用户名: 密码: 验证码:
浆态床合成气一步法制二甲醚反应宏观动力学及反应器数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲醚(DME)作为一种新型的清洁能源和化工原料,是替代柴油和液化石油气的理想燃料。合成气一步法制取二甲醚工艺打破了合成气制甲醇时的反应平衡限制,在热力学上十分有利,可以提高CO单程转化率。浆态床反应器具有良好的传热性能,将其应用在强放热的二甲醚合成过程中,克服了传统固定床反应器自身移热能力的局限性,可以避免出现床层热点,容易实现恒温操作,减少催化剂积碳。传统复合双功能催化剂需经粉碎研磨后再分散到惰性液相中,且由于水分的存在而容易出现失活现象,本文采用的新型Cu-Zn-Al-Zr浆态催化剂,是采用从溶液到浆液的完全液相法制备,其始终处于液体介质分散之中,分散度高,颗粒度小,分布均匀,不存在与反应介质润湿问题,在近500 h变温变负荷实验中催化剂没有出现失活现象。在新型浆态催化剂上对合成气-步法制二甲醚宏观反应动力学的研究、浆态床反应器的数学模拟研究对浆态床反应器工业设计放大和工艺优化操作具有重要的指导意义。
     在Cu-Zn-Al-Zr浆态催化剂上建立了浆态床合成气一步法制二甲醚的宏观反应动力学模型。采用双头电导探针测定了浆态床空气-水-空心玻璃微珠体系气泡特征参数,采用溶解氧测定仪测定了溶解氧气液界面液相体积传质系数。通过因次分析建立了气泡特征参数及气液界面液相体积传质系数的关联式,并进行人工神经网络模拟预测。基于浆态床二甲醚合成宏观反应动力学、气液传质和颗粒沉降模型,建立了合成气一步法合成年产10万吨二甲醚浆态床反应器一维数学模型。
     在500mL高压搅拌釜中,压力3~7MPa,温度220~260℃,质量空速0.4~1.5 L/(g-h),气体摩尔分率yH20.65~0.75,yCO 0.14~0.20, yCO2 0.04~0.08的反应条件范围内,在新型Cu-Zn-Al-Zr浆态催化剂上进行了合成气一步法制二甲醚的宏观动力学研究。结果表明:随着温度的升高,CO的转化率、DME选择性是升高趋势。随着压力的增加,CO的转化率和二甲醚选择性也升高,甲醇选择性降低。随着空速的增加,CO转化率下降,DME的选择性下降,而中间产物甲醇的选择性增加。以CO、CO2加氢合成甲醇及甲醇脱水反应为独立反应,CO、CO2及DME为关键组分,建立了一步法合成二甲醚的Langmuir-Hinshelwood型宏观动力学模型。统计检验和残差分析显示该模型是适宜的,模型计算值与实验值吻合良好。
     在常温常压下,在Φ100mm冷模浆态床反应器中对空气-水-空心玻璃微珠三相体系,采用双头电导探针法测定了气泡特征参数,并采用动态气体吸收法用溶解氧测定仪测定了溶解氧气液界面液相体积传质系数。通过因次分析,建立了气泡特征参数(d32、εG、aL)及气液界面液相传质系数(kLaL、kL)与操作条件、物性参数之间的经验关联式,并采用拓扑结构为[3,15-12,1]的三层Elman反馈神经网络模型对对各参数进行了统计预测。结果表明:反应器床层气含率和气泡相界面积沿浆态床轴向高度没有明显变化,但随着轴向高度增大,气泡直径略有增大。随着表观气速的增大,局部气含率、气液相界面积和气泡平均直径增大,在湍流鼓泡区气泡平均直径渐于稳定。固含率增加,气液相界面积减小,气泡平均直径增大,而气含率在湍流鼓泡区随着固含率的增加而相应减小,在安静鼓泡区而几乎不变。气液界面液相体积传质系数kLaL受轴向位置的影响很小,而气液界面液相传质分系数kL在轴向位置上受流动过程中气泡的循环流影响,产生引起上下波动。kLaL随表观气速的增大而增大,kL呈减小趋势。kLaL随着固含率的增大而减小,但固含率<5%时,会加强气液传质,kLaL有略微增大趋势,而kL表现出先增大再减小趋势。
     基于二甲醚合成宏观反应动力学和颗粒沉降模型,建立了合成气一步法合成年产10万吨二甲醚工艺浆态床反应器一维数学模型。模拟计算了反应器结构参数及操作条件对催化剂颗粒床层轴向浓度分布的影响。结果表明:增大催化剂颗粒粒径及减小反应器直径对催化剂颗粒床层轴向浓度分布均匀性有较大影响。对超细浆态催化剂而言,催化剂床层轴向分布已经基本均匀,催化剂质量分数对催化剂浓度轴向分布也基本没有影响,可以在较高催化剂质量分数下进行二甲醚合成反应。
     在标准反应器进口气体流量为120000Nm3/h,气体组成为yH2 0.70, yco 0.15,yco2 0.05, yNz 0.10,催化剂固含量0.30,反应器直径2.50m,操作温度240℃,压力5 MPa条件下,对10万吨/年二甲醚合成浆态床反应器进行了数学模拟计算。计算结果表明:静液高度18.23 m,床层操作高度22.83 m,平均气含率0.20,表观气速0.260 m-s-1,石蜡油质量52.40t,催化剂质量22.46 t,出口气体组成为yH2 0.6021, yco 0.0068, yco20.0819, yH2O 0.0703, yM 0.0181, yDME 0.0837, yN2 0.1371,总碳转化率0.6765,二甲醚选择性0.8419,甲醇年产量16254.65t/a,二甲醚年产量108351.84t/a。
     模拟计算分析了浆态床反应器中温度、压力、反应器直径等对总碳转化率、二甲醚选择性、产物产量及床层高度的影响。结果表明:随着压力的增大,总碳转化率及二甲醚的选择性均增加,甲醇及二甲醚的产量也有所增加,操作床层高度下降,而静液床层高度下降相对较为平缓。随着温度的升高,总碳转化率和二甲醚的选择性均略有降低,甲醇产量基本不变,而二甲醚的产量有所减小,静液床层高度和操作床层高度均降低。总碳转化率、二甲醚的选择性、甲醇和二甲醚产量几乎不随直径的变化而变化。随着反应器直径的减小,床层平均气含率及表观气速均较大幅度的增加,静液床层高度和操作床层高度均增加。较佳的操作条件为压力5.0MPa,温度240℃,反应器直径2.5m。
