, WAXD, SEM and DSC, respectively. The results showed that the original structure of CSO was changed to some extent by the grafting of PCL to the backbone of CSO. The temperature at 5% weight loss of CSO, pure PCL and PHCSO-g-PCL are 205℃,224℃and 252℃, respectively. TGA analysis showed that TPHCSO-g-PCL was more thermal stable than original CSO. Spherulite morphology of this material can be observed by POM. The melting point of TPHCSO-g-PCL is 60.2℃.
     5. PHCSO-g-PCL-g-Chol* (n=4,8) was synthesized by coupling the hydroxyl group of PHCSO-g-PCL with the carboxyl of single hexanedioic acid cholesterol ester (M1) or single sebacic cholesterol ester (M2) via acylation reaction. PHCSO-g-PCL-g-Chol* (n=8) has thermoplasticity. The cholesteric liquid crystal texture of M1, M2 and the birefringence phenomeon of PHCSO-g-PCL-g-Chol* (n=8) during the melting process was observed by POM. DSC curve showed that PHCSO-g-PCL-g-Chol* (n=8) has maximum melting endothermic peak at 89℃.
引文
1.蒋挺大.甲壳素[M],北京:化学工业出版社,2003,1-5;22-23;27.
    2. Rinaudo M. Chitin and chitosan:Properties and applications [J], Prog. Polym. Sci.,2006,31:603-632.
    3.王伟,薄淑琴,秦汶.不同脱乙酰度壳聚糖Mark-Houwink方程的订定[J],中国科学B辑,1990,(11):1126-1131.
    4.宋宝珍,仰振球,王其祥等.中国化学会第二界甲壳素化学与应用研讨会论文集[C],武汉,1999,180-183.
    5.陈海燕.微波法制取壳聚糖[J],中国水产,1999,(2):45-46.
    6. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems [J], Control Release,2003,89:151-165.
    7.曾宪放,李吉高.甲壳质和甲壳胺的化学修饰及应用[J],中国海洋药物,1992,(4):29-34.
    8. Muzzarerelli R A A. Chitin and its derivatives:new treads of applied reseach [J], Carbohydrate Polymers,1983,3:53-57.
    9.王鹏,莫秀梅,徐种德.甲壳素的基本性质及化学改性方法[J],高分子材料,1996,3(4):19-27.
    10. Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Zhu H, Nagano H, Omura Y, Saimoto H, Shigemasa Y, Aiba SI. Chemical modification of chitosan.13. Synthesis of organosoluble, palladium adsorbable, and biodegradable chitosan derivatives toward the chemical plating on plastics [J], Biomacromolecules,2002,3(5):1120-1125.
    11. Hirano S, Yamaguchi Y, Kamiya M. Novel N-saturated-fatty-acyl derivatives of chitosan soluble in water and in aqueous acid and alkaline solutions [J], Carbohydr. Polym.,2002,48:203-207.
    12. Seo T, Hagura S, Kanbara T, Iijima T. Interaction of dyes with chitosan derivatives [J], J. Appl. Polym. Sci.,1989,37:3011-3027.
    13. Tien Le C, Lacroix M, Ispas-Szabo P, Mateescu MA. N-acylated chitosan: hydrophobic matrices for controlled drug release [J], J. Controlled Release, 2003,93(1):1-13.
    14. Grant S, Blair H S, Mckay G. Deacetylation effects on the dodecanoyl substitution of chitosan [J], Polym. Commun.,1990,31(7):267-268.
    15. Seo T, Ikeda Y, Torada K, Nakata Y, Shimomura Y. Synthesis of N,O-acylated chitosan and its sorptivity [J], Chitin and Chitosan Research,2001,7: 212-213.
    16. Wu Y, Seo T, Maeda S, Sasaki T, Irie S, Sakurai K. Circular dichroism induced by the helical conformations of acylated chitosan derivatives bearing cinnamate chromophores [J], J. Polymer Science. Polymer Physics,2005,43: 1354-1364.
    17. Zong Z, Kimura Y, Takahashi M, Yamane H. Characterization of chemical and solid state structures of acylated chitosans [J], Polymer,2001,41:899-906.
    18.夏文水,陈洁.甲壳素和壳聚糖的化学改性及其应用[J],无锡轻工业学院学报,1994,13(2):162-171.
    19.郑化,杜予民,余家会,肖玲.N-酰基壳聚糖的制备及取代度控制的研究[J],武汉大学学报,2000,46(6):685-688.
    20. Liu, Wei-Zhi, et al. The preparation and properties of N-acetylated chitosan films [J], Chinese Journal of Biomedical Engineering,2004,23:182-186.
    21. Kubota N, Eguchi Y. Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility [J], Polymer Journal, 1997,29:123-127.
    22. Lu S J, Song X F, et al. Preparation of water-soluble chitosan [J], J. Appl. Polym. Sci.,2004,91:3497-3503.
    23.林友文,许晨,卢灿辉.O-2’-羟丙基三甲基氯化铵壳聚糖的合成与表征[J],合成化学,2000,8(2):167-170.
    24. Nishimura S, Kohgo O, Kurita K. Chemical manipulations of a rigid polysaccharide:syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications [J], Macromolecules,1991,24:4745-4748.
    25.陈煜,多英全,罗运军,谭惠民.3,4,5-三甲氧基苯甲酰壳聚糖的制备与表征[J],高分子材料科学与工程,2004,20(3):203-210.
    26.袁文,尹学琼,贺永宁,林强.壳聚糖羧基化的研究进展[J],化学试剂,2007,29(5):277-280;286.
