用户名: 密码: 验证码:
生物转化银杏叶提取物提高其降血糖活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,银杏叶(Ginkgo biloba Leaf)资源非常丰富,其作为一种中药,具有降血糖、调节血脂、清除自由基、改善血液循环和保护心肌及血管内皮细胞等功效。但由于一般中药的作用往往较缓慢,效果也并不显著,因此,如何提高中药的作用效果已成为中医药治疗的重要问题。如采用药用真菌对中药进行生物转化,能有效提高药用真菌和中药的功效或产生新的疗效,目前已受到广泛的关注。
     本文首先通过实验比较了四氧嘧啶糖尿病模型大鼠与正常大鼠血清中葡萄糖、果糖胺、NADH、血红蛋白、糖基化血红蛋白含量,以及肝脏和肾脏中与糖代谢相关的己糖激酶、丙酮酸脱氢酶和柠檬酸合成酶活性。结果显示四氧嘧啶诱导的糖尿病模型大鼠中果糖胺含量显著高于正常鼠,说明非酶糖基化反应在糖尿病模型大鼠中显著增强;总血红蛋白的含量显著减少,以及糖基化血红蛋白与总血红蛋白比例显著增加、NADH水平增加,而肝脏和肾脏中与糖代谢相关的己糖激酶、丙酮酸脱氢酶和柠檬酸合成酶活性显著减弱,说明糖代谢的三羧酸循环途径和糖酵解途径受到抑制,从而加速血糖升高。据此,我们提出了非酶糖基化反应能加速模型鼠血糖升高的假说。
     分别优化了检测非酶糖基化反应、羟自由基产生Fenton反应体系,并利用以上两个体系以及体外抑制α-葡萄糖苷酶活性试验,对比了灵芝、猴头、香菇、红曲霉、蛹虫草、桑黄、竹黄、竹荪和云芝等11种菌株对银杏叶提取物(EGB)转化前后的活性变化情况。结果表明,猴头菌转化EGB后,体外活性的各项指标都得到加强,并且抑制非酶糖基化反应效果最好。
     采用非酶糖基化反应平台,通过单因子试验确定了影响抑制率的最适工艺参数:pH为6.0,温度为27℃,发酵周期6天,EGB添加量为0.5%;并确定了显著影响抑制率的4个培养基因素:葡萄糖、蛋白胨、麸皮和玉米粉,四因子三水平正交试验设计优化的适合猴头菌转化EGB的培养基组成为:葡萄糖2%、蛋白胨0.4%、麸皮2%、玉米粉1.5%、KH_2PO_4 0.012%、MgSO_4 0.006%和CaCO_3 1%。20L发酵罐扩大培养最佳工艺条件为:72小时前通气量为8L/min,72小时后为4.8L/min,转速为120rpm。
     通过四氧嘧啶诱导的糖尿病模型大鼠试验,比较了猴头菌转化EGB发酵液、EGB、猴头菌发酵液和添加EGB的猴头菌发酵液等四组试验材料对大鼠血糖、非酶糖基化反应、血脂和氧化趋势的作用。结果表明:①猴头菌转化EGB发酵液试验组血清中的血糖(14.59mmol/L)、果糖胺含量(3.10mmol/L)显著低于其他实验组,表明转化EGB发酵液在四氧嘧啶诱导的1型糖尿病鼠体内具有显著的抑制非酶糖基化反应的能力;②提高了糖耐量的水平;③降低了血糖、甘油三酯和总胆固醇的含量,提高了高密度胆固醇含量,各受试组在血清中均有明显的抗氧化作用,并无显著差异。猴头菌转化EGB发酵液降血糖机理分析显示,转化组血清中的血红蛋白含量(14.86g/L)显著高于模型对照组和二甲双胍组,而糖基化血红蛋白含量(2.93g/L)显著低于其他药物组,肝脏和肾脏中己糖激酶(158.16和97.34umol/min/g protein)、丙酮酸脱氢酶(90.25和69.85umol/min/g protein)和柠檬酸合成酶活性(776.5和643.2umol/min/g protein)显著高于模型鼠和二甲双胍组,由此推断猴头菌转化EGB发酵液组通过抑制体内非酶糖基化反应,提高血清中血红蛋白浓度,降低糖基化血红蛋白比例,增加氧的供给,降低NADH含量,减低NADH对糖代谢的反馈抑制作用,提高了与糖代谢有关的酶活性,结合对胰岛素分泌的促进作用降低血糖。
     采用链脲佐菌素诱导高脂饲料胁迫的2型糖尿病模型大鼠,研究了上述四组药物对2型糖尿病的作用。结果显示:猴头转化EGB组果糖胺含量显著低于其它药物组,因而在2型糖尿病鼠体内同样具有显著的抑制非酶糖基化反应的功能。模型鼠给药后,转化组血清中血糖值(5.92 mmol/L)显著低于其他药物组,超氧化物岐化酶活性显著提高(182.3UN/mL),而对体重和脂代谢的作用与其它组之间无显著差异。转化组血清中胰岛素含量低于其它药物组(P<0.01)。
     通过对比九种不同类型树脂对猴头菌转化EGB产物的分离效果,确定AB-8型吸附树脂较为合适,其最适的吸附条件为:发酵液pH 2.0、流速为4%的树脂体积/min。最适解吸条件为:40%乙醇洗脱组分抑制率最高,重复性实验证明树脂洗脱性能稳定。并研究了粗提物体外抑制非酶糖基化反应、α-葡萄糖苷酶活性和清除自由基的能力。其半抑制浓度分别为1.223mg/mL,15.1 mg/mL和6.3mg/mL。该粗提物能通过迅速与非酶糖基化反应产物结合改变其结构,抑制产物的荧光强度。
Ginkgo biloba,as one of the most popular herbal medicines,was planted in China widely,and the annual production of its leaf was approximately 70%in the world. Ginkgo biloba Leaf has attracted great attention as agents for decreasing the blood glucose level,balancing the blood lipid level,scavenging the free radicals,improving circulation,particularly cerebral circulation.However,due to the inefficiency of Ginkgo biloba Leaf directly ulitilized as the herb medicines,the problem how to elevate the efficiency of the herb seems to be more serious.Now increasing interests has attracted on the biotransformation of Ginkgo biloba Leaf by the medicinal mushrooms which might improve the bioactive components and their medical effects of the herbs.
