用户名: 密码: 验证码:
电化学合成羟基磷灰石涂层及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国每年由于疾病及交通事故引起的骨骼和牙齿的修复与替换病例逐渐增加。植入体材料的发展已成为我国国民经济的重要组成部分。常用于制作骨骼和牙齿的植入体材料Ti6A14V合金因表面生物活性差,易产生孔蚀,并向肌体释放有害金属离子等缺陷,常导致植入体的失效。因此,对Ti6A14V合金表面进行改性已成为当今植入体材料发展的主要趋势。本文研究了Ti6A14V合金在Hank溶液、Ringer溶液和Tyrode溶液中的电化学行为,并在其表面采用三种电化学方法合成具有良好的生物活性的羟基磷灰石涂层(Hydroxyapatite,简称HA, Ca10(PO4)6(OH)2),同时对材料进行血液相容性和电化学性能研究。
     研究结果表明Ti6A14V合金在三种模拟体液中,随着环境温度的升高,热力学稳定性降低,维钝电流密度增大,耐蚀性下降;孔蚀动力学方程为:iHank=1.0756·(t-1.1649)-1/2,iRinger=1.0940·(t-1.4437)-1/2,iTyrode=2.0564(t-0.4568)-1/2。,孔蚀发展过程氯化物盐膜溶解控制;电化学反应的活化能分别为EaHank=45.71KJ/mol、EaRinger=155.1和Ea Tyrode=87.62 KJ/mol,属于化学反应控制。
     以阴极电化学沉积为基础,采用电化学牺牲阳极法在Ti6A14V合金表面制备HA涂层。HA涂层晶体呈花絮状分布,Ca/P比为1.41,厚度约15gm,结合强度为10.02MPa。通过血小板粘结实验、动态凝血时间曲线和溶血率的测定,HA涂层具有较好的血液相容性。电化学实验表明,HA涂层的耐蚀性比Ti6A14V合金有所提高。
     为进一步提高HA涂层的结合强度,采用微弧氧化法在Ti6A14V合金表面制备Ti02涂层,再采用阴极恒电位及水热合成法在TiO2涂层表面制备HA涂层。分布有少量圆形微孔的Ti02涂层厚度约为6μm。HA涂层呈片状,Ca/P比为1.669,厚度约为7.5μm。TiO2/HA涂层的结合强度为14.04 MPa,但溶血率为6.02%较牺牲阳极法的4.64%有所下降。电化学性能测试表明TiO2/HA涂层降低了Ti6A14V合金的腐蚀倾向。
     在此基础上采用交流脉冲电合成法在Ti6A14V合金表面成功制备Ti02和HA弥散分布的复合涂层。对涂层的形貌和成分进行分析,并测试其血液相容性和在三种模拟体液中的电化学性能。HA复合涂层晶体分布呈平整和花簇状结构。平整部分由O、P、Ca和Ti元素组成,Ca/P比为1.671;花簇状部分由O、P和Ca元素组成,Ca/P比为1.668;涂层厚度约为7μm;结合强度为18.29MPa;涂层具有优异的血液相容性和电化学性能。采用扫描电化学方法(SECM)分析HA复合涂层的合成机理。
Every year, the number of the patient repairing and replacing the teeth and bones in our country gradually increases due to the illness and traffic accidents. The development of implants materials has become the Chinese important components of the national economy. However, the poor biological activity, pitting corrosion and releasing metal ions harmful to human, which leads to the failure of implant, restrictes the Ti6A14V alloy in implants clinical application. Therefore, the Ti6A14V alloy surface modification has become the main implants materials development trend. In this paper, the corrosion behaviors in Hank's solution, Ringer's solution and Tyrode's solution are tested, and HA coatings are prepared on Ti6A14V alloy by three kinds of electrochemical methods. Moreover, the biocompatibility and the electrochemical behaviors are researched.
     The results show that with the increase of temperature, the thermodynamics stabilities of Ti6A14V alloy decrease, the corrosion current densities increase, and the corrosion resistances reduce, gradually in the three kinds of simulated solution. The kinetic equation of pitting corrosion are iHank=1.0756·(t-1.1649)-1/2, iRinger= 1.0940·(t-1.4437)-1/2, iTyrode=2.0564(t-0.4568)-1/2. The pitting corrosion process is controlled by the dissolution of surface salt membrane. The activation energy Ea in Hank's solution, Ringer's solution and Tyrode's solution are 45.71KJ/mol,155.1 KJ/mol and 87.62 KJ/mol respectively, which under the chemical reaction.
     Based on the cathodic electrodeposition, the HA coatings are prepared on Ti6A14V alloy by sacrificial anode method. The HA coating is composed of flower-like crystal or, the Ca/P ratio is 1.41, and the thickness is about 15μm. The bonding strength is 10.02MPa. By the platelet adhension test, dynamic clotting time curves and hemolysis rate, the HA coating has good blood compatibility. The electrochemical behaviors show the HA coating has more anti-corrosion characters than Ti6A14V alloy.