    27. Liu X F, Guan Y L, Yang D Z, Li Z and Yao K D. Antibacterial action of chitosan and carboxymethylated chitosan [J], J. Appl. Polym. Sci.,2001,79: 1324-1335.
    28. Muzzarelli R A A. Carboxymethylated chitins and chitosans [J], Carbohydr. Polym.,1988,8(1):1-21.
    29. Yin L C, Fei L K, Cui F Y, et al. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks [J], Biomaterials,2007,28:1258-1266.
    30. Chen L Y, Tian Z G, Du Y M. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices [J], Biomaterials,2004,25:3725-3732.
    31. Lin Y H, Liang H F, Chung C K, Chen M C, Sung H W. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs [J], Biomaterials,2005,26:2105-2113.
    32. Chen S C, Wu Y C, Mi F L, Lin Y H, Yu L C, Sung H W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery [J], J. Controlled Release,2004,96(2): 285-300.
    33. Muzzarelli R A A, Ramos V, Stanic V, et al. Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan [J], Carbohydr. Polym., 1998,36(4):267-276.
    34. Zhu A P, Jin W J, Yuan L H, et al. O-Carboxymethylchitosan-based novel gatifloxacin delivery system [J], Carbohydr. Polym.,2007,68:693-700.
    35. Zhu A P, Liu J H, Ye W H. Effective loading and controlled release of camptothecin by O-carboxymethylchitosan aggregates [J], Carbohydr. Polym. 2006,63(1):89-96.
    36. Liu T Y, Chen S Y, Lin Y L, Liu D M. Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel:water-retention ability and drug encapsulation [J], Langmuir,2006,22(23):9740-9745.
    37.王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究[J],功能高分子学报,1998,11(1):83-86.
    38. Muzzarelli R A A, Tanfani F, Enamuelli M, Mariotti S. Characterization of n-methyl, n-ethyl, n-propyl, n-butyl and n-hexyl chitosans, novel film forming [J], J. Membrane Sci.,1983,16:295-308.
    39.李芳,刘文广,薛涛,姚康德等.烷基化壳聚糖的制备及载药膜的释放行为研究[J],化学工业与工程,2002,19(4):281-285.
    40.董炎明,吴玉松,王勉等.N-苄基壳聚糖的合成和液晶性表征[J],厦门大学 学报(自然科学版),2001,40(1):63-67.
    41.许晨,易瑞灶.HE-Chitosan的合成、结构表征及溶解性[J],中国海洋药物,2000,19(2):28-31.
    42.李铭,葛英勇,王婷婷.改性壳聚糖在化妆品中的应用研究[J],四川化工,2004,7(1):1-3.
    43. Sieval A B, Thanou M, Kotze A F, Verhoef J C, Brussee J, Junginger H E. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride [J], Carbohydrate Polymers,1998,36(2-3):157-165.
    44. Lang G, Konrad E, Wendel H, et al. Cosmetic compositions based upon N-hydroxypropyl-chitosans [P], U.S.Patent 4,780,310 (25/10/1988).
    45. Lang G, Gerhard M, Hans-Rudi L, Konard E, Breuer L, Hoch D. Cosmetic compositions on the basis of alkyl-hydroxypropyl-substituted chitosan derivatives, U.S.Patent 4,845,204 (04/071989).
    46. Lang G, Konrad E, Wendel H, Maresch G, Hans-Rudi L. Cosmetic compostions based upon N-hydroxybutyl-chitosans [P], U.S.Patent 4,931,271 (05/06/1990).
    47. Donges R, Reichel D, Birgit K. Process for the preparation and work-up of N-hydroxyalkylchitosans [P], U.S. Patent 6,090,928 (18/07/2000).
    48.蒋玉湘,李鹏程.壳聚糖硫酸酯制备方法[J],海洋科学,2004,(28):75-77.
    49. Nagahata M, Nakaoka R, Teramoto A, Abe K and Tsuchiya T. The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes [J], Biomaterials,2005,26(25):5138-5144.
    50. Youn R G, Ryual R S, Doung J H, Uk J B. Synthesis and characterization of β-poly(glucose-amine)-N-(2,3-dihydroxypropyl) derivatives as medical care and biological joint material. Family 2. Tri or tetra-sulfated β-chitosan [J], Macromolecular Symposia,2004,216:47-54.
    51.杨俊玲.甲壳素和壳聚糖的化学改性研究[J],天津工业大学学报,2001,20(5):79-82.
    52. Wang X H, Ma J B, Wang Y N, He B L. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements [J], Biomaterials,2001,22:2247-2255.
    53. Lu H B, Ma C L, Cui H. Controlled crystallization of calcium phosphate under stearic acid monolayers [J], Journal of Crystal Growth,1995,155:120-125.
    54.姚瑞华,孟范平,张龙军,马冬冬,亢小丹.改性壳聚糖对重金属离子的吸附研究和应用进展[J],材料导报,2008,22(4):65-70.
    55.胡道道,史启祯,唐宗薰,房喻.甲壳素/壳聚糖的配位化学和配合物应用的研究进展[J],无机化学学报,2000,16(3):385-394.
    56.季君晖.Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究[J],应用化学,2000,17(1):115-116.
    57.黄晓佳,王爱勤,袁光谱.壳聚糖对Zn2+的吸附性能研究[J],离子交换与吸附,2000,16(1):60-65.
    58. Kurita K, Kawata M, Koyama Y, Nishimura S I. Graft copolymerization of vinylmonomers onto chitin with cerium(Ⅳ) [J], J. Appl Polym. Sci.,1991,42: 2885-2890.
