用户名: 密码: 验证码:
基于水分转化模型的淤泥固化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏浚工程中会产生大量的疏浚淤泥,固化方法可以有效的将废弃淤泥转化为土资源进行使用。针对淤泥固化机理难以定量研究的问题,本文提出从水分转化的角度对水泥加固淤泥的固化机理进行研究。具体研究内容如下:
     (1)淤泥固化过程中的水分转化规律研究。研究首先对水泥加固淤泥的特点进行了分析,提出将固化淤泥和水泥水分产物中的水分划分为自由水、结合水和矿物水,并以土水结合势能pF>7.0作为矿物水的划分,以pF3.8~7.0作为结合水的划分。通过对三种淤泥在不同水泥量和不同龄期固化过程中矿物水和结合水的测定,分别建立了淤泥固化过程中随水泥量和龄期增加的水分转化模型。模型表明,水泥在固化淤泥过程中,首先与淤泥中低势能的自由水进行反应,将淤泥中的自由水转化为水泥水化产物中的矿物水和结合水。水化产物中的矿物水量可以用来表征结晶态水泥水化产物的量,水化产物中的结合水量可以用来表征凝胶态水泥水化产物的量。
     (2)固化淤泥力学性质研究。对三种淤泥在不同水泥量和龄期下固化后进行了无侧限抗压强度试验、等向压缩试验和固结不排水三轴剪切试验。通过试验明确了固化淤泥的强度、变形、破坏模式、抗剪强度参数、变形系数、结构屈服应力、等向压缩系数、固化淤泥孔隙比等指标随水泥量和龄期的变化规律。基于对力学性质的分析,提出了水泥加固淤泥过程的强度来源于水泥水化产物的胶结、填充和骨架支撑作用。
     (3)水分转化量与固化淤泥力学性质的关系。通过将水泥固化淤泥中水化产物中的矿物水量和结合水量与力学性质指标的定量分析,提出了结晶态水化产物对强度一直有贡献,而凝胶态水化产物的量当值比较低时,对强度贡献作用较低,增加到一定量时对强度起主导作用。当两种水化产物的量都比较低时,固化淤泥不具有明显的强度。
Large amount of dredged materials (DM) may produce in dredging projects, solidification method can transfer it to useful soil resource effectively. As to the difficulties for quantitatively mechanism study, a new method was proposed to study the solidification mechanism from waster transfer angle. The particular content includes:
     (1) water transfer rule study during cement treated DM. The characteristics of cement solidification was analyzed firstly, a water phases classification method was proposed to classify water as free water, bound water and hydration water in solidified dredged material and cement hydration resultants. The soil-water suction potential index pF value was used to classify soil water, when pF value higher than 7.0, the water is hydration water. When pF value lies between 3.8 and 7.0, the water is bound water. Through the hydration water content and bound water content determination of different cement and curing time for three DMs, two water transfer models were built each for different cement content and different curing time. The water transfer models show cement reacts firstly with free water, the reaction can transfer free water to hydration water and bound water in cement hydration resultants. The hydration water in cement hydration resultants may be used to indicate the content of crystallized hydration resultants, while the bound water may be used to indicate the content of gel like hydration resultants.
     (2) Mechanical characteristics study of solidified DM. As to the three solidified DM at different cement content and curing time, unconfined compressive tests, iso-compression tests and consolidated undrained triaxial compression tests were done. Through tests the change rule of unconfined compressive strength, deformation, failure type, effective cohesion, deformation coefficient, structure failure stress, iso-compression coefficient and void ratio with cement content and curing time were make clear. Based on the analsis of mechanical behaviors of solidified DM, the conclusions of solidified DM strength comes from binding, filling and skeleton bracing actions of cement hydration resultants were drown.