     In current investigation,the comparisons of various indexes such as glucose, fructosamine,sugar,NADH,haemoglobin,glycosylated haemoglobin in blood,the systemic enzymes related to the glycolytic metabolism such as hexokinase,citratse synthase and pyruvate dehydrogenase in kidney and liver in the normal and alloxan-induced hyperglycemic rats were carried out.Results showed that the fructosamine level was significant higher in the model rats than that in the normal group, which indicated that the non-enzymatic glycation reaction was enhanced in the model rats.Significant declining of the content of total haemoglobin,increasing of the ratsio of glycosylated haemoglobin/total haemoglobin and NADH level,and decreasing of the related enzymes such as hexokinase,citratse synthase and pyruvate dehydrogenase activities of hexokinase,citratse synthase and pyruvate dehydrogenase showed that the Tricarboxylic acid cycle(TCA) and Embden-Meyerhof pathway(EMP) of glycolytic metabolism were inhibited and finally accelerates the blood glucose levels.According to above results,the hypothesis that non-enzymatic glycosylation reaction could increase the blood glucose of the diabetic rats was put forward.
     The reaction systems to detect the non-enzyme glycation reaction and Fenton reactive system were optimized,respectively,and based on the bioactivities scavenging the free radicals and inhibition of non-enzymatic glycation reaction andα-glucosidase activity,11 strains such as Hericium erinaceus,Coriolus versicolor,and yeast were chosen to biotransformate extract of Ginkgo biloba L.(EGB).Results showed that comparing with other strains,all three indexes were enhanced after the biotransformation of EGB by Hericium erinaceus,and especially,the inhibition of non-enzymatic glycation reaction was most significantly improved.
     Based on the results of inhibition of non-enzymatic glycation reaction in vitro, optimization of the operating parameters such as pH,temperature,fermentation period and media composition were carded out by on-factor-at-a-time method,and the suitable culture conditions was set as:pH 6.0,temperature 27℃,fermentation period,and 0.5% EGB addition content.And four media factors were also confirmed as glucose,peptone, wheat bran,and corn powder.The orthogonal test design L_9(3~4) demonstrated the optimal composition containing 2%glucose,0.4%peptone,2%wheat bran,1.5%corn powder 0.12%KH_2PO_4、0.06%MgSO_4 and CaCO_3 1%.The temperature and initial pH for highest inhibitory ratio were 27℃and 6.0,respectively.In 20-L scale fermenter,the optimal operating factors were:8 L before 72 h,4.8 L after 72 h,and agitation rate was 120rpm.
     The hypoglycemic,inhibiting nonenzymatic glycosylation reaction,hypolipidemic, and antioxidant effects of various treatments,such as extract of Ginkgo biloba Leaf (EGB),biotransformation products of EGB by H.erinaceus,submerged culture of H. erinaceus and the culture combined with EGB,were compared in alloxan-induced hyperglycemic rats.Results showed that in the group treated with biotransformation products of EGB by H.erinaceus:①The levels of blood sugar(14.59mmol/L) and fructosamine(3.10mmol/L) were significant lower that other groups,which indicated that the biotransformation products of EGB by H.erinaceus could remarkably inhibit the non-enzyme glycation reaction in the TypeⅠdiabetes rats;②the ability of glucose tolerance was enhanced;③the levels of blood sugar,TC and TG were decreased and that of HDLC were increased.The mechanism analysis of anti-hyperglycemic activities of biotransformation products of EGB by H.erinaceus was conducted,and the results revealed that haemoglobin in blood,hexokinase(58.16and 97.34umol/min/g protein), citratse synthase(776.5 and 643.2umol/min/g protein) and pyruvate dehydrogenase (90.25 and 69.85umol/min/g protein) in kidney and liver of the group treated with biotransformation products of EGB by H.erinaceus was significantly higher than those in the control group and the mefformin treated group,synchronously,the content of glycosylated haemoglobin in blood was significantly lower than that of the control group and the metformin-treated group.According to these results,it could be concluded that the biotransformation products of EGB by H.erinaceus could generate significant anti-hyperglycermic and hypoglycemic effect on alloxan induced diabetic rats by inhibiting non-enzymatic glycosylated reaction,decreasing glycosylated haemoglobin level,improving total haemoglobin level and supply of oxygen,enhancing respiration of tissue,decreasing the levels of NADH,speeding up catabolism of glucose, and regulating the enzymes activities related to the glycolytic metabolism coupled with its elevating level of insulin of plasma.
     The hypoglycemic,inhibiting nonenzymatic glycosylation reaction,hypolipidemic, and antioxidant effects of various treatments,such as extract of Ginkgo biloba Leaf (EGB),biotransformation products of EGB by H.erinaceus,submerged culture of H. erinaceus and the culture combined with EGB,were compared in streptozotocin-induced type 2 diabetic rats.Results prove that the biotransformation products of EGB by H.erinaceus could inhibit nonenzymatic glycosylation reaction of protein in vivo by reducing the content of fructosamine in the treated group,decrease the blood glucose level(5.92 mmol/L) and enhance SOD activity(182.3UN/mL) compared with control group and other treated-group.However,no significant influences were observed on body weight and lipid,and the blood insulin level was higher in transformation group than in model group,but distinctly lower than other treated group.
     The isolation effects of 9 types macro-porous resins were compared and results revealed that AB-8 resin was most suitable to extract the active compositions with inhibitory activity on non-enzymatic glycation reaction from the broth of H.erinaceus. And the optimum technological conditions for adsorption were as fellows:pH=2.0, flow ratio=4%volume of resin/min,40%ethanol was selected as the most suitable agent for resolving the main bioactive fractions,and 10-cycle repeating experiments were also carried out and the results showed that the eluting factors were stable enough for the future applicant.The crude extraction resolving from the AB-8 resin biotransformation products of EGB by H.erinaceus,had been testified to inhibit non-enzymatic glycation reaction andα-glucosidase,as well as to scavenge free radical in vitro.The corresponding IC_(50) values were 1.223mg/mL,15.1 mg/mL and 6.3mg/mL, respectively.It was presume d that the crude extraction could combine with products of non-enzymatic glycation reaction,change their structure and finally attenuate their fluorescence intensive.