     In order to improve the bonding strength of the HA coating, TiO2 coating is prepared by microarc oxidation on Ti6A14V alloy. Then, the HA coating is synthesized using cathodic electrodeposition. The surface of TiO2 coating has circular microporous, and the thichness of coating is about 6μm. The TiO2/HA coating is composed of piece-like crystal with thichkness of 7.5μm. The bonding strength of TiO2/HA coating is 14.04MPa. But the blood compatibility is 6.02% worse than the 4.64% of the sacrificial node method. The electrochemical characters test impresses the TiO2/HA coating decreases the corrosion tend of Ti6A14V alloy.
     Based on the above, the single-layer of TiO2 and HA composite coating is prepared by ac pulse electric synthesis on Ti6A14V alloy. The morphology and composition of coating are tested. The blood compatibility and electrochemical behaviors in three kinds of simulated solution are tested, too. The HA composite coating is distributed of flat crystal and the flower-like crystal. The flat crystal is composed of O,P, Ca and Ti, whose Ca/P ratio is 1.671. The flower-like crystal is comosed of O, P and Ca, whose Ca/P ratio is 1.668. The thichness of HA composite coating is 7μm. The bonding strength of HA composite coating is 18.29MPa, and the HA composite coating has excellent blood compatibility and electrochemical performance. The synthesis mechanism is analysised by SECM.
引文
[1]李世普.生物医用材料导论.武汉:武汉工业大学出版社,2000.
    [2]顾汉卿.生物材料的现状及发展.中国医疗器械信息.2001,7(6):39-44.
    [3]李玉宝.生物医学材料.北京:化学工业出版社,2003.
    [4]材料科学技术百科全书编辑委员会.材料科学百科全书.北京:中国大百科全书出版社,1995.
    [5]师昌绪.材料大辞典.北京:化学工业出版社,1994.
    [6]闫玉华,张宏泉,李世普.生物陶瓷及制品的研究现状和发展前景.中国陶瓷.1998,34(2):36-37.
    [7]郝应其,孙元,马艳秋.生物材料及人工关节.北京:北京航空材料研究所,2002.
    [8]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2002.
    [9]Carayon M.T.,Lacout J.L..Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. Journal of Solid State Chemistry.2003,172 (2):339-350.
    [10]Joon B Park.In The Biometical Engineering Handbook.Florida:CRC Press,1995.
    [11]浦素云.金属植入材料与腐蚀.北京:北京航空航天大学出版社,1990.
    [12]卫敏仲,顾汉卿.医用金属材料表面改性与修饰的研究进展.透析与人工器官.2005,16(1):32-40.
    [13]李青.生物体用金属材料.金属功能材料.2000,7(4):8-14.
    [14]Hey Groves E.W..An experimental study of the operative treatment of fractures.Brit. J. Surg.. 1913,1(3):438-501.
    [15]Zierold A. Reaction of bone to various metals. Arch. Surg.1924,9(2):365-412.
    [16]Venable C.S.,Stuck W.G.,Beach A..The effects on bone of the presence of metals; based upon electrolysis. An experimental study.1937,105(6):917-938.
    [17]Buchanan R.A., Rigney E.D., Williams J.M.. Ion implantation of surgical Ti-6A1-4V for improved resistance to wear accelerated corrosion. J. Biomed. Mater.Res..1987,21:355-366.
    [18]Merritt K, Crowe T D, Brown S A. TElimination of nickel, cobalt and chromium following repeated injections of high dose metal salts.TJ. Biomed. Mater. Res.,1989(23):845-862.
    [19]Wang K. The use of titanium for medical applications in the USA. Materials Science and Engineering A,1996,213(1-2):134-137.
    [20]Long M, Rack H J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials,1998,19(18):1621-1639.
    [21]Brown D. All you wanted to know about titanium but were afraid to ask. Br Dent J,1997, 182(10):393-395.
    [22]杨国营.生物医用材料.河北化工.2002,4:17-19.
    [23]Zbigniew Ruszczak,Wolfgang Friess.Collagen as a carrier for on-site delivery of antibacterial drugs.Advanced Drug Deliver Reviews.2003,55(12):1679-1698.
    [24]Wachol-Drewek Z., Pfeiffer M., Scholl E.. Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials,1996,17(17):1733-1738.
    [25]Gergsma J. E., Bruijin W. C. de, Rozema F. R., et al. Late degradation tissue response to ply (L-Lactide) bone plates and screws. Biomaterials.1995,16(1):25-31.
    [26]Zignani M, Minh T. Le, Einmahl S., et al. Improved biocompatibility of a viscous bioerodible poly(ortho ester) by controlling the environmental pH during degradation. Biomaterials.2000, 21(17):1773-1778.