     (3) Correlation analysis of water transfer content and mechanical properties. Through the quantitative analysis of hydration water content and bound water content- in cement hydration resultants with mechanical properties, the results show crystallized hydration resultants attribute to strength continuly, while when the content of gel like hydration resultants is small, the attribute is low, when the content increase to a certain value, the action of gel like hydration resultants exceed crystallized hydration resultants. When the two hydration resultants contents were small, the solidified DMs have no strength.
引文
[1] Forstner, U, and Calmano, U. Characterisation of dredged materials[J]. Water Science and Technology. 1998, 38(11): 149-157.
    [2] 徐元.港口建设与疏浚之间关系浅议——兼谈第6届世界疏浚大会有关情况[J].中国港湾建设.2001,(6):65-68.
    [3] Winkels, H. J, and Stein, A. Optimal cost-effective sampling for monitoring and dredging of contaminated sediments[J]. Journal of Environmental Quality. 1997, 26(4): 933-946.
    [4] Wakeman, T, Dunlop, P, and Knutson, L. Current status and future management of dredging at the Port of New York and New Jersey[A]. Proceedings of the 1997 1st National Conference of the ASCE Geo-Institute[C]. Logan, UT, USA: ASCE, 1997, 12.
    [5] 江苏省水利勘测设计研究院有限公司.南水北调东线第一期工程高水河整治工程初步设计报告[R],2006
    [6] Tack, F. M. G, Singh, S. P, and Verloo, M. G. Leaching behaviour of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments[J]. Environmental Pollution. 1999, 106(1): 107-114.
    [7] 罗清吉,石浚哲.五里湖淤泥现状及生态清淤[J].环境监测管理与技术.2005,15(1):27-29.
    [8] 中国土木工程学会.土木工程可持续发展指南[M].北京:中国建筑工业出版社,1999.
    [9] GB 50007—2002.建筑地基基础设计规范[S]
    [10] 朱伟,张春雷,刘汉龙,等.疏浚泥处理再生资源技术的现状[J].环境科学与技术.2002,25(4):39-41.
    [11] 黄继昌.苏州河污染底泥处置对策[J].船舶.1997,(1):4-12,27.
    [12] 林瑞建.航道整治疏浚物的综合利用[J].珠江水运.2004,(5):26-27.
    [13] 王金华.航道疏浚泥土出路问题的初探[J].江苏交通运输.1994,(4):34-35.
    [14] 薛善英,马志林.浅议城市航道疏浚泥土的管理及利用[J].水运工程.1991,(2):36-37.
    [15] MacFarlane, F, Henry, E, and Boulemia, C. Management approach of contaminated dredged materials for valorisation in civil engineering applications to dunkirk seaport[A]. Proceedings of the International Symposium of Recycling and Reuse of Waste Materials[C]. Dundee, United Kingdom: Thomas Telford Services Ltd, 2003, 143-154.
    [16] 尹毅,仲维妮.黄骅港抛泥区泥沙运动规律的研究[J].港工技术.1996,(4):1-4,7.
    [17] 张国安,虞志英.连云港疏浚工程的环境效应—以羊窝头抛泥区为例[J].黄渤海海洋.2001,19(2):46-56.
    [18] 赖永辉,谈广鸣,王军.深圳港西部港区进出港航道工程疏浚泥水抛泥沙输移扩散规律研究[J].武汉大学学报:工学版.2006,39(3):41-45.
    [19] 孙连成.天津新港抛泥区泥沙运动规律分析[J].港口工程.1991,(2):9-13.
    [20] 国家十五“863”水污染控制重大专项——太湖水污染控制与水体修复项目:重污染水体底泥环保疏浚与生态重建技术 2006
    [21] 罗章仁.香港填海造地及其影响分析[J].地理学报.1997, 52(3):220-227.
    [22] 杨顺安,刘志欣.深圳南油“314”造地吹填淤泥加固改良浅析[J].中国地质灾害与防治学报.1998, 9(4):8-12.
    [23] Fowler, Jack, and Sprague, C. Joel. Dredged material filled geotextile containers[A]. Proceedings of the Eight Symposium on Coastal and Ocean Management[C]. New Orleans, LA, USA: ASCE, 1993, 2415-2428.