引文
[1]李峰,李明.抗糖尿病药物及研究进展[J].中国社区医师(综合版),2004,6(14):5-6.
    [2]薛耀明.糖尿病的诊断与治疗[M].人民军医出版社,1999.
    [3]Suehiro T,Osaki F,Ikeda Y,et al.Type 1 diabetes developed in a type 2 diabetic patient with severe insulin resistance[J].Diabetes Research and Clinical Practice,2005,70(3):298-302.
    [4]DCCT Research Group.The effect of intensive treatment of diabetes on the development and progression of long-term complication insulin-dependent diabetes mellitus[J].New England journal of Medicine,1993,329(14),977-986.
    [5]Umberto DM,Giuseppe P.Pathogenetic mechanisms of diabetic microangiopathy[J].International Congress Series,2003,1253:171-182.
    [6]Boguslawa NS,Dariusz M,Wladyslaw G.Risk of macrovascular and microvascular complications in Type 2 diabetes Results of longitudinal study design[J].Journal of Diabetes and Its Complications,2002,16(4):271-276.
    [7]Lorenzi M,Cagliero E,Toledo S.Glucose toxicity for human endothelial cells in culture:delayed replication,disturbed cells cycle and accelerated death.Diabetes,1985,34:621.
    [8]黄敬泽,张阅珍.血管内皮细胞,、血浆内皮素值与糖尿病患者微血管病变的相关性及评估[J].中国糖尿病杂志,1999,2:70.
    [9]Panes J,Kurpse I,Rpdrigue vaca D,etal.Diabete sexacerbates inflammatory responses to is chemia reperfusion.Circulation,1996,93:161.
    [10]刘成玉,曲彦,贾兆通,等.糖尿病血管病变与白细胞粘附功能及细胞粘附分子表达的关系[J].中国糖尿病杂志,1999,1:52
    [11]Ceriello A,Falleti E,Bortoltli N,et al.Increased circulation inter cellular adhesion molecule-1 level in tipe2 diabetic patients:the possible role matobolic contro land oxidative stress.Metabolism,1996,45:498
    [12]但刚,钱江龙,裴小红,等.氧化修饰低密度脂蛋白与糖尿病微血管病变的关系[J].中国糖尿病杂志.1999,4:235
    [13]Ido Y,Vindigni A,Chang K,et al.Prevention of vascular and neural dysfunction in diabetic rats by C- peptide.Science,1997,277:563
    [14]严孙杰,卓孝福,潘时中,等.糖尿病患者血细胞体积增大在微血管病变中的作用[J].中国糖尿病杂志,2000,2:89
    [15]Turner R C,Millns H,Neil HA W,et al.Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus:United Kingdom Prospective Diabetes Study.BrMedJ,1998,316:823-828
    [16]Annunziata L,Domenico F,Antonella S,et al.Advanced glycation end-products/peptides:a preliminary investigation by LC and LC/MS[J].I1 Farmaco,2002,57(10):845-852.
    [17]Maillard LC.Action des acides amine's sur le sucres:formation des melanoidines per voie me'thodique[J].C R Acad Sci,1912,154(1):66-68.
    [18]Vlassara H,Bucala R,Stiker L,Pathogenic effects of advanced glycosylation:biochemical,biologic,and clinical implications for diabetes and aging[J].Lab Invest,1994,70(2):138-151.
    [19]Vlassara H.Recent progress ina dvanced glycation end products and diabeti complications.Diabetes,1997,46(suppl2):s19-25
    [20]Lyons T J,Jenkins A J.Glycation,oxidation and lipoxidation in the development of the complications of diabetes mellitus:a'carbonstress'hypothesis.Diabetes Rev,1997,5:365-391
    [21]Bhatnagar A,Srivastava SK.Aldose reductase:congenial and injurious profiles of an enigmatic enzyme[J].Biochem Med Metab Biol,1992,48(2):91-121.
    [22]Yabe-Nishimura C.Aldose reductase in glucose toxicity:a potential target for the prevention of diabetic complications[J].Pharmacol Rev,1998,50(1):21-33.
    [23]Jez JM,Bennett M.I,Schlegel BP,et al.Comparative anatomy of the aldo_ keto reductase superfamily[J].Biochem.J.1997,326(Pt3):625-636.
    [24]Kador PF,Robinson WG,Kinoshita JH.The pharmacology of aldose reductase inhibitors[J].Annu Rev Pharmacol Toxicol,1985,25:691-714.
    [25]Lee AY,Chung SK,Chung SS.Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens[J].Proc Natl Acad Sci USA,1995,92(7):2780-2784.
    [26]Crabbe M.J.,Goode D.Aldose Reductase:a Window to the Treatment of Diabetic Complications[J]Progress in Retinal and Eye Research,1998,17(3):313-383.
    [27]关子安,孙茂欣,关大顺.现代糖尿病学[M].天津科学技术出版社,2000.
    [28]戎华.糖尿病现代诊疗[M].江苏科技出版社.2000.
    [29]向红丁.胰岛素抵抗与胰岛素抗药性的区别[J].中国实验诊断学,1998,2(2),12-13.
    [30]黎红梅.Ⅰ型糖尿病的临床药物治疗进展[J].中国医学研究与临床,2004,2(1),61-65.
    [31]Bryan J,Crane A,Vila CWH,et al.Insulin secretagogues,sulfonylurea receptors and K(ATP)channels[J].Curr Pharm Des,2005,11(21):699-716.
    [32]Ricketts HT,Wildberger HL.Effects of sulfonylurea drugs in hospitalized diabetic patients [J].J Am Med Assoc,1956,162(11):1045-1049.