    [27]Lewandrowski Kai-Uwe, Gresse Joseph D., Donald L.et al. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Biomaterials.2000,21(3): 293-298.
    [28]Guo Qipeng, Thomann Ralf, Wolfram Gronski,et al. Nanostructures, Semicrytalline Morphology, and Nanoscale Confinement Effect on the crystallization Kinetics in Self-Organized Block copolymer/Thermosct Blends. Macromolecules.2003,36(10):3635-3645.
    [29]李新化.经基磷灰石生物陶瓷粉体制备及其在钛基体上的涂覆:(硕士学位论文).合肥:合肥工业大学,2003.
    [30]Li Yubao, Klein C.P.A.T., Zhang Xingdong, et al. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. Biomaterials.1994,15(10):835-841.
    [31]Wang Jianxin, Chen Weiqun, Li Yubao, et al. Biological evaluation of biphasic calcium phosphate ceramic vertebral lamminae,1998,19(15):1387-1392.
    [32]Suchanek W, Yoshimura M. Processing and Properties of Hydroxyapatite based Biomaterials for Use as Hard Tissue Replacement Implants. Journal of Materials Research,1998,13(1):94-117.
    [33]Smith Dennnis C.. Development of glass-ionomer cement systems. Biomaterials.1998,19(6): 467-478.
    [34]Zyman Z., Cao Y., Zhang X.. Periodic crystallization effect in the surface layers of coatings during plasma spraying of hydroxyapatite. Biomaterials.1993,14(15):1140-1144.
    [35]Salama Samia N., Salman S. M.. Characterization of glass corrosion and durability. Journal of the European Ceramic Society.1994,13(6):521-528.
    [36]Kokubo T., Kushitani H., Sakka S., et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res.1990,24(6):721-734.
    [37]Kon, E.,Muraglia, A., Corsi, A., et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critilcal-size defects of sheep long bones. J Biomed Mater Res..2000,49(3):328-337.
    [38]Eunsung Park, Robert A, Condrate Sr.. Craded coating of hydroxyapatite and titanium by atmospheric plasma spraying. Materials Letters.1999,40(5):228-234.
    [39]Marra K., Szem J., Kumta P., et al. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J. Biomed mater Res.1999,47(3): 324-335.
    [40]周馨,郑昌琼,王方瑚,等.骨水泥及硅酸钙生物活性骨水泥.硅酸盐通报.1998,5(1):33-38.
    [41]Bhskar S.N., Brady J.M., Getter L.,et al. Biodegradable ceramic implants in bone.:Electron and light microscopic analysis. Oral Surg Oral Med Oral Pathol.1971,32(2):336-346.
    [42]Bolder S. B. T., Verdonschot N., Schreurs B. W., et al. Acetabular defect reconstruction with impacted morsellized bone grafts or TCP/HA particles:A study on the mechanical stability of cemented cups in an artificial acetabulum model. Biomaterials.2002,23(3):659-666.
    [43]Jorg Handschel, Hans Peter Wiesmann, Udo Stratmann,et al. TCP is hardly resorbed and not osteoconnductive in a non-loading calvarial model. Biomaterials.2002,23(7):1689-1695.
    [44]Dong, Jian, Uermura. Toshimasa, Shirasaki. Yoshio, Tateishi. Tetsuya. Promotion of obne formation using highly pure porous β-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials.2002,23:4493-4502.
    [45]Hideki Aoki. Science and Medical Applications of Hydroxyapatite. Takayama Press system center Co. Inc. Tokyo,1991:165-177.
    [46]Alexandra. Porter, Nelesh Patel, Jeremy N. Skepper, et al. Effect of sintered silicate-substituted hydroxyapatite on remodeling processes at the bone-implant interface. Biomaterials.2004,25: 3303-3314.
    [47]Salih V., Georgiou G., Knowles J. C, et al. Glass reinforced hydroxyapatite for hard tissue surgery Part Ⅱ:in vitro evaluation of bone cell growth and function. Biomaterals.2001,22(15): 2817-2824.
    [48]Zhang Xingdong, Chen Jiyong, Zhou Jiming, et al. Porous hydroxyapatite granules:their synthesis, application and characterization. Clinical Materals.1989,4(4):319-327.
    [49]Yang Zongjian, Yuan Huipin, Tong Weidong, et al. Osteogenesis in extraskeletally impianted porous calcium phosphate ceramics:variability among different kinds of animals. Biomaterals. 1996,17(22):2131-2137.
    [50]The late Toshiaki Kitsugi, Takao Yamamuro, Takashi Nakamura, et al. Transmission electro microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials.1995,16(14):1101-1107.
    [51]Wang X. J., Li Y. B., Wei J., et al. Development of biominetic nano-bydroxyapatite/ poly(hexamethylene adipmide) composites. Biomaterials,2002,23(24):4787-4791.