    59.吴昊,陆婷,朱爱萍.壳聚糖接枝甲基丙烯酸羟乙酯的合成与表征[J],扬州大学学报(自然科学版),2005,8(2):24-27.
    60. Li W, Li Z Y, Liao W S, Feng X J. Chemical modification of biopolymers mechanism of model graft copolymerization of chitosan [J], J. Biomater. Sci. Poly Ed.,1993,4(5):557-566.
    61. Caner H, Hasipoglu H, Yilmaz O, Yilmaz E. Graft copolymerrization of 4-vinylpyridine on to chitosan-1. By ceric ion initiation [J], Eur. Polym. J. 1998,34:493-497.
    62.张诚,孟琴,吕德伟.米根霉细胞壁结构性多糖与丙烯酸接枝共聚反应研究[J],高分子学报,2001,(2):241-244.
    63. Pourjavadi A, Mahdavinia G R, Zohuriaan-Mehr M J, Omidian H. Modified chitosan. I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile [J], Appl. Polym. Sci.,2003,88:2048-2054.
    64.彭湘红.甲基丙烯酸与壳聚糖接枝共聚物的制备及应用研究[J],精细化工,2000,7(3):137-139.
    65. Don T M, King C F, Chiu W Y. Synthesis and properties of chitosan-modified polyvinyl acetate [J], J. Appl. Polym. Sci.,2002,86(12):3057-3063.
    66. Don T M, King C F, Chiu W Y. Preparation of chitosan-graft-polyvinyl acetate copolymers and their adsorption of copper ion [J], Polymer Journal,2002, 34(6):418-425.
    67. Sun T, Xu R X, Liu Q, et al. Graft copolymerization of methacrylic acid onto carboxymethyl chitosan [J], European Polymer Journal,2003,39(1):189-192.
    68. Li Y, Yu H, Liang B, et al. Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution [J], J. Appl. Polym. Sci.,2003,90:2855-2860.
    69. Harris J M, Struck E C, Case M G, Paley M S, Yalpani M, Van Alstine J M, Brooks Donald E. Synthesis and characterization of poly (ethylene glycol) derivatives [J], J. Polym. Sci., Polym. Chem.,1984,22(2):341-352.
    70. Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Saimoto H, Shigemasa Y. Preparation and characterization of water-soluble chitin and chitosan derivatives [J], Carbohyd. Polym.,1998,36:49-59.
    71. Muslim T, Morimoto M, Saimoto H, Okamoto Y, Minami S, Shigemasa Y. Synthesis and bioactivities of poly(ethylene glycol)-chitosan hybrids [J], Carbohyd. Polym.,2001,46:323-330.
    72. Gorochovceva N, Naderi A, Dedinaite A, Makuska R. Chitosan-N-poly (ethylene glycol) brush copolymers:Synthesis and adsorption on silica surface [J], European Polymer Journal,2005,41:2653-2662.
    73. Gorochovceva N, Makuska R. Synthesis and study of water-soluble chitosan-O-poly (ethylene glycol) graft copolymers [J], Eur. Polym. J.,2004, 40:685-691.
    74. Hu Y Q, Jiang H L, Xu C N, Wang Y J, Zhu K J. Preparation and characterization of poly(ethylene glycol)-g-chitosan with water and organosolubility [J], Carbohydrate Polymers,2005,61:472-479.
    75. Ouchi T, Nishizawa H, Ohya Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution [J], Polymer,1998,39(21):5171-5175.
    76. Park I K, Kim T H, Park Y H, Shin B A, Choi E S, Chowdhury E H, Akaike T, Cho C S. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte targeting DNA carrier [J], J. Control. Release,2001,76:349-362.
    77. Huh K M, Cho Y W, Chung H, et al. Supramolecular hydrogel formation based on inclusion complexation between poly (ethyleneglycol)-modified chitosan and α-cyclodextrin [J], Macromolecular Bioscience,2004,4:92-99.
    78. Silva S S, Menezes S M C, Garica R B C. Synthesis and characterization of polyurethane-g-chitosan [J], Eur. Polym. J.,2003,39 (7):1515-1519.
    79. Lebouc F, Dez I, Desbrieres J, Picton L, Madec P. Different ways for grafting ester derivatives of poly(ethylene glycol) onto chitosan:related characteristics and potential properties [J], Polymer,2005,46:639-651.
    80. Makuska R, Gorochovceva N. Regioselective grafting of poly(ethylene glycol) onto chitosan through C-6 position of glucosamine units [J], Carbohydrate Polymers,2006,64:319-327.
    81. Muslim T, Morimoto M, Saimoto H, et al. Synthesis and bioactivities of poly (ethylene glycol)-chitosan hybrids [J], Carbohyd. Polym.,2001,46:323-330.
    82. Detchprohm S, Aoi K, Okada M. Synthesis of a novel chitin derivative having oligo (ε-caprolactone) side chains in aqueous reaction [J], Macromol. Chem. Phys.,2001,202:3560-3570.
    83. Fujioka M, Okada H, Kusaka Y, Nishiyama S, Noguchi H, Ishii S, Yoshida Y. Enzymatic synthesis of chitin-and chitosan-graft-aliphatic polyesters [J], Macromolecular Rapid Communications,2004,25:1776-1780.
    84. Liu L, Li Y, Liu Hao, Fang Y E. Synthesis and characterization of chitosan-graft-polycaprolactone copolymers [J], Eur. Polym. J.,2004,40: 2739-2744.