    [24] 陈桂杰,王跃峰.编织袋充填技术在永定新河建闸清淤设计中的应用[J].水利水电工程设计.1998, (4):24-25.
    [25] 李宝强.土工织物充灌袋在天津港海堤建设中的研究及应用[J].中国港湾建设.2003,(5):36-38.
    [26] 陈曙东[1],袁红雷[2],等.土工织物袋充填技术在珠江河口整治工程中的应用[J].人民珠江.2002, (5):35-37.
    [27] 黄菊仙.袋充砂围堰在内河航道护岸施工中的应用[J].上海港科技.2001,(6):18-19, 24.
    [28] 伍贤益.简述湖泊淤泥生产空心砖工艺[J].砖瓦.2002,(4):43-45.
    [29] 文进,李凝芳.利用长江淤泥制砖的调查分析[J].砖瓦.2000, (3):32-34.
    [30] 薛世浩,汪竹茂.利用淤泥制砖的半工业性试验[J].砖瓦.1999, (3):26-27.
    [31] Hamer K. and Karius V. Brick production with dredged harbour sediments. An industrial-scale experiment[J]. Waste Management. 2002, 22(5): 521-30.
    [32] 刘贵云.河道底泥资源化—新型陶粒滤料的研制及其应用研究[博士论文D].上海:东华大学 2002.
    [33] 谢健,林鑫城,石萍,等.利用海洋疏浚泥生产轻质陶粒的研究[J].湛江海洋大学学报.2004, 24(6):32-36.
    [34] 谢丹,黄之初,陈袁魁.利用淤泥制备水泥熟料的实验研究[J].新世纪水泥导报.2006,12(2):16-18.
    [35] Burt, T. Neville and Dearnaley, Michael P. Beneficial uses of dredged material principles and practice[A]. Proceedings of the 2nd International Conference on Dredging and Dredged Material Placement[C]. Lake Buena Vista, FL, USA: ASCE, 1994, 631-643.
    [36] Jesse R. Conner. Chemical Fixation and Solidification of Hazardous Wastes[M]. New York: Van Nostrand Reinhold, 1990.
    [37] EPA/540/S-92/015. Engineering Bulletin-Solidification/Stabilization of Organics and Inorganics[S].
    [38] 韩怀强,蒋挺大,编.粉煤灰利用技术[M].北京:化学工业出版社,2001.
    [39] 吕晓姝.史可信,翟玉春.粒状高炉矿渣的研究和利用进展[J].材料导报.2005,19(专辑 Ⅳ):382-384.
    [40] 朱桂林.中国钢铁工业固体废物综合利用的现状和发展[J].废钢铁.2003,(1):12-16.
    [41] 王艳彦,梁英华,芮玉兰.碱渣的综合利用发展状况研究[J].工业安全与环保.2005, 31(2):29-31.
    [42] 姚建,王新民,田冬梅,等.磷石膏和粉煤灰胶结充填料的性能试验研究[J].矿业研究与开发.2006, 26(2):44-48.
    [43] Betteker, James M, Sherrard, Joseph H, and Ludwig, Daniel D. Solidification/stablization of contaminated dredged material[A]. Proceedings of the Eighteenth Mid-Atlantic Industrial Waste Conference[C]. Blacksburg, VA, USA: Technomic Publ Co, 1986, 253-273.
    [44] EB211. Guide to Improving the Effectiveness of Cement-based Stabilization/Solidification[S]
    [45] 郭成举.混凝土的物理和化学[M].北京:中国铁道出版社, 2004.
    [46] 韩苏建,李宁,郭敏霞,等.淤泥水泥土和填筑黄土的物理力学特性试验研究[J].西北农林科技大学学报.2004, 32(5):97-100.
    [47] 邓安.不同土性对加固土加固性能带来的影响[J].地基处理.2001,12(1):13-18.