    [33]Meier JJ,Gethmann A,Nauck MA,et al.The glucagon-like peptide 1 metabolite GLP-1(9-36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans[J].Am J Physiol Endocrinol Metab,2006,290(6):E1118-1123.
    [34]Koizumi M,Doi R,Fujimoto K,et al.Pancreatic epithelial cells can be converted into insulin-producing cells by GLP-1 in conjunction with virus-mediated gene transfer of pdx-1[J].Surgery,2005,138(2):125-133.
    [35]刘治军,吕俊玲,刘瑶,等.糖尿病临床药物治疗进展[J].中国医院用药评价与分析,2003,3(4):247-249
    [36]童钟杭.糖尿病药物治疗的进展[J].浙江临床医学,2004,6(2),353-354.
    [37]蒋伯诚,轻症糖尿病与胰岛素增敏剂和α-糖苷酶抑制剂[J].国外医药·合成药、生化药、制剂分册,1998,19(2):100-104
    [38]Alain DB.Postprandial hyperglycaemia and a-glucosidase inhibitors[J].Diabetes Research and Clinical Practice,1998,40suppl:Suppl:S51-S55.
    [39]Gabbay KH.The sorbitol pathway and the complications of diabetes[J].N Engl J Med,1973,288(16):831-836.
    [40]杨喆.醛糖还原酶抑制剂和糖尿病并发症[J].国外医学药学分册,1999,26(4),217-222.
    [41]韩莹,屠树滋,王秋娟.治疗糖尿病药物进展[J].中国新药杂志,2000,(7):442
    [42]崔浩,钟武,李松.AGEs交联蛋白裂解剂的研究进展[J].军事医学科学院院刊,2004,28(2),194-199.
    [43]陈睿杰,刘允坚.糖尿病治疗药物的研究现状[J].广东药学院学报,2001,17(2),131-132.
    [44]Gugliucci A,Menini T.The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin Ⅲ[J].Life Science,2002,72(3):279-292.
    [45]潘明政,郭赛珊,梁晓春,等.糖尿病大鼠心肌糖基化终产物受体mRNA表达及仙贞片对其影响的实验研究[J].中国中两医结合杂志,2002,22(10):775
    [46]李天庆,崔昕,张志军,等.汉方药治疗糖尿病及其发症的研究[J].国外医药.中医中药分册,1997,1(6):3-7.
    [47]陈广耀.抗糖尿病中药开发前景展望[J].中国新药杂志,2000,9(7):448-451
    [48]洪浩.中药降血糖作用机制实验研究进展[J].安徽中医学院学报,2001;20(2):59-61.
    [49]王启慧.糖尿病单味中药作用机制研究概述[J].安徽中医学院学报,1999;18(4):58-59.
    [50]曹勇.中医药降糖机理及免疫调节[J].中医药学报,1994;22(1):9-12.
    [51]郭舜民,郭尧惠.天然药降血糖成分的研究进展[J].海峡药学,2000,12(10):1-5.
    [52]谢宗长,钱振坤,柳重威.人参抗实验性糖尿病大鼠脂质过氧化损伤的研究[J].中国中西医结合杂志,1993,13(5):289.
    [53]宋平平,阎田玉,龚明敏.化瘀汤清除自由基的临床及实验研究[J].中国中西医结合杂志,1993,13(10):591.
    [54]梁晓春,郭赛珊.肾虚、衰老与自由基的关系以及补肾药对自由基的影响[J].中国中西医结合杂志,1990,10(8):511.
    [55]张家庆.中西医结合防治糖尿病的思路方法[J].中国中西医结合杂志,1995,15(5):315.
    [56]李咸荣.近十年中医药治疗糖尿病概况[J].湖北中医杂志,1990,(6):37.
    [57]严启新,杨大庆.单味中药治疗糖尿病的研究及展望[J].浙江中医杂志,1997,32(2):85.
    [58]周丽斌,杨颖,唐金凤,等.小檗碱对脂肪细胞糖代谢的影响[J].上海第二医科大学学报,2002,22(5):412.
    [59]周丽斌,陈明道,王晓,等.小檗碱对脂肪细胞分化的影响[J].中华医学杂志,2003,83(4):338.
    [60]宋菊敏,毛良,施建玲,等.黄连素对非胰岛素依赖性糖尿病大鼠的抗氧化作用[J].中草药,1992,23(11):290.
    [61]张继英,杨造成,李慧芳,等.大剂量黄连素对2型糖尿病患者血液流变学影响的临床研究[J].中国人民解放军药学杂志,2000,11(11):643.
    [62]方晓.桑叶浸出液对糖尿病模型大鼠降血糖作用初步观察[J].浙江医学,1999,21(4)218.
    [63]李秋梅.中药治疗糖尿病的实验研究[J].中医药信息,1994,11(5):38-40.
    [64]李妮.葛根素对糖尿病患者糖化血红蛋白、丙二醛及超氧化物歧化酶的影响[J].广西医药,1997,19(6):963.
    [65]王坚,陈敏,曹宜,等.葛根素、银杏黄酮对蛋白质非酶糖基化的影响[J].中药药理与临床,2000,16(1):13.
    [66]刘乃丰,孟丹.银杏叶提取物等5种药物抑制蛋白质体外糖基化作用的比较[J].中国新药与临床杂志,2002,21(12):705.
    [67]黄秋云,施海潮.中药苦骨的抗糖尿病活性研究[J].海峡药学,1998,10(1):9.
    [68]韩永明,张业辉,熊迎春,等.中药翻白草对糖尿病大鼠血糖影响[J].湖北中医学院学报,2002,4(1):23.
    [69]韩淑英,吕华,朱丽莎,等.荞麦种子总黄酮降血脂、血糖及脂质过氧化作用的研究[J].中国药理学通报,2001,17(6)694.
    [70]钟正贤,周桂芬,陈学芬,等.黄杞总黄酮的实验研究[J].时珍国医国药,2000,11(6):495.
    [71]毛晓明,张家庆.槲皮素等中药提取物对醛糖还原酶的抑制作用[J].中国中药杂志,1993,18(10):623.