    85. Wu Y, Zheng Y L, et al. Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer [J], Carbohydrate Polymers,2005,59: 165-171.
    86. Liu Y, Tian F, Hu K A. Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan [J], Carbohydrate Research, 2004,339(4):845-851.
    87.刘其凤,任惠霞.甲壳素及其衍生物壳聚糖的应用前景[J],中国药事,2004,18(8):507.
    88. Knorr D. Use of chitin polymer in food [J], Food Technology,2001,55(1): 112-118.
    89. Oh H I, Kim Y J, Chang E J, et al. Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise [J], Biosci Biotechnol. Biochem.,2001,65(11):2378-2383.
    90.胡海红.甲壳质/壳聚糖及其衍生物在工农业中的应用[J],河套大学学报,2005,2(2):35-38.
    91. Blau S, Jubeh T T, Haupt S M, Rubinstein A. Drug targeting by surface cationization [J], Critical reviews in therapeutic drug carrier systems,2000, 17(5):425-465.
    92.姚子昂,吴海歌,邢福有,韩宝芹.壳聚糖在组织工程中应用的研究进展[J],中国生物工程杂志,2003,23(10):32-36.
    93.叶芬,尹玉姬,孙光洁,宋雪峰,姚康德.壳聚糖支架在组织工程中的应用[J],功能材料,2002,33(5):459-461.
    94.敖强,王爱军,孙志刚,张秀芳.一种壳聚糖神经组织工程支架的制备及 表征[J],中国组织工程研究与临床康复,2008,12(1):47-50.
    95. Kim S K, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS):A review [J], Carbohydr. Polym.,2005,62: 357-368.
    96. Ilina A V, Varlamov V P. Hydrolysis of chitosan in lactic acid [J], Applied Biochemistry and Microbiology,2004,40:300-303.
    97. Einbu A, Grasdalen H, Varum K M. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid [J], Carbohydr. Res.,2007,342: 1055-1062.
    98.刘晓,石瑛,白雪芳,杜昱光.甲壳低聚糖的酸水解[J],中国水产科学,2003,10(1):69-72.
    99.曾坤伟,李夜平,方月娥.水溶性微晶壳聚糖的制备及结构[J],应用化学,2002,19(3):216-217.
    100.赵海峰,张敏卿,曾爱武.H202氧化降解壳聚糖研究[J],化工进展,2003,22(2):160-164.
    lO1.Tian F, Liu Y, Hu K A, Zhao B Y. The depolymerization mechanism of chitosan by hydrogen peroxide [J], J. Mater. Sci.,2003,38:4709-4712.
    102.张文清,柴平海,夏玮,张亚军.NaOCl/H2O2协同氧化制备壳寡糖[J],华东理工大学学报,2000,26(4):425-428.
    103.Hasegawa M, Isogai A, Onabe F. Preparation of low-molecular-weight chitosan using phosphoric acid [J], Carbohydr. Polym.,1993,20:279-283.
    104. Jia Z S, Shen D F. Effect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid [J], Carbohydr. Polym.,2002,49(4):393-396.
    105.Furusaki E, Ueno Y, Sakairi N, et al. Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl-β-cyclodextrin [J], Carbohydr. Polym.,1996,29:29-34.
    106. Allan G G, Peyron M. Molecular weight manipulation of chitosan I:kinetics of depolymerization by nitrous acid [J], Carbohydr. Res.,1995,277:257-272.
    107. Tφmmeraas K, Varum K M, Christensen B E, Smidsrod O. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans [J], Carbohydr. Res.,2001,333:137-144.
    108.Tφmmeraas K, Koping-Hoggard M, Varum K M, et al. Preparation and characterisation of chitosans with oligosaccharide branches [J], Carbohydr. Res.,2002,337:2455-2462.
    109.刘幸海,李正名,王宝雷.壳寡糖的制备工艺最新研究进展[J],天津化工,2006,20(1):1-6.
    110. Dennhart N, Fukamizo T, Brzezinski R, Lacombe-Harvey M, Letzel T. Oligosaccharide hydrolysis by chitosanase enzymes monitored by real-time electrospray ionization-mass spectrometry [J], J. Biotechnology,2008,30: 253-260.
    111. Ming M, Kuroiwa T, Ichikawa S, Sato S, Mukataka S. Production of chitosan oligosaccharides by chitosanase directly immobilized on an agar gel-coated multidisk impeller [J], Biochemical Engineering Journal,2006,28:289-294.
    112.朱孔营,渠荣遴,李方.低分子量壳聚糖制备与应用研究进展[J],高分子通报,2006,(2):41-45.
    113. Lin H, Wang H Y, Xue C H, et al. Preparation of chitosan oligomers by immobilized papain [J], Enzyme and Microbial Technology,2002,31(5): 588-592.
    114. Muzzarelli R A A, Barontini G, Rocchetti R. Isolation of lysozyme on chitosan [J], Biotechnol. Bioeng.,1978,20:87-94.
    115. Muzzarelli R A A, Tanfani F, Scarpini G. Chelating, film-forming, and coagulating ability of the chitosan-glucan complex from a spergillus niger industrial wastes [J], Biotechnol. Bioeng.,1980,22:885-896.
    116. Roy I, Sardar M, Gupta M N. Evaluation of a smart bioconjugate of pectinase for chitin hydrolysis [J], Biochem. Eng. J.,2003,16:329-335.
    117. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Sukwattanasinitt M, Pichyangkura R, Aiba S. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes [J], Carbohydr. Polym.,2003,51:391-395.