    [48] 高亚成,郑建青.水泥土的室内试验研究[J].河海大学学报:自然科学版.1999, 27(5):103-106.
    [49] 张义贵,丁如珍,缪林昌.淤泥类水泥土的强度特性试验研究[J].公路交通科技.2004, 21(11):27-29.
    [50] 汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报.2000, 22(5):549-554.
    [51] Tang Yi-Xin, Miyazaki Y. , and Tsuchida T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations. 2001, 41(5): 129-143.
    [52] 朱伟,张春雷,高玉峰,等.海洋疏浚泥固化处理土基本力学性质研究[J].浙江大学学报:工学版.2005, 39(10):1561-1565.
    [53] 张春雷.淤泥固化土力学性质及固化机理研究[硕士论文D].南京:河海大学,2003.
    [54] 顾欢达,陈筵.河道淤泥的流动化处理及其工程性质的试验研究[J].岩土工程学报.2002, 24(1):108-111.
    [55] 卷测正治,土田 孝,山根信幸,等.固化処理浚渫土初期强度特性[A].東京:地盤工学会,1999, 827-828.
    [56] 宫崎良彦,湯 怡新,落合英俊,等.固化処理浚渫土一轴压缩强度含有量及含水比相関関係[J].九州大学工学集報.2001,74(1):1-8.
    [57] 孙立川,韩杰.水泥加固土无侧限抗压强度影响因素分析及预测[J].地基处理.1994, 5(4):31-37.
    [58] Ogino, T, K, Kataoka, T. Goto, and M. Kuroda. Utilization of stabilized dredged waste for construction material[A]. Proceedings of the First International Congress on Environmental Geotechnics[C]. Edmonton, Alberta, Canada: Canadian geotechnical society, 1994, 49-56.
    [59] 姬凤玲,朱伟,李明东.废弃泡沫塑料的疏浚泥固化处理技术的研究[J].环境科学与技术.2004, 27(5):69-70, 77.
    [60] 李玉华,吕炳南.河底淤泥固化处理及相关试验[J].哈尔滨建筑大学学报.1999, 32(6):66-69.
    [61] 丁天锐,高明生,唐彤芝,等.高含水量条件下水泥上强度室内试验研究[J].南通工学院学报:自然科学版.2004, 3(4):65-68.
    [62] 李俊才,周显祥.梁永谨.软土含水量对粉喷法加固效果的影响[J].成都理工学院学报.1998, 25(3):417-421.
    [63] 贾坚.影响水泥土强度的综合含水量研究[J].地下空间与工程学报.2006, 2(1):132-136, 140.
    [64] 刘焕存.夯实水泥土强度特性斌验研究[J].岩土工程技术.1996, (3):16-25.
    [65] 郝巨涛.水泥土材料力学特性的探讨[J].岩土工程学报.1991,13(3):53-59.
    [66] Tremblay, H, Lerouell, S, and Locat, J. Mechanical improvement and vertical yield stress prediction of clayey soils from Eastern Canada treated with lime or cement[J]. Canadian Geotechnical Journal. 2001, 38(3): 567-579.
    [67] Feng, Tao-Wei, Lee, Jia-Yih, Lee, and Yi-Jiuan. Consolidation behavior of a soft mud treated with small cement content[J]. Engineering Geology. 2001, 59(3-4): 327.
    [68] 侯永峰,龚晓南.水泥土的渗透特性[J].浙江大学学报:自然科学版.2000, 34(2):189-193.
    [69] Lea, F. M. The chemistry of cement and concrete[M]. 3rd ed. London: Edward Arnold Ltd, 1970.
    [70] Boardman, D. L, Glendinning, S, and Rogers, C. D. F. Development of stabilization and solidification in lime-clay mixes[J]. Geotechnique. 2001, 50(5): 533-543.
    [71] 李俊才,高国瑞,赵泽三.粉喷法加固软土地基的机理探讨[J].南京建筑工程学院学报.1994, (1):8-14.