    [72]张朝云,叶红英,俞茂华,等.黄芪多糖对糖尿病大鼠心肌超微结构的影响[J].复旦大学(医 学科学版),2001,28(6):476.
    [73]刘丽萍,洪浩,王钦茂,等.丹皮多糖-2b降血糖作用的实验研究[J].中国临床药理学与治疗学,2002,7(5):424.
    [74]王钦茂,洪浩,赵帜平,等.丹皮多糖—2b对2型糖尿病大鼠模型的作用及其降糖作用机制[J].中国药理学通报,2002,18(4):456.
    [75]洪浩,王钦茂,赵帜平,等.丹皮多糖-2b对2型糖尿病大鼠的抗糖尿病作用[J].药学通报,2003,38(4):255.
    [76]陈福君,卢军,张永煜.桑叶的药理研究(1)——桑叶降血糖有效组分对糖尿病动物糖代谢的影响[J].沈阳药科大学学报,1996,13(1):24.
    [77]黄琦,许家鸾.麦冬多糖对2型糖尿病血糖及胰岛素抵抗的影响[J].浙江中西医结合杂志,2002,12(2):81.
    [78]左绍远,钱金栿,万顺康,等.螺旋藻多糖降血糖活性实验研究[J].时珍国医国药,2000,11(8):677.
    [79]徐梓辉.薏苡仁多糖的分离提取及其降血糖作用的研究[J].第三军医大学学报,2000,22(6):578.
    [80]熊学敏.南瓜多糖降血糖有效部位的提取分离及检测[J].中国新药杂志,2001,10(11):826.
    [81]罗少洪,杨红.灵芝多糖调节血糖作用的实验研究[J].广东药学院学报,2000,16(2):119.
    [82]王银萍,吴家祥,王心蕊,等.人参茎叶皂甙和大豆皂甙对糖尿病大鼠血小板聚集率和TXA2/PG12系统的影响[J].白求恩医科大学学报,1994,20(2):118.
    [83]王银萍,吴家祥,王心蕊,等.大豆皂甙和人参茎叶皂甙的抗糖尿病动脉粥样硬化作用[J].白求恩医科大学学报,1994,20(6):551.
    [84]沈莉娜,陈惠芳.几种降糖植物的研究进展[J].国外医药(植物药分册),1998,13(1):17-19.
    [85]睢大员,吕益智,李淑惠,等.刺五加叶皂甙降血糖作用[J].中国中药杂志,1994,19(11):683.
    [86]贡云华,蒋家雄.三七皂甙C1对四氧嘧啶糖尿病小鼠降血糖作用[J].药学学报,1991,26(2):81.
    [87]皮文霞,蔡宝昌,徐惠琴,等.山茱萸环烯醚萜总苷对糖尿病血管并发症模型大鼠血清SOD 的影响[J].中药新药与临床药理,2003,14(1):23.
    [88]郭舜民,郭尧惠.天然药降血糖成分的研究进展[J].海峡学报,2000,12(1):1-5.
    [89]岳文杰,苗乃全,关燕中等.大蒜素对糖尿病大鼠糖代谢的影响[J].时针国医国约,2000,11(1):4-5.
    [90]郭啸华,刘志红,王建平,等.大黄酸对NOD小鼠糖尿病肾病的治疗作用观察[J].肾脏病与透析肾移植杂志,2002,11(2):11.
    [91]朱加明,刘志红,黄燕飞,等.大黄酸对db/db小鼠糖尿病肾病疗效的观察[J].肾脏病与透析肾移植杂志,2002,11(1):3.
    [92]胥新元,彭艳梅,彭源贵,等.肉桂挥发油降血糖的实验研究[J].中国中医药信息杂志,2001,8(2):26.
    [93]潘瑞乐,陈迪华.中药胡卢巴的化学成分与药理活性[J].国外医学·植物药分册,2000,15(5):185.
    [94]岳文杰,苗乃全,关艳中,等.大蒜素对糖尿病大鼠糖代谢的影响[J].时珍国医国药,2000,11(1):6.
    [95]张银娣,沈建平,宋键等.黄芪皂甙甲对血浆CAMP与再生肝DNA合成的影响[J].药学学报,1984,19(8):619.
    [96]白红艳,邹文俊,高小平.葛根对地塞米松诱导的胰岛素抵抗的影响[J].中国中药杂志,2004,29(4):356-358.
    [97]熊曼琪,林安钟,朱章志,等.加味桃核承气汤对2型糖尿病大鼠胰岛素抵抗的影响[J].中国中西医结合杂志,1997,17(3):165-168.
    [98]孙桂荣,王秀国.汉防已甲素对糖尿病大鼠的降血糖作用[J].基础医学与临床,1996,16(13):62.
    [99]扈清云,李艳君,王景涛,等.刺五加叶皂苷对2型糖尿病大鼠胰岛素分泌影响的形态学研究[J].黑龙江医药科学,2003,26(6):21-22.
    [100]狄灵,厉英倩,张薇.参芪降糖颗粒对实验性糖尿病大鼠胰岛β细胞、C肽及血浆胰岛素释放的影响[J].第四军医大学学报,2003,24(19):1774-1776.
    [101]全吉淑,尹学哲,金明.大豆皂苷对α-葡萄糖苷酶抑制作用的研究[J].中药材,2003,26(9):654-656.
    [102]王宁,艾静,杨梅,等.血糖安对2型糖尿病大鼠小肠α-葡萄糖苷酶mRNA表达的影响[J].哈尔滨医科大学学报,2003,37(6):471-473.
    [103]易法银,田雪飞,陈大舜,等.滋阴益气活血复方对糖尿病大鼠血流动力学改变的影响[J].湖南中医药导报,2000,6(9);33-35.
    [104]潘竞锵,刘惠纯,刘广南,等.荔枝核降血糖、调血脂和抗氧化的实验研究[J].广东药学,1999,9(1):47-50.
    [105]杨立红,张丽娟,代晓青.中国药用真菌及其产品研究与开发[J].当代生态农业,2003,Z1:30-33.
    [106]刘吉开,胡林,丁智慧等.高等真菌次生代谢产物及其生物活性[J].中草药,2003,34(1):84-86.