    118. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S. Production of N-acetyl-D-glucosamine from a-chitin by crude enzymes from aeromonas hydrophila H-2330 [J], Carbohydr. Res.,2002,337:761-763.
    119. Fu Y J, Wu S M, Chang C T, Sung H Y. Characterization of three chitosanase isozymes isolated from a commercial crude porcine pepsin preparation [J], Journal of Agricultural and Food Chemistry,2003,51:1042-1048.
    120.Vishu Kumar A B, Varadaraj M C, Lalitha R G, Tharanathan R N. Low molecular weight chitosan:preparation with the aid of papain and characterization [J], Biochim. Biochim. Biophys. Acta,2004,1670:137-146.
    121. Kim S K, Park P J, Yang H P, et al. Subacute toxicity of chitosan oligosaccharide in sprague-dawley rats [J], Arzneimittelforsch,2001,51(9): 769-774.
    122.夏文水,吴焱楠.甲壳低聚糖功能性质[J],无锡轻工大学学报,1996,15(4):2911-2916.
    123. Shin Y, Yoo D I, Min K. Antimicrobial finishing of polypropylene non-woven fabric by treatment with chitosan oligomer [J], J. Appl. Polym. Sci.,1999,74: 2911-2916.
    124. Choi B K, Kim K Y, Yoo Y J, et al. In vitro antimicrobial activity of chitooligosaccharide mixture against actinobacillus actinomycetemcomitans and streptococcus mutans [J], Int. J. Antimicrob Agents,2001,18(6): 553-557.
    125. Yoon H J, Moon M E, Park H S, Im S Y, Kim Y H. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells [J], Biochemical and Biophysical Research Communications,2007,358: 954-959.
    126. Ouchi T, Banba T, Matsumoto T, et al. Synthesis and antitumor activity of conjugates of 5-fluorouracil and chitooligosaccharides involving a hexamethylene spacer group and carbamoyl bonds [J], Drug. Des. Deliv., 1990,6(4):281-287.
    127.刘莹,柳红.壳寡糖对人结肠癌LoVo细胞株生长的影响[J],徐州医学院学报,2002,22(2):148-151.
    128.杜昱光,白雪芳,金宗濂等.壳寡糖抑制肿瘤作用的研究[J],中国海洋药物,2002,21(2):18-21.
    129. Shibuya N, Minami E. Oligosaccharide signalling for defence responses in plant [J], Physiological and Molecular Plant Pathology,2001,59:223-233.
    130.李明春,冯震,辛梅华,刘超.十二酰化壳寡糖的制备及其性质[J],化工进展,2005,24(9):1024-1028.
    131. Hu F Q, Ren G F, Yuan H, et al. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel [J], Colloids and Surfaces B:Biointerfaces,2006,50:97-103.
    132. Hu F Q, Wu X L, Du Y Z, et al. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin [J], European Journal of Pharmaceutics and Biopharmaceutics,2008,69:117-125.
    133. Sun T, Zhou D X, Xie J L, Mao F. Preparation of chitosan oligomers and their antioxidant activity [J], European Food Research and Technology,2007,225: 451-456.
    134. Sun T, Zhou D X, Mao F, Zhu Y N. Preparation of low-molecular-weight carboxymethyl chitosan and their superoxide anion scavenging activity [J], Eur. Polym. J.,2007,43:652-656.
    135. Sun T, Yao Q, Zhou D X, Mao F. Antioxidant activity of N-carboxymethyl chitosan oligosaccharides [J], Bioorganic & Medicinal Chemistry Letters, 2008,18:5774-5776.
    136. Huang R H, Rajapakse N, Kim S K. Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives [J], Carbohydr. Polym.,2006,63:122-129.
    137. Kim S K, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS):a review [J], Carbohydr. Polym.,2005,62: 357-368.
    138. Li M C, Xin M H, Miyashita T. Preparation of N,N-dilauryl chitosan Langmuir-Blodgett film [J], Polymer International,2002,51:889-891.
    139. Wang R M, He N P, He Y F, Xie Y T, Wang Y P, Tsuchida E. The preparation of nano-scope chitosan-oligomer copper complexes and their interaction with DNA [J], Polym. Adv. Technol.,2005,16:638-641.
    140. Cho Y W, Han S S, Ko S W. PVA containing chito-oligosaccharide side chain [J], Polymer,2000,41:2033-2039.
    141. Gao K J, Li G T, Shi H W, Lu X P, Gao Y B, Xu B Q. Synthesis and aggregation behavior of chitooligosaccharide-based biodegradable graft copolymers [J], J. Polym. Sci., Part A:Polym. Chem.,2008,46:4889-4904.
    142. Ujiie S, Iimura K. Thermal properties and orientational behavior of a liquid crystalline ion complex polymer [J], Macromolecules,1992,25:3174-3178.
    143. Langer R, Vacanti J P. Tissue engineering [J], Science,1993,260:920-926.
    144.姚康德,毛津淑,崔元璐.组织工程用生物降解材料特性[J],材料导报,2000,14(10):8-10.
    145.姚康德,王向辉,侯信.组织工程相关生物材料[J],天津理工学院学报, 2000,16(4):1-5.
    146. Deniz K, Chang Liu. Microfabrication technology for polycaprolactone, a biodegradable polymer [J], J. Micromech. Microeng.,2000,10:80-84.
    147. Matthew R, Eric F, Allan G A, et al. Cell attachment and proliferation on novel polycaprolactone fibres having application in soft tissue engineering [J], Eur. Cells Mater.,2002,4(2):62-63.