    [52]贡长生.新型功能材料.北京:化学工业出版社,2004.
    [53]黄永光.外科植入用钛合金材料及其标准化.金属学报.2002,38(1):530-532.
    [54]Jandhyala B. S., Horn G. J.. Physiological and pharmacological properties of vanadium. Life Sci 1983,33(14):1325-1340.
    [55]王非,张官厚,刘宝林,等.三种牙科种植材料在活体内的评价.兰后卫生.1995,1(2):96-97.
    [56]Kuroda D., Niinoni M., Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A,1998,243(1-2):244-249.
    [57]Semlitsch M., Weber H., Steicher R., et al. Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials,1992,13(11):781-788.
    [58]Spriano S., Bosetti M., Bronzoni M., et al. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials.2005, 26(11):1219-1229.
    [59]Leitao E., Silva R. A., Barbosa M. A.. Electrochemical and surface modifications on NP+P-ION implanted Ti-5Al-2.5Fe immersed in HBSS. Corrosion Science.1997,39(2):377-383.
    [60]Zu X. T., Wang Z. G., Feng X. D., et al. Surface characterization of a Ti-2Al-2.5Zr alloy by nitrogen ion implantation. Journal of Alloys and Compounds.2003,351(1-2):114-118.
    [61]Lakstein D., Kopelovitch W., Barkay Z., et al. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6A1-4V implants in rabbits. Acta Biomaterialia.2009,5(6):2258-2269.
    [62]崔福斋,冯庆玲.生物材料学.北京:清华大学出版社,2004.
    [63]Tengball I. Physical-chemical considerations of titanium as biomaterial. Chinical Material.1992, 9(2):115-134.
    [64]Fendorf Scott E., Sparks Donald L., Fendorf Mark, et al. Surface precipitation reaction on oxide surfaces. J. Colloid. Interface Sci.1992,148(2):295-298.
    [65]山口乔著.生物陶瓷.天津:天津大学出版社.1992.
    [66]徐光亮,聂轶霞,赖振宇.水热合成羟基磷灰石纳米粉体的研究.无机材料学报.2002,17(3):600-604.
    [67]<中国组织工程研究与临床康复>学术部.让昨天告诉今天:医用羟基磷灰石及其复合材料临床应用的学术与技术进展.中国组织工程研究与临床康复.1999,13(21):4015-4016.
    [68]Brown P. W.,Constantz B., Hydroxyapatite and related Compounds. California:CRC Press, 1994.
    [69]Delaunay Christian, Bonnomet Francois, North Jean, et al. Grit-blasted titanium femoral stem in cementless primary total hip arthroplasty:A 5-to 10-year multicenter study. The Journal of Arthroplasty.2001,16(1):47-54.
    [70]Lamy D., Pierre A. C., Heimann R. B.. Hydroxyapatite coatings with a bond coat of biomedical implants by plasma projection. J Mater Res.1996,11(3):680-685.
    [71]Zhang X, Gubbels G H M, Terpstra R A, et al. Toughening of calcium hydroxyapatite with silver particles. Journal of Materials Science,1997,32:235-243.
    [72]Harald Schmidt, Maziar Soltani-Farshi. Effect of nitrogen implantation on the hydrogen depth distribution and fatigue properties of Ti6A14V. Materials Science and Engineering:A.1998, 248(1-2):73-77.
    [73]Wen H. B., Wolke J. G. C., De Wijin J. R., et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment. Biomaterials,1997,18(22):1471-1478.
    [74]宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺.2002,10(2):100-106.
    [75]梁芳慧,周廉.钛和钛合金生物活化现状.稀有金属与工程.2003,329(4):241-245.
    [76]张欣宇.等离子体微弧氧化技术及其应用.青岛化工学院学报(自然科学版).2002,23(1):69-73.
    [77]Wirtz, K. W. A., Zilversmit, D. B.Partial purification of phospholipid exchange protein from beef heart. FEBS Lett..1970,7(1):44-46.
    [78]Wenbin Xue, Zhiwei Deng. Ruyi Chen, et al. Microstructure end properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation. Journal of Materials Science,2001, 36(11):2615-2619.
    [79]薛文斌,王超,马辉.纯钛表面微弧氧化膜的成分和相结构分析.稀有金属材料与工程.2002,31(5):345-348.
    [80]Gnedenkov S.V., Gordienko P. S., Khrisanfova O. A., et al. Formation of BaTiOR3R coatings on titanium by microarc oxidation method.Journal of Materials Science,.2002,37(11):2263-2265.
    [81]Fu Tao, Huang Ping, Zhang Yong, et al. Preparation of microarc oxidation on layer containing hydroxyapatite crystals on Ti6A14V by drothermal systesis. Journal of materials science letters. 2002,21(3):257-258.