    [107]Wang J.C.,Hu S.H.,Wang J.T.,Chen K.,S.,Chia Y.,C.Hypoglycemic effect of extract of Hericium erinaceus.Journal of the Science of Food and Agriculture.2005,85,641-646.
    [108]Yang B.K.,Park J.B.,Song C.H.Hypolipidemic effect of an exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus.Bioscience Biotechnology and Biochemistry.2003,67(6),1292-1298.
    [109]刘梅森,孙红斌.猴头菌液态发酵研究进展[J].食品科学,1998,19(6):11-14.
    [110]Mandal D,Ahmad A,Khanb MI,et al.Biocatalytic transformation of cydohexanone by Fusarium sp[J].Journal of Molecular Catalysis A:Chemical,2002,181(3):237-241.
    [111]Chatterjee T.Biotransformation of geraniol by Rhodococcus sp.strain GR3[J].Biotechnol Appl Biochem,2004,39(Pt13):303-309.
    [112]Igor A P,Joanna D M,Thomas M H,et al.Transformation of cinoxacin by Beauveria bassiana[J].FEMS Microbiology Letters,2002,214(1):133-136.
    [113]Ye M,Ning LL,Zhan JX,et al.Biotransformation of cinobufagin by cell suspension cultures of Catharanthus roseus and Platycodon grandiflorum[J].Journal of Molecular Catalysis B:Enzymatic,2003,22(1):89-95.
    [114]Avril RMC,Paul BR.Biotransformation of terpenes from Stemodia madtima by Aspergillus niger ATCC 9142[J].Phytochemistry,2002,59(1):57-62.
    [115]Kang S,Jung MH,Kang Y,et al.Biotransformation and impact of ferulic acid on phenylpropanoid and capsaicin levels in Capsicum annuum L.cv.P1482 cell suspension cultures[J].J Agric Food Chem,2005,53(9):3449-3453.
    [116]Miyazawa MS.A biotransformation of alpha-bulnesene using a plant pathogenic fungus,Glomerella cingulata as a biocatalyst[J].Nat Prod Res,2005,19(2):111-115.
    [117]庄毅.菌质-中药的一个新领域[J].中药新药与临床药理,1992,8(1):49-51.
    [118]庄毅.中国药用真菌概况[J].中国食用菌,2001,20(2):3-5.
    [119]王兴红,李祺德,曹秋娥.微生物发酵中药应成为中药研究的新内容[J].中草药,2001,32(3):267-268.
    [120]吴炳新,牛纪江,孙筱林等.中药发酵制药技术[J].山东中医杂志,2001,20(3):179-180.
    [121]王贞佐,呼海涛,张锐等.中药对冬虫夏草发酵的影响[J].食品科技,2006(2):8-11.
    [122]杨海龙.灵芝新型抗肿瘤发酵制剂的研究[D].江南大学博士学位论文,2004.
    [123]王玉红.中药黄芪对灵芝液体发酵影响的研究[D].江南大学硕士学位论文,2004.
    [124]李雁群.中药的灵芝发酵及其产物抗乙肝活性的研究[D].江南大学博士学位论文,2004.
    [125]龚晓松编译.国内医学中医中药分册[M],2001(2):75-77
    [126]林协.银杏资源开发利用的现状与对策[J].林业科技与开发.1995(4):31-33
    [127]江苏新医学院.中药大词典(上).上海:上海科学出版社,1986.1436
    [128]杨胜远,梁智群.银杏叶总黄酮提取纯化工艺的研究[J].食品科学,1998(2):24-25
    [129]金绍黑.银杏叶食品综合加工技术[J].山区开发,1997(2):37-39
    [130]郜文,马芳芳.银杏大枣保健露酒的试制工艺[J].食品工业科技,2000(1):63-64
    [131]刘俊红.银杏叶的保健功能作用及其保健功能食品[J].食品研究与开发,1999(12):48-50
    [132]王浴生,邓文龙,薛春生中药药理与应用[M].北京人民卫生出版社(第二版),2000.
    [133]李旭升,黄斌伦,陈国荣,陈筱菲.银杏提取物对糖尿病大鼠血糖代谢的影响[J].浙江中西医结合杂志,2004,14(7):403-404.
    [134]奚涛,王玲玲.银杏提取物对糖尿病的药效学研究[J].中国药科大学学报,2000,31(4):285-288.
    [135]史清文,刘塑兰.银杏叶的开发研究概况[J].天然产物研究与开发,1995(1):71-76
    [136]韩德恩,张新层,田素札,等.银杏叶提取物对无心跳供肝热血损伤保护作用的实验研究[J].中华器官移植杂志,2001,22(1),48.
    [137]宫霞,卢元芳.银杏叶提取物对小鼠骨骼肌过氧化损伤的保护作用[J].中国运动医学杂志,1998,17(4),359.
    [138]Smith J V,Luo Y.Elevation of oxidative free radicals in Alzheimer disease models can be attenuated by Ginkgo biloba extract EGB 761[J].Journal of Alzheimer Disease 5,2003,5(4):287
    [139]Bastinanetto S,Quirion A.Natural extracts as possible protective agents of brain aging[J].Neurobiology of aging,2002,23(5):891.
    [140]Satyan K S,Jaiswa A K,Ghosal S,eta.Anxiolytic activity of ginkgolic acid conjugates from India Ginkgo biloba[J].Psychapharmaeology.1998,136(2):148.
    [141]朱俐,吴娟,廖红,等.银杏叶提取物对谷氨酸神经毒性的拈抗作用[J].中国药学报,1997,18(4):345.
    [142]庄明,王健.银杏叶提取物对高血脂大鼠的降脂作用[J].上海实验动物科学,1998,18(3,4):218.
    [143]吴芳萍,祝春华,邓本强.银杏叶提取物注射液辅助治疗脑梗死[J].中国新药与临床,1999.18(6):403.
    [144]周兰兰,明亮,李前进.银杏叶提取物改善老岭前期小鼠学习记忆的作用[J].安徽医科大学学报,1998,33(5):337.