    [72] 白冰,周健.扫描电子显微镜测试技术在岩土工程中的应用与进展[J].电子显做学报.2001, 20(2):154-160.
    [73] 龚尚龙.水泥胶中水化壳微观表现研究[J].重庆交通学院学报.1994, 13(3):17-23.
    [74] 王星华.粘土固化浆液固结过程的SEM研究[J].岩土工程学报.1999, 21(1):34-40.
    [75] 黄新,周国钧.水泥加固土硬化机理初探[J].岩土工程学报.1994, 16(1):62-68.
    [76] Tovey N K. A digital computer technique for orientation analysis of micrographs of soil fabric[J]. Journal of Microscopy, 1990, (120): 303-315.
    [77] 施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18(4):57262.
    [78] 丁佩民,张其林.土中矿物的X射线衍射分析及在环境岩土工程中的应用[J].青岛建筑工程学院学报.2002, 23(1):12-15.
    [79] 丁佩民,张其林.水泥处理的沉积淤泥膨胀试验及其矿物机理分析[J].同济大学学报:自然科学版.2002, 30(9):1083-1086.
    [80] 杨淑珍,宋汉唐.XRD法研究水泥水化反应速度[J].分析测试学报.1996,15(5):73-76.
    [81] 周芝芹,李峰.快速测定水化硅酸钙结晶度的XRD方法[J].光谱实验室.2001,18(5):627-629.
    [82] 谢英,候文萍,王向东.差热分析在水泥水化研究中的应用[J].水泥.1997,(5):44-47.
    [83] Vocka, R. , Galle, C. , Dubois, M. et al. Mercury intrusion porosimetry and hierarchical structure of cement pastes - theory and experiment[J]. Cement and Concrete Research. 2000, 30(4): 521-527.
    [84] Penumadu, D. , and Dean, J. Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry[J]. Canadian Geotechnical Journal. 2000, 37(2): 393-405.
    [85] Navi, P. and Pignat, C. Three-dimensional characterization of the pore structure of a simulated cement paste[J]. Cement and Concrete Research. 1999, 29(4): 507-514.
    [86] 范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学.2005, 26(8):1327-1330, 1334.
    [87] 李俊才,高国瑞.水泥土的微结构特征及分析[J].成都理工学院学报.2000, 27(4):388-393.
    [88] 薛君玕,许温葭,叶铭勋.硬化水泥浆体孔隙中液相的分离和研究[J].硅酸盐学报.1983,11(3):276-289.
    [89] 杨南如.C—S—H凝胶结构模型研究新进展[J].南京化工大学学报.1998, 20(2):78-85.
    [90] Chew, S. H, Kamruzzaman, A. H. M, and Lee, F. H. Physicochemical and engineering behavior of cement treated clays[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2004, 130(7): 696-706.
    [91] 李北星,胡晓曼,陈娟,等.高掺量混合材复合水泥的水化性能[J].硅酸盐学报.2004, 32(10):1304-1309.
    [92] Mindess, S, Young, J. F, eds. Concrete[M]. NJ: Prentice Hall, 1981.
    [93] 申爱琴,编.水泥与水泥混凝土[M].北京:人民交通出版社, 2000.
    [94] 李素昉.水泥微观形貌的图像分析[硕士论文D].济南:济南大学,2004.
    [95] 杨南如.C—S—H凝胶及其研究方法[J].硅酸盐通报.2003, 22(2):46-52.
    [96] Grudemo, A. Discussion of the structure of cement hydration compounds[A]. Proceedings of the 3rd International Symposium on the Chemistry of Cement[C]. London: 1952, 247.
    [97] Powers, T. C. The physical structure and engineering properties of concrete. [J]. Civil and Structural Engineering Review. 1956, 10: 272、329.
    [98] Powers T C, and Brownyard T L. Studies of the physical properties of hardened Portland cement paste[J]. Proc Amer Concr Inst, 1947, (43): 971-995.