    148.Hutmacher D W, Schantz T, Zein I, et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling [J], J. Biomed. Mater Res.,2001,55(2):203-216.
    149.艾合麦提·玉素甫,陈统一,陈中伟,刘大鹏,王振斌.可降解聚己内酯修复骨缺损的实验研究[J],中国修复重建外科杂志,2005,19(6):439-442.
    150.段亮.可降解生物材料人工胸壁的制备与实验研究[D],上海:第二军医大学,2004.
    151.Cortizo M S, Molinuevo M, Cortizo A M. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering [J], J. Tissue Eng. Regen. Med.,2008,2:33-42.
    152.Klok H A, Hwang J J, Iyer S N, et al. Cholesteryl-(L-lactic acid) building blocks for self-assembling biomaterials [J], Macromolecules,2002,35: 746-759.
    153. Hwang J J, Iyer S N, Li L S, Claussen R, Harrington D A, Stupp S I. Proceedings of the national academy of sciences of the United States of America [J],2002,99:9662-9667.
    154. Han D K, Hubbell J A. Synthesis of polymer network scaffolds from L-Lactide and poly (ethylene glycol) and their interaction with cells [J], Macromolecules,1997,30:6077-6083.
    155.余贯华,计剑,沈家骢.胆固醇-聚(D,L-乳酸)的制备及软骨细胞相容性研究[J],高分子学报,2006,(1):136-140.
    156. Li L H, Tu M, Mou S S, et al. Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes [J], Biomaterials,2001, 22(19):2595-2599.
    157.屠美,牟善松,周长忍.胆甾醇液晶复合膜的制备及血液相容性研究[J],暨南大学学报(自然科学版),2005,26(5):684-688.
    158.蒋挺大.甲壳素,北京:化学工业出版社[M],2003,3-4.
    159. Janes K A, Calvo P, Alonso M J. Polysaccharide colloidal particles as delivery systems for macromolecules [J], Advanced Drug Delivery Reviews, 2001,47:83-97.
    160. Mura P, Zerrouk N, Mennini N, Maestrelli F, et al. Development and characterization of naproxen-chitosan solid systems with improved drug dissolution [J], European Journal of Pharmaceutical Sciences,2003,19: 67-75.
    161. Jeon Y J, Park P J, Kim S K. Antimicrobial effect of chitooligosaccharides produced by bioreactor [J], Carbohyd. Polym.,2001,44:71-76.
    162.Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S. Growth inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose [J], Chem. Pharm. B, 1988,36:784-790.
    163. Hirano S, Iwata M, Yamanaka K, Tanaka H, Toda T, Inui H. Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbits [J], Agr. Biol. Chem.,1991,55:2623-2625.
    164. Prashanth K V H, Tharanathan R N. Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis [J], Biochimica et Biophysica Acta,2005,1722:22-29.
    165.Gref R, Rodrigues J, Couvreur P. Polysaccharides grafted with polyesters: Novel amphiphilic copolymers for biomedical applications [J], Macromolecules,2002,35:9861-9867.
    166. Kim K, Kwon S, Park J H, Chung H, Jeong S Y, Kwon I C, Kim I S. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates [J], Biomacromolecules,2005,6: 1154-1158.
    167. Zhang C, Qineng P, Zhang H J. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system [J], Colloids and Surfaces B:Biointerfaces,2004,39:69-75.
    168.Miwa A, Ishibe A, Nakano M, et al. Development of novel chitosan derivatives as micellar carriers of taxol [J], Pharmaceutical Research,1998, 15(12):1844-1850.
    169.Kurita K, Kojima T, Nishiyama Y, et al. Synthesis and some properties of nonnatural amino polysaccharides:Branched chitin and chitosan [J], Macromolecules,2000,33:4711-4716.
    170. RaviKumar M N V, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan chemistry and pharmaceutical perspectives [J], Chemical Reviews, 2004,104(12):6017-6084.
    171. Jiang G B, Quan D P, Liao K R, et al. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups [J], Carbohydrate Polymers,2006,66:514-520.
    172.Uchegbu I F, Schatzlein A G, Tetley L, et al. Polymeric chitosan-based vesicles for drug delivery [J], J. Pharm. Pharmacol.,1998,50:453-458.
    173. Wang W, McConaghy A M, Uchegbu I F, et al. Controls on polymer molecular weight may be used to control the size of palmitoyl glycol chitosan polymeric vesicles [J], Langmuir,2001,17:631-636.
    174.谢彩婷,辛梅华,李明春,汪敏.N,N-双十二烷基壳聚糖自组装纳米药用泡囊的制备[J],化工进展,2005,24(4):411-413.
    175.Suto S, White J L, Fellers J F. A comparative study of the thermotropic mesomorphic tendencies and rheological characteristics of three cellulose derivates:Ethylene and propylene oxide ethers and an acetate butyrate ester [J], Rheol. Acta,1982,21:62-71.
    176.李新贵,黄美荣.液晶纤维素及其衍生物的进展[J],高分子通报,1990,(4):213-221.
    177.董炎明,袁清,肖滋兰,汪剑炜.氰乙基羟丙基壳聚糖的溶致和热致液晶性研究[J],高等学校化学学报,1999,20(1):140-145.
    178.董炎明,郭振楚,吴玉松,阮永红,童碧海,赵雅青,王惠武.热塑性甲壳素衍生物N,O-苄基壳聚糖的合成及表征[J],高等学校化学学报,2003,24(12):2330-2332.