    [145]Yamamoto S,Nakano K,I shikawa C,etal.Enhanced inhibitory effects of extracts from Ginkgo biloba L.leaves encapsulated in hybrid lipdsomes on the growth of tumor cells in vitro[J].Biochemical Engineering Journal,2002,36(19)1.
    [146]赵维中,王琼,马传庚,等.银杏叶提取物对胃粘膜保护作用[J].中成药,1999,21(7):357.
    [147]李旭升,黄斌伦,陈国荣.银杏叶提取物对糖尿病大鼠血糖代谢的影响[J].浙江中西医结合杂志,2004,14(7):403-404
    [148]廖琪,王淑罕,廖雪松,等.银杏叶提取物对糖尿病大鼠肾脏保护作用的实验研究[J].中国药房,2000,11(3):14.
    [149]高永洁,张焕景,张宇晴.天保宁对肺心病人血小板聚集功能的影响[J].中国医院药学杂志,1999,19(1):41.
    [1]宓志钧.糖尿病诊断的现状,放射免疫学杂志.2000,5(13):313-314.
    [2]McCall AL.The impact of diabetes on the CNS.Diabetes 1992,41(5):70-557.
    [3]Klen JP,Waxman SG.The brain in diabetes:molecular changes in neurons and their implications for end-organ damage.Lancet Neurol 2003,2(9):54-548.
    [4]Helkala EL,Niskanen L,Viinamaki H,et al Short -term and long-term memory in elderly patients with NIDDM.Diabates Care 1995,18(5):5-681.
    [5]Odawara M,Tada K,Yamashita K Dcreased cerebral blood perfusion in an NIDDM patients with an A-to-G Mutation in the mitochondaial gene;a possible contribution to cognition deficits in diabetes.Diabetologia 1995,38(8):5-1004.
    [6]Mooradian AD.Central nervous system complications of diabete mellitus-a perspective from the blood-brain barrier.Brain Res Rev 1997,23(3):8-210.
    [7]Nishio T,Toyoda Y,Hiramatsu,M,et al.Decline in glucokinase activity in the arcuate nucleus of streptozotocin-induced diabetic rats[J].Biol Pharm Bull,2006,29(2):216-219
    [8]Ferre T,Pujol A,Riu E,et al.Correction of diabetic alterations by glucokinase[J].Proc Natl Acad Sci U S A,1996,93(14):7225-7230
    [9]Marynissen G,Sener A,Malaisse WJ.Activity and kinetics of liver 6-phosphofructokinase in normal and diabetic rats[J].Diabetes Res,1989,12(3):117-122
    [10]Donofrio JC,Thompson RS,Reinhart GD,et al.Quantification of liver and kidney phosphofructokinase by radioimmunoassay in fed,starved and alloxan-diabetic rats[J].Biochem J,1984,224(2):541-547
    [11]Chitra CI,Cuezva JM,Patel MS.Changes in the activity of 'active' pyruvate dehydrogenase complex in the newborn of normal and diabetic rats[J].Diabetologia,1985,28(3):148-152.
    [12]Zhou YP,Ostenson CG,Ling ZC,et al.Deficiency of pyruvate dehydrogenase activity in pancreatic islets of diabetic GK rats[J].Endocrinology,1995,136(8):3546-3451.
    [13]郑建仙.功能性食品[M].中国轻工业出版社.2002:473-489
    [14]兴武,陈建文,杨萍.2型糖尿病患者血清果糖胺测定及其Ⅰ临床意义[J].蚌埠医学院学报,2001,26(2):159
    [15]Clark J B,Nicklas W J.The metabolism of rat brain mitochondria[J].J Biolchem,1970,245(18):4724-4731.
    [16]Lowry O H,Rosebrough N J,Farr A L,Randall R J.Protein measurement with the Polinphenol reagent[J].J Biol Chem,1951,193:265-275..
    [17]蒋传葵,金承德,吴仁龙,等.工具酶活力测定[M].上海:上海科技出版社,1982:11-131.
    [18] Birkmayer G D.NADH the energizing coenzyme. New York: Keats Publishing, 1998.18
    [19] Birkmayer G D.A11 about NADH. New York: Avery Publishing,2000.21
    [20] Obi Tabot E T, Hanrnhan L M, Cachecho Retal. Changes in hepatocyte NADH fluorescence during prolonged hypoxia. J Surg Res,1993,55:575
    [21] Ido Y, Williamson JR. Hyperglycemic cytosolic reductive stress "pseudohypoxia': implications for diabetic retinopathy [J]. Invest Ophthalmol Vis Sci, 1997,38(8), 1467-1470.
    [22] Vanden EMK, Nyengaard JR, Ostrow E, et al. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 1995, 36(8): 1675-1685.
    [23] Williamson J. R., Chang, K., Frangos, M., et al. Hyperglycemic pseudohypoxia and diabetic complications [J]. Diabetes, 1993,42 (6): 801-813.
    [24] Mariaga Y, Sakata N, Takebayashi S, et al. In vivo and in vitro evidence for the glycosidation of low density lipoprotein in human atherosclerotic plaques [J]. Atherosclerosis, 2000,150(2): 343-355.
    [25] Helen V. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation endproducts receptors [J]. Diabetes, 1996,45(supple 3): S65-66.
    [26] Rami A, Stevens VJ, Monnier VM. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus [J]. Metabolism, 1979, 28 (4 Suppl1): 431-437.
    [27] Ellis EA, Maria BG, Frederick T M, et al. Increased NADH oxidase activity in the retina of the BBZ/WOR diabetic rat [J]. Free Radical Biology & Medicine, 1998, 24(1): 111-120.
    [28] Kuo TH, Moore KH, Giacomelli F, et al. Defective oxidative metabolism of heart mitochondria from genetically diabetic mice [J]. Diabetes, 1983, 32(9): 781-787.
    [29] Beyer MA, Diecke FP, Mistry K, et al. Effect of pyruvate on lens myo-inositol transport and polyol formation in diabetic cataract [J]. Pharmacology, 1997,55(2): 78-86.