    [82]愈耀庭.生物医用材料.天津:天津大学出版社,2000.
    [83]Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Chinic Orthop Relat Res.1981, 157(6):259-278.
    [84]黄平,徐可为,憨勇.丛于表面生物学改性的多孔状二氧化钛/磷灰石复合薄膜的制备.硅酸盐学报.2002,30(3):316-320.
    [85]Yang C. Y., Wang B. C., Chang E., et al. The Influences of Plasma Spraying Parameters on the Characteristics of Hydroxyapatite Coatings:A Quantitative Study. Journal of Materials Science: Materials in Medicine.1995,6(5):249-257.
    [86]Chang C. K., Huang J. Q., Xia J. Y., et al.Study on crystallization kinetics of plasma sprayed hydroxyapatite coating. Ceramics international.1999,25(5):479-483.
    [87]张其翼,陈继铺,曹阳.在静态和动态下等离子喷涂涂层在模拟体液(SBF)中形成类骨磷灰石的比较研究.四川大学学报(自然科学版).2002,39(6):1085-1088.
    [88]冯家岷,陈继铺,曹阳,等.等离子喷涂羟基磷灰石涂层的结构和疲劳损伤.山东生物医学工程.1995,14(1):56-59.
    [89]付涛,徐可为,憨勇.等离子喷涂-水热处理制备二氧化钛-羟基磷灰石复合膜层.硅酸盐学报.2003,3(1):95-98.
    [90]万怡灶,罗红林,周贤良,等.用热化学反应法制备金属陶瓷涂层工艺的研究.材料工程,1997,51(10):25-28.
    [91]阎洪.金属陶瓷涂层的研究与发展.腐蚀与防护.1995,15(3):146-149.
    [92]付涛,徐可为.仿生法沉积磷灰石层的研究进展.生物医学工程学杂志.2001,18(1):116-118.
    [93]崔忠波,陈民芳.医用金属材料表面仿生处理研究进展.天津理工大学学报.2006,2(6):135-137.
    [94]张建民,杨长春,石秋芝.电泳沉积功能陶瓷涂层技术.中国陶瓷.2000,36(6):36-40.
    [95]Andrews AT. Electrophoresis:theory technique and biochemical and clinical applications. Clarendon press. New York.:oxford university press,1981.
    [96]黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展.硅酸盐学报.2003,31(6):591-597.
    [97]高家诚,张亚平,唐华.激光重熔预处理制备生物陶瓷涂层.粉末冶金技术.1997,15(3):195-198.
    [98]杨俊.钛基羟基磷灰石膜层制备方法.临床口腔医学杂志.2004,6(20):382-383.
    [99]任强,武秀兰.二钛基羟基磷灰石膜层制各技术的研究进展.中国陶瓷.2004,40(1):35-37.
    [100]Piveteau, L. D. Girona, M. I. et aLThin films calcium phosphate and titanium dioxide by a sol-gelroute:A new method for coating medical implants. Journal of Materials Science Materials inedicine,1999.10(3):161-167.
    [101]Montenero A., Gnappi G., Ferrari F., et al. sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials Science Materials:in Medicine,2000,35(11):2791-2797.
    [102]Shirkhanzadeh M.. Bioactive Calcium Phosphate Coatings Prepared by Electrodeposition. J Mater Sci Lett,1991,10(23):1415-1417.
    [103]Royer P., Rcy C.. Calcium phosphate coatings for orthopedic prosthesis. Surface and Coating Technology.1991,45(1-3):171-177.
    [104]Vijayarahavan T. V., Bensalem A.. Electrodeposition of apatite coating on pure titanium and titamiun alloys. J Mater Sci Lett.1994,13(24):1782-1785.
    [105]Ban S., Maruno S.. Effect of temperature on electrochemical deposition of calcium phosphate coating in a simulated body fluid. Biomaterials,1995,16(13):977-981.
    [106]Shirkhanzadeh M.. Calcium Phosphate Coatings Prepared by electrocrystallization from aqueous elecrolytes. J. Mater. Sci. Mat..1995,6(2):90-93.
    [107]Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Met,1998,9(2):67-72.
    [108]胡皓冰,林昌健.电化学沉积制备羟基磷灰石涂层及激励研究.电化学.2002,8(3):288-294.
    [109]Larsson C, Thomsen P., Lausmaa J., et al. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknessand and morphology. Biomaterials,1994,15(13):1062-1074.
    [110]Healy K.E., Ducheyne P.. Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials.1992,13(8):553-561.
    [111]Hazan R., Brener R., Oron U Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials.1993,14(8):570-574.
    [112]Lausmaa J., Kasemo B., Mattsson H., et al. Multitechnique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl. Surf. Sci..1990,45(3):189-200.
    [113]Kim H. M., Miyaji F., Kokubo T., et al. Preparation of bioactive Ti and its alloy via simple chemical surface treatment. J Biome Mater Res.1996,32(3):409-417.