    [99] 刘贤萍,王培铭,陈红霞,等.原子力显微镜在水泥熟料单矿物早期水化产物研究中的应用[J].硅酸盐学报.2004, 32(3):327-333.
    [100] Diamond, S. The microstructure of cement paste and concrete - A visual primer[J]. Cement(?) and Concrete Composites. 2004, 26(8): 919-933.
    [101] 储刚.X射线衍射外标样定量相分析方法[J].分析仪器.1997, (2):18-20.
    [102] 储刚.含非晶相样品的X射线衍射无标定量相分析方法[J].物理学报.1995,44(10):1679-1683.
    [103] 秦力川.X射线衍射K值法对硅酸盐材料快速定量相分析[J].重庆建筑大学学报.1995,17(3):49-56.
    [104] 杨晓明.水泥处置高含盐量软土的微观试验和机理研究[硕士论文D].上海:同济大学,2006.
    [105] Scrivener, K. L, Fullmann, T. , Gallucci, E. , et al. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods[J]. Cement and Concrete Research. 2004, 34(9): 1541-1547.
    [106] 王清,陈慧娥,蔡可易.水泥土微观结构特征的定量评价[J].岩土力学.2003, 24(增1):12-16.
    [107] 张栋良.基于三维图像重建的水泥水化过程微观结构模型研究[硕士论文D].济南:济南大学,2003.
    [108] 雷海林.水泥水化过程的汁算机模拟算法分析[硕士论文D].大连:大连理工大学,2005.
    [109] 唐大雄,孙愫文,编.工程岩土学[M].第一版.北京:地质出版社,1987.
    [110] Foth, H. D. Fundamental of soil science[M]. 6th ed: John Wiley & Sons, 1978.
    [111] Schofield, R. K. The pF of the water in soil. 1935,
    [112] 黎庆淮,编.土壤学与农作学[M].第二版.北京:水利电力出版社,1986.
    [113] 钱家欢,殷宗泽,编.土工原理与计算[M].第2版.北京:中国水利水电出版社,1996.
    [114] T. C. Powers, and T. L. Brownyard. J. Res. natn. Bur. Stand[J]. 1949, (42): 257.
    [115] T. C. Powers. Sym, London. 1952, 426.
    [116] R. H. Bogue and W. Lerch, Ind. Engng Chem. 1934, 26: 837.
    [117] 王智,郑洪伟,韦迎春.钙钒石形成与稳定对材料性能影响的综述[J].混凝土.2001,(6):44-49.
    [118] 曹蓓蓓,梁志刚.高温条件下混凝土结构与性能的变化[J].国外建材科技 2004, 25(6):17-21.
    [119] Ei-Kon-So, and Chang-Yun Ying. Influence of Allophane Content on Lime-Gypsum Stabilized Volcanic Cohesive Soils[J]. Soils and Foundations. 1994, 34(4): 97-107.
    [120] Mitchell, J. K. Fundamentals of soil behavior[M]. 2nd ed. New York: Wiley, 1993.
    [121] Sillers, W. Scott, Fredlund, Delwyn G. Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J]. Canadian Geotechnical Journal. 2001, 38(6): 1297-1313.
    [122] 地盘工学会.土实验实习书[M],第二版.日本东京:昭和情报株式会社,1991.
    [123] Lebedev,A. . F.Soil and Groundwaters[M].The Academy of Sciences of the USSR,1936.
    [124] 蒋明镜,徐锡荣.结构性粘土研究综述[J].水利水电科技进展.1999, 19(1):26-30.
    [125] [美] R.B.威廉逊,著.童大懋,黄文熙,吴锡琪,等泽.波特兰水泥的凝固[M].北京:中国建筑工业出版社,1980.
    [126] 钱家欢,编.土力学[M].南京:河海大学出版社,1988.
    [127] 洪振舜,立石义孝,邓永锋.强结构性天然沉积土的强度变形特性[J].岩土力学.2004,25(8):1201-1204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700