    [1]Zhou YP,Ostenson CG,Ling ZC,et al.Deficiency of pyruvate dehydrogenase activity in pancreatic islets of diabetic GK rats[J].Endocrinology,1995,136(8):3546-3451
    [2]Knight JA.Diseases related to oxygen-derived free radicals[J].Ann Clib Lab Sci,1995,25(2):111-121.
    [3]Ames BN,Gold LS,Willett WC.The causes and preventon of cancer[J].Proc Nail Acad Sci USA,1995,92:5258-5265.
    [4]Halliwell B.Mechanism involved in the generations of free radicals[J].Pathol Biol,1996,44(1):6-13.
    [5]Knight JA.The prodess and theories of aging[J].Ann Clin Lab Sci,1995,25(1):1-2.
    [6]Ames BN,Shigenaga MK,Hagen TM.Oxidants,antioxidants,and the degenerative diseases of aging[J].Proc Natl Acad Sci USA,1993,90(17):7915~7922.
    [7]Cameron NE,Cotter MA.Neurovascular dysfunction in diabetes rats.Potential contribution of antoxidation and free radical sexamined using transition metal chelating agents.Clinlvest1995;96:1159-1163.
    [8]池芝盛.拜糖平的临床应用[J].中国糖尿病杂志,1995,3(3),165
    [9]lask L A,Groopman J E,Neutfilization of the AIDs retrovirus by antibodies to a recombinant envelop glycoprotein[J].Science,1986,233:209-212
    [10]Alan D.Glycosidase inhibitors as antivirusal and/or antitumor agents.Cell Boil,1991,2,309-313
    [11]秦德安,苏丹,王晓玲.橙皮苷对羟自由基的清除作用[J].中国药学杂志,1996,31(7):396-398.
    [12]田丽梅,王曼,陈卫.小球藻Chlorella vulgaris中a-葡萄糖苷酶抑制剂的提取和性质研究[J].中国海洋药物杂志,2005,24(6):11-14.
    [13]孙子林,刘乃丰,弓玉祥.蛋白质非酶糖基化导致理化性状的改变[J].铁道医学,2000,28(5):280-283
    [14]李平,王艳辉,马润宇.碱提山茱萸多糖的理化性质及抗氧化活性的研究[J].中草药,2003,34(11):973-975.
    [1]邓洪斌,崔大鹏,冯艳春,等.非酶糖基化抑制剂的体外筛选方法[J].中国新药杂志,2004,13(1):34-38.
    [2]王曼.生物制药技术[M].化学工业出版社,2003,57-64
    [1]李素琴,王欣,梅柏松,陈国昌.中医药治疗糖尿病动物实验概况[J].湖北中医杂志,1999,21(3):142-144
    [2]李旭升,黄斌伦,陈国荣,陈筱菲.银杏提取物对糖尿病大鼠血糖代谢的影响[J].浙江中西医结合杂志,2004,14(7):403-404
    [3]Matkovics B,Kotorman M,Varga IS,et al.Oxidative stress in experimental diabetes induced by streptozotocin.Acta Physiol Hung,1997,98(85):29-38
    [4]Papaccio G,Fiascatore S,Esposito V,et al.Early macrophage infiltration in mice treated with low-dose streptoztocin decreases islet surperoxide dismutase leverls:prevention by silica pretreatment.Acta Anat(Basel),1991,142:141-146
    [5]奚涛,王玲玲.银杏提取物对糖尿病的药效学研究[J].中国药科大学学报,2000,31(4):285-288
    [6]Wang J.C.,Hu S.H.,Wang J.T.,Chen K.,S.,Chia Y.,C.Hypoglycemic effect of extract of Hericium erinaceus[J].Journal of the Science of Food and Agriculture.2005,85,641-646
    [7]Yang B.K.,Park J.B.,Song C.H.Hypolipidemic effect of an exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus[J].Bioscience Biotechnology and Biochemistry.2003,67(6),1292-1298
    [8]Rayat G.R.,Singh B.,Korbutt G.S.,Rajotte R.,V.Single injection of insulin delays the recurrence of diabetes in syngenic islet-transplanted diabetic NOD mice[J].Transplantation,2000,70(6),976-979.
    [9]丁虹,彭仁等.硒,大蒜素对糖尿病小鼠抗氧化功能的影响[J].营养学报,1998,20(1):12-16.
    [10]何戎华.糖尿病现代诊疗[M].江苏科技出版社.2000.
    [11]向红丁.胰岛素抵抗与胰岛素抗药性的区别[J].中国实验诊断学.1998,2,12-13
    [1]刘荣华,汪洋,陈兰英.CDA-40大孔树脂提取胆红素工艺研究[J].中成药,2000,22(3):187-189.
    [2]中国医学科学院药物研究所植化室.大孔吸附树脂在中草药化学成分提取分离中的一些应用[J].中草药,1980,11(2):138-141.
    [3]赵桂琴,尹志峰,陈四平.大孔树脂在中草药有效成分提取中的应用[J].承德医学院学报,2003,20(2):145-146.
    [4]何伟,李伟.大孔树脂在中药成分分离中的应用[J].南京中医大学学报,2005,21(2):134-136.
    [5]King GL,Browlee M.The cellular and molecular mechanisms of diabetic complication[J].Endocrinol Metab Clin North Am,1996,25(3):255-270.
    [6]王平,刘乃丰.糖基化终产物的药物干预[J].中国新药与临床杂志,2002,21(12):741-744.
    [7]黄建明,郭济贤,陈万生等.大孔树脂对草乌生物碱的吸附性能及提纯工艺[J].复旦学报(医学版),2003,30(3):267-269.
    [8]韩金玉,李海静,李岩,等.大孔吸附树脂对银杏内酯和白果内酯吸附性能的研究[J].离子交换与吸附,2000,16(5):426-431.
    [9]向大雄,李焕德,朱叶超等.大孔吸附树脂分离纯化葛根总黄酮的研究[J].中国药学杂志,2003,38(1),35-37.
    [10]Chen HJ,Cerami A.Mechanism of inhibition of advanced glycosylation by aminoguanidine in vitro[J].J Carbohydr Chem,1993,12:732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700