    [114]Gual E.. Coloring titanium and related metals by electrochemical oxidation. J Chem Educ.1993, 70(3):176-179.
    [115]仇越秀,谈国强.多孔羟基磷灰石材料的研究及制备.佛山陶瓷,2005,15(3):32-35.
    [116]Xu Shuyan, Long Jidong, Sim Lina, et al. RF Plasma Sputtering Deposition of Hydroxyapatite Bioceramics:Synthesis, Performance, and Biocompatibility. Plasma Process. Polym.2005,2(5): 373-390.
    [117]Shekhar Nath, Rajesh Tripathi, Bikramjit Basu. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate-titania composites, synthesized from hydroxyapatite and titanium powder mix. Materials Science and Engineering C.2009,29(1): 97-107.
    [118]Li Long-Hao, Kim Hae-Won, Lee Su-Hee, et al. Biocompatibility of titanium implants modified microarc oxidation and hydroxyapatite coating. J Biomed Mater Res 73A.2005,73(1):48-54.
    [119]Mao Chun, Zhao Wenbo, Zhu Caihong, et al. In vitro studies of platelet adhesion on UV radiation-treated nylon surface. Carbohydrate Polymers.2005,59 (1):19-25.
    [120]Dong Yan-Xia, Chen Ya-Shao, Chen Qiang, et al. Characterization and blood compatibility of TiCRxRNR1-xR hard coating prepared by plasma electrolytic carbonitriding. Surface & Coatings Technology.2007,201 (21):8789-8795.
    [121]JIA Jun, DUAN Yuan-yuan, ZHOU Jian-xue, et al. Study on preparation and biocompatibility of polycaprolactone nanofibers by electrospinning. Chinese Journal of Aesthetic Medicine. May. 2007,16(5):603-606.
    [122]Sridhar T.M., Mudali U. Kamachi, Subbaiyan M.. Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel. Corrosion Science.2003,45 (10):2337-2359.
    [123]Park J.H., Lee G.D., Nishikata A., et al. Anticorrosive behavior of hydroxyapatite as an environmentally friendly pigment. Corrosion Science.2002,44 (5):1087-1095.
    [124]Brown S.A., Merritt K. J. Biomed. Mater. Res..1981,15 (4) 479-488.
    [125]Kannan S., Balamurugan A., Rajeswari S.. Hydroxyapatite coatings on sulfuric acid treated type 316L SS and its electrochemical behaviour in Ringer's solution. Materials Letters.2003,57 (16-17):2382-2389.
    [126]Kannan S., Balamurugan A., Rajeswari S.. HR2RSOR4R as a passivating medium on the localised corrosion resistance of surgical 316L SS metallic implant and its effect on hydroxyapatite coatings. Electrochimica Acta.2004,49 (15) 2395-2403.
    [127]Metikos-Hukovic M., Tkalcec E., Kwokal A., et al. An in vitro study of Ti and Ti-alloys coated with sol-gel derived hydroxyapatite coatings. Surface and Coatings Technology.2003,165 (1): 40-50.
    [128]Pang X., Zhitomirsky I.. Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surface & Coatings Technology.2008,202 (16):3815-3821.
    [129]Wen Cuilian, Guan Shaokang, Peng Li, et al. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science.2009,255 (13-14):6433-6438.
    [130]Kwok C.T., Wong P.K., Cheng F.T., et al. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6A14V fabricated by electrophoretic deposition. Applied Surface Science.2009,255(13-14):6736-6744.
    [131]Souto R. M., Laz M. M., Reis R. L.. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials.2003,24 (23):4213-4221.
    [132]Baker M.A., Assis S.L., Higa O.Z., et al. Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of HR2ROR2R addition. Acta Biomaterialia.2009,5 (1):63-75.
    [133]魏宝明.金属腐蚀理论及应用第一版.北京:化学工业出版社,1984.
    [134]彭式韫,汪阿冬,马仁增,等.钛及钛合金作牙髓腔骨内种植体的研究.中国口腔医学杂志.1990,25(5):277-279.
    [135]宋应亮,徐君伍,马轩祥,等.种植义齿固定螺丝服役前后的电镜观察.中华口腔医学杂志.1997,32(2):108-111.
    [136]Milosev I., Kosec T., Strehblow H.-H.. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank's physiological solution. Electrochimica Acta.2008,53 (9):3547-3558.
    [137]Karayan Ahmad Ivan, Park Sang-Won, Lee Kwang-Min. Corrosion behavior of Ti-Ta-Nb alloys in simulated physiological media. Materials Letters.2008,62 (12-13):1843-1845.
    [138]Guo Haixia, Liang Chenghao. Crevice Corrosion of the Shape Memory Alloy Cu-Zn-Al. Rare Metal Materials and Engineering,2001,30(1):27-30.