    179.张美珍,柳百坚,谷晓昱.聚合物研究方法[M],北京:中国轻工业出版社,2000,68-79.
    180.董炎明.高分子材料使用剖析技术[M],北京:中国石化出版社,1997,366-395.
    181.Nishimura S, Kohgo O, Kurita K, Kuzuhara H. Chemospecific manipulations of a rigid polysaccharide:Syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications [J], Macromolecules,1991,24:4745-4748.
    182. Kurita K, Akao H, Kobayashi M, Mori T, Nishiyama Y. Regioselective introduction of β-galactoside branches into chitosan and chitin [J], Polym. Bull.,1997,39(5):543.
    183. Kurita K, Kojima T, Nishiyama Y, Shimojoh M. Synthesis and some properties of nonnatural amino polysaccharides:Branched chitin and chitosan [J], Macromolecules,2000,33:4711-4716.
    184.Yoksan R, Akashi M, Biramontri S, Chirachaanchai S. Hydrophobic chain conjugation at hydroxyl group onto y-Ray irradiated chitosan [J], Biomacromolecules,2001,2:1038-1044.
    185.Yoksan R, Akashi M, Hiwatari K, Chirachanchai S. Controlled hydrophobic/hydrophilicity of chitosan for spheres without specific processing technique [J], Biopolymers,2003,69:386-390.
    186.赵希荣,夏文水.阳离子壳聚糖的干法制备[J],化工进展,2005,24(3):311-314.
    187. Liu L, Li Y, Zhang W A, et al. Homogeneous graft copolymerization of chitosan with methyl methacrylate by γ-irradiation via a phthaloylchitosan intermediate [J], Polym. Int.,2004,53(10):1491-1494.
    188. Yoksan R, Matsusaki M, Akashi M, Chirachanchai S. Controlled hydrophobic /hydrophilic chitosan:colloidal phenomena and nanosphere formation [J], Colloid Polym. Sci.,2004,28(4):337-342.
    189. Kurita K, Akao H, Yang J, Shimojoh M. Nonnatural branched polysaccharides:synthesis and properties of chitin and chitosan having disaccharide maltose branches [J], Biomacromolecules,2003,4(5): 1264-1268.
    190. Huang M F, Shen W Q, Fang Y E. Synthesis of a novel chitosan derivative having poly (ethylene oxide) side chains in aqueous reaction media [J], Reactive & Functional Polymers,2005,65(3):301-308.
    191. Liu L, Li Y, Fang Y E, Chen L X. Microwave-assisted graft copolymerization of ε-caprolactone onto chitosan via the phthaloyl protection method [J], Carbohydrate Polymers,2005,60(3):351-356.
    192.李凤红,张宇宏,杜延华,等.壳寡糖前驱体的制备与表征[J],东北大学学报(自然科学版),2008,29(8):1143-1146.
    193. Griffith L G. Polymeric biomaterials [J], Acta Mater.,2000,48:263-277.
    194. Hutmacher D W. Scaffolds in tissue engineering bone and cartilage [J], Biomaterials,2000,21:2529-2543.
    195.Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chitosan chemistry and pharmaceutical perspectives [J], Chem. Rev.,2004,104:6147-6176.
    196. Rieger J, Coulembier O, Dubois P, et al. Controlled synthesis of an ABC miktoarm star-shaped copolymer by sequential ring-opening polymerization of ethyleneoxide, benzyl P-Malolactonate, and ε-caprolactone [J], Macromolecules,2005,38:10650-10657.
    197. Kowalski A, Libiszowski J, Biela T. et al. Kinetics and mechanism of cyclic esters polymerization initiated with Tin (Ⅱ) Octoate. Polymerization of ε-caprolactone and L,L-Lactide co-initiated with primary amines [J], Macromolecules,2005,38:8170-8176.
    198. Deng C, Rong G Z, Tian H Y, et al. Synthesis and characterization of poly(ethylene glycol)-b-poly (L-lactide)-b-poly(L-glutamic acid) triblock copolymer [J], Polymer,2005,46:653-659.
    199. Martino A D, Sittinger M, Risbud M V. Chitosan:A versatile biopolymer for orthopaedic tissue-engineering [J], Biomaterials,2005,26:5983-5990.
    200. Ho M H, Wang D M, Hsieh H J, Liu H C, Hsien T Y, Lai J Y. Preparation and characterization of RGD-immobilized chitosan scaffolds [J], Biomaterials, 2005,26:3197-3206.
    201.Lofgren A, Alberstton A C, Dubois Ph, Jeromer R. Recent advances in ring-opening polymerization of lactones and related compounds [J], J.M. S-Rev. Macromol. Chem. Phys.,1995, C35:379-418.
    202. Kowalski A, Libiszowski J, Duda A, Penczek S. Polymerization of L,L-dilactide initiated by tin(Ⅱ) butoxide [J], Macromol.,2000,33: 1964-1971.
    203. Storey R F, Taylor A E. Effect of stannous octoate on the composition, molecular weight and molecular weight distribution of ethylene glycol-initiated poly(ε-caprolactone) [J], J. Macromol. Sci., Pure Appl. Chem.,1998, A35:723-750.
    204. Zhang X, MacDonalds D A, Goosen M F A, McCauley K B. Mechanism of lactide polymerization in the presence of stannous octoate:the effect of hydroxy and carboxylic acid substances [J], J. Polym. Sci. Polym. Chem., 1994,32:2965-2970.