    [139]Ungureanu Gina, Gloriant Thierry. Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomaterialia,2009,5(9):37-51.
    [140]Kwok C. T., Wong P. K., Cheng F. T., et al. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6A14V fabricated by electrophoretic deposition. Applied Surface Science,2009,255(13-14):6736-6744.
    [141]Masmoudi M., Capek D., Abdelhedi R., et al. Application of surface response analysis to the iptimisation of nitric passivation of Cp titanium and Ti6Al4V. Surface & Coatings Technology. 2006,200(24):6651-6658.
    [142]Zhang X. L., Jiang Zh. H., Yao Zh. P., et al. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corrosion Science.2009,51(3):581-587.
    [143]Reclaru L., Meyer J. M. Zonal coulometric analysis of the corrosion resistance of dental alloys. J Dent.1995,23(5):301-303.
    [144]Lavos-Valereto I. C, Costa I., Wolynec S., et al. The electrochemical behavior of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating in Hank's solution. J. Biomed. Mater. Res.2002,63(5):664-670.
    [145]Yu S. Y., Scully J. R.. Corrosion and Passivity of Ti-13% NB-13% Zr in Comparison to Other Biomedical Implant Alloys. Corrosion.1997,53(12):965-977.
    [146]S'ergio Luiz de Assis, Stephan Wolynec, Isolda Costa. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochemica Acta.2006,51(8-9):1815-1819.
    [147]Jackson D. R., Omanovic S., Roscoe S. G.. Electrochemical studies of the adsorption behavior of serum proteins on titanium. Langmuir.2000,16(12):559-5557.
    [148]Cabrini M., Cigada A., Rondelli G., et al. Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti-6A1-4V alloy in simulated physicological solution. Biomaterials.1997,18(11):783-787.
    [149]Stern M and Geary A L., Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc.1957,104(1):56-63.
    [150]Cheng Xiaoliang, Roscoe Sharon G.. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials.2005,26(35):7350-7356.
    [151]Khan M. A., Williams R. L., Williams D. F.. In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials.1996,17(22):2117-2126.
    [152]Khan M. A., Williams R. L., Williams D. F.. The corrosion behaviour of Ti-6A1-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials.1999,20(7):631-637.
    [153]Beck T.R.. Pitting of titanium. J Electrochem Soc,1973,120(10):1310-1316.
    [154]托马晓夫HД,契尔诺娃ГП.腐蚀与耐蚀合金.北京:化学工业出版社,1982.
    [155]张振邦,火时中,崔宝玉.钛孔蚀动力学研究.大连理工大学学报.1998,38(5):595-598.
    [156]杨献群,刘泉瑞,朱丽琴,等.碱性介质中BIT,BIOHT和BIMMT对铜的缓蚀性能和吸附行为.物理化学学报,2007,23(1):21-26.
    [157]杨保俊,于少明,单承湘.蛇纹石硫酸浸出过程动力学研究.硅酸盐学报.1999,27(1):657-667.
    [158]孟晓雄,火时中.孔蚀发生前溴在钛表面上的状态.中国腐蚀与防护学报,1989,9(1):29-35.
    [159]Beermann N., Boschloo G., Hagfeldt A., Trapping of electrons in nanostructured TiOR2R studied by photocurrent transients. J. Photochem. Photobiol. A:Chem.2002,152 (1-3) 213-218.
    [160]小泽昭弥.现代电化学.北京:化学工业出版社,1995.
    [161]王健云,高永钢,周育英.工业纯钛和00Cr25Ni22Mo2不锈钢在酸性介质中的电化学行为.北京化工大学学报.2000,27(2):70-75.
    [162]FILIAGGI M. J., PILLIAR R. M.. Mechanical testing of plasma-sprayed ceramic coatings on metal substrates:Interfacial fracture toughness and tensile bond strength. Journal of Materials Science.1991,26(19):5383-5395.
    [163]V. SAHAY, P. J. LARE and H. HAHN, in "Characterisation and performance of calcium phosphate coatings for implants," edited by E. Horowitz and J. E. Parr (ASTM, Philadelphia, PA, 1994) p.81.
    [164]Zhu Aiping, Chen Tian. Blood compatibility of surface-engineered poly(ethylene terephthalate) via o-carboxymethylchitosan. Colloids and surface B:Biointerfaces.2006,50(2):120-125.
    [165]Zhou Changren, Yi Zhengji. Blood-compatibility of polyurethane/liquid crystal composite membranes. Biomaterials.2009,20(22):2093-2099.
    [166]Zhou C., Yi Z., Xiao L.. Study on blood compatibility of polymer/liquid crystal composite membranes. Academic Periodical Abstracts of China.1998,4(2):238-239.
    [167]Park J. H., Lee G. D., Nishikata A., et al. Anticorrosive behavior of hydroxyapatite as an environmentally friendly pigment. Corrosion Science.2002,44(5):1087-1095.