    205. Duda A, Penzek S, Kowalski A, Libiszowski A. Polymerization of ε-caprolactone and L,L-dilactide initiated with stannous octoate and stannous butoxide-a comparison [J], Macromol. Symp.,2000,153:41-53.
    206. Kricheldorf H R, Kreiser-Saunders I, Stricker A, Polylactones 48. SnOct2-initiated polymerizations of lactide:a mechanistic study [J], Macromol.,2000,33:702-709.
    207. Martina M, Hutmacher D W. Biodegradable polymers applied in tissue engineering research:a review [J], Polymer International,2007,56(2): 145-157.
    208. Lee S J, Oh S H, Liu J, Soker S, Atala A, Yoo J J. The use of thermal treatments to enhance the mechanical properties of electrospun poly (ε-caprolactone) scaffolds [J], Biomaterials,2008,29(10):1422-1430.
    209.Petrie Aronin C E, Cooper Jr. J A, Sefcik L S, Tholpady S S, Ogle R C, Botchwey EA. Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(ε-caprolactone) fabricated via co-extrusion and gas foaming [J], Acta Biomaterialia,2008,4: 1187-1197.
    210.蒋挺大.甲壳素[M],北京:化学工业出版社,2002,22.
    211. Albertsson A C, Varma I K. Recent Developments in ring opening polymerization of lactones for biomedical applications [J], Biomacromolecules,2003,4:1466-1486.
    212.Tuzlakoglu K, Alves C M, Mano J F, Reis R L et al. Production and characterization of chitosan fibers and 3-D Fiber mesh scaffolds for tissue engineering applications [J], Macromol. Biosci.,2004,4:811-819.
    213. Eastmond G. C. Poly (ε-caprolactone) Blends [J], Adv Polym Sci.,2000,149: 59-233.
    214. Correlo V M, Boesel L F, Bhattacharya M, Mano J F, Neves N M, Reis R L. Properties of melt processed chitosan and aliphatic polyester blends [J], Mater. Sci. Eng.,2005,403:57-68.
    215.Correlo V M, Pinho E D, Pashkuleva I, Bhattacharya M, Neves N M, Reis R L. Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites [J], Macromol. Biosci.,2007,7:354-363.
    216.Sarasam A, Madihally S V. Characterization of chitosan polycaprolactone blends for tissue engineering applications [J], Biomaterials,2005,26(27): 5500-5508.
    217. Nam Y S, Yoon J J, Park T G. A novel fabrication method of macroprous biodegradable polymer scaffolds using gas foaming salt as a porogen additive [J], J. Biomedical Mater. Res.,2000,53(1):1-7.
    218. Liu L, Wang Y S, Shen X F, Fang Y E. Preparation of chitosan-g-polycaprolactone copolymers through ring-opening polymerization of ε-caprolactone onto phthaloyl-protected chitosan [J], Biopolymers,2005,78:163-170.
    219. Yu H J, Wang W S, Chen X S, Deng C, Jing X B. Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers [J], Biopolymers,2006,83:233-242.
    220. Liu L, Li Y P, Li Y, Fang Y E. Rapid N-phthaloylation of chitosan by microwave irradiation [J], Carbohydrate Polymers,2004,57(1):97-100.
    221. Lu Y Y, Liu L, Guo S R. Novel amphiphilic ternary polysaccharide derivates chitosan-g-PCL-b-MPEG:Synthesis, characterization, and aggregation in aqueous solution [J], Biopolymers,2007,86:403-408.
    222. Rokicki, G. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers [J], Progress in Polymer Science,2000,25(2):259-342.
    223.Pego A P, Van Luyn M J A, Brouwer L A, van Wachem P B, Poot A A, Grijpma D W, Feijen J. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or-caprolactone:Degradation and tissue response [J], J. Biomed. Mater. Res., 2003,67A:1044-1054.
    224. Zhu K J, Hendren R W, Jensen K, Pitt C G. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate) [J], Macromolecules, 1991,24(8):1736-1740.
    225. Matsuda T, Kwon I K, Kidoaki S. Photocurable biodegradable liquid copolymers:synthesis of acrylate-end-capped trimethylene carbonate-based prepolymers, photocuring, and hydrolysis [J], Biomacromolecules,2004,5(2): 295-305.
    226. Yu C P, Zhang L F, Shen Z Q. Ring-opening polymerization of 2,2-dimethyltrimethylene carbonate using rare-earth tris (4-tert-butylphenolate)s as a single component initiator [J], Journal of Molecular Catalysis A: Chemical,2004,212(1-2):365-369.
    227. Kricheldorf, Hans R.; Kreiser-Saunders, Ingrid. Polylactones:30. Vitamins, hormones and drugs as co-initiators of AlEt3-initiated polymerizations of lactide [J], Polymer,1994,35(19):4175-4180.
    228.Klok H A, Hwang J J, Hartgerink J D, Stupp S I. Self-assembling biomaterials:L-lysine-dendron-substituted cholesteryl-(L-lactic acid) [J], Macromolecules,2002,35 (16):6101-6111.
    229. Sung H J, Meredith C, Johnson C, et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis [J], Biomaterials, 2004,25(26):5735-5742.
    230. Wan T, Zou T, Cheng S X, Zhuo R X. Synthesis and characterization of biodegradable cholesteryl end-capped polycarbonates [J], Biomacromolecules,2005,6(1):524-529.
    231. Yu L, Zhang H, Cheng S X, Zhuo R Xi. Study on the drug release property of cholesteryl end-functionalized poly (ε-caprolactone) microspheres [J]. J. Biomed. Mater. Res. Part B:Appl. Biomater.,2006,77B:39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700