    [168]ZHOU J. M., ZHANG X. D., CHEN J., et al. High temperature characteristics of synthetic hydroxyapatite. J. Mater. Sci:Mater. Med.1993,4(1):83-85.
    [169]Milosev I., Metikos-Hukovic M., Strehblow H.H.. Passive filme on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials. 2000,21(20):2103-2113.
    [170]J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Phys. Electronics, Eden Prairie, USA,1995.
    [171]WEI M., RUYS A. J., SWAIN M. V., et al. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE.1999,10(7):401-409.
    [172]Reis R. L., Monteiro F. J.. Crystallinity and structural changes in HA plasma-sprayed coatings induced by cyclic loading in physiological media. J Mater Sci Mater Med.1996,7(7):407-411.
    [173]程青,王国斌.生物材料血液相容性评价研究进展.上海生物医学工程.2001,2(3):31-33.
    [174]Jones M.I., McColl I.R., Grant.D.M., et al. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res.2000,52 (2):413-421.
    [175]Elam J.H., Nygren H., Absorption of coagulation proteins from whole blood on to polymer materials:relation to platelet activation. Biomaterials.1992,13(1):3-8.
    [176]Marconi W., Galloppa A., Martinelli A., et al. New polyurethane compositions able to bond high amounts of both albumin and heparin. Part-1. Biomaterials.1995,16(6):449-456.
    [177]Sui J.H., Gao Z.Y., Cai W., et al..DLC films fabricated by plasma immersion ion implantation and deposition on the NiTi alloys for improving their corrosion resistance and biocompatibility. Materials Science and Engineering A.2007,454-455(25):472-76.
    [178]ANSI/ADA Specification No.41 in Biological Evaluation of Dental Materials. Washington DC: American National Standard Institute/American Dental Association,1979
    [179]ASTM Standard F2129-08, Conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices, ASTM Standards, ASTM.
    [180]Tsuru T., Asari M., Haruyama S.. Impedance characteristics and mass transfer for corrosion of coated steel. Jinzoky Hyomen Gijutsu.1988,39(l):2-9.
    [181]Bacon R.C., Smith J.J., Rugg F. M.. Electrolytic resistance in evaluating protective merit of coatings on metals. Ind. Eng. Chem.1948,40(1):161-167.
    [182]Wennerberg A, EkLessabi A, AllwekLesson T et al. A 1-year Follow-up of Implants of Differing Surface Roughness Placed in Rabbit Bone. The International journal of oral & maxillofacial implants.1997,12(4):486-494.
    [183]Groessner S.B., Tuan R.S.. Enhanced extrancellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J. Cell. Sci.1992,101(1):209-217.
    [184]Schreckenbach J.P., Marx G., Schlottig F., et al. Characterization of anodic spark-converted titanium surfaces for biomedical applications. J. Mater. Sci., Mater. Med.1999,10(8):453-457.
    [185]Frauchiger V.M., Schlottig F., Gasser B., et al. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications.Biomaterials.2004,25(4):593-606.
    [186]Yang Lingfang, Zuo Yu, Xiong Jinping, et al. Properties of hydroxyapatite coatings prepared by electrodeposition in a modified siimlated body fluid. Chinese Journal oa Materials Research. 2008,22(4):444-448.
    [187]S. Hobo, E. Ichida, L.T. Garcia, Osseointegration and Occlusal Rehabilitation, Quintessence Int, Tokyo,1989.
    [188]Le Guehennec L, Soueidan A, Layrolle P, et al. Surface Treatments of Titanium Dental Implants for Rapid Osteointegration. Dent Mater.2007,23(7):844-854.
    [189]Liu F., Song,Y., Wang F., et al. Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment. J. Biosci. Bioeng..2005,100(1):100-104.
    [190]Sul Y.T., Johansson C.B., Petronis S., et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:The oxide thichness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials.2002,23(2):491-501.
    [191]Sun J., Han Y., Huang X..Hydroxyapatite coatings prepared by micro-arc oxidation in Ca-and P-containing electrolyte. Surf. Coat. TechnoL.. 2007,201(9-11):5655-5658.
    [192]Martens W., Frost R.L.. An infrared spectroscopic study of the basic copper phosphate minerals: cornetite, libethenite, and pseudomalachite. Am Miner 2003,88(1):37-46.
    [193]Rehman I., Bonfield W.. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. JMater Sci Mater Med.1997,8(1):1-4.
    [194]屠美,林少琨,牟善松等.液晶性能对聚氨酯/液晶复合膜抗凝血性能的影响.高分子材料科学与工程.2001,17(3):38-41.
    [195]Ito E., Suzuki K., Yokoyama M., et al. Active platelet movements on hydrophobic/hydrophilic microdomain-structured surfaces. J Biomed Mater Res.1998,42(1):148-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700