Dimethyl ether (DME) is a new chemical intermediate and ideal clean fuel which can substitute diesel fuel and liquefied petroleum gas for for its high cetane number and environmentally benign properties. From thermodynamical point of view, it is favorable to the direct DME synthesis from syngas process which breaks through the thermodynamics equilibrium limitation of methanol synthesis. In the result, a higher CO single conversion and a higher DME selectivity can be obtained. For its higher heat transfer coefficient for the existing of liquid inert media, bubble column slurry reactor has received growing attention in direct DME synthesis from syngas and easy to achieve constant temperature operation in the case of a strongly exothermic reaction which can cause temperature runaway in traditional tubular fixed-bed reactor and alleviate greatly carbon deposition. Commercial bi-functional catalysts were dispersed in liquid medium after smashing and grinding, and lead easily to irreversible deactivation for the existence of wateradhering to the surface of catalysts. Cu-Zn-Al-Zr slurry catalysts used in this study were prepared by a novel complete liquid-phase technology from a solution to the slurry, and always dispersed in the organic medium, which has the advantages of small and uniform granularity, high dispersive, higher activity stability, well rheological property, stable surface structure and a good stability during the reaction of 440 h without significant catalyst deactivated. Study on global kinetics for the direct DME synthesis from syngas and mathematical simulation in BCSR over the Cu-Zn-Al-Zr slurry catalysts has important guiding significance to the industrial design and scale up and optimal operation of DME synthesis process.
     A global kinetics for DME direct synthesis has been proposed based on Langmuir-Hinshelwood mechanism in continuous stirred tank reactor over Cu-Zn-Al-Zr slurry catalyst. Bubble characteristic parameters in air/water/hollow glass beans system are measured experimentally using dual-tip conductivity probes, and gas-liquid volumetric mass transfer coefficient was determined experimentally by the means of a dynamic oxygen absorption technique in bubble column slurry reactor at ambient temperature and normal pressure. Empirical correlations by dimensional analysis and feed-forward back propagation neural network models were obtained to predict bubble characteristic parameters and gas-liquid volumetric mass transfer coefficient. It has been further developed a steady state one- dimensional mathematical model for an industrial scale bubble column slurry reactor with annual output of 100,000 tons dimethyl ether based on the global kinetic model for direct DME synthesis and and sedimentation-dispersion model of catalyst grains.
     Directy Dimethyl ether synthesis process from syngas was studied in 500mL stirred autoclave over the novel Cu-Zn-Al-Zr slurry catalyst in wide range of experimental operation conditions:pressure with 3-7MPa, temperature with 220-260℃, WHSV with 0.6-1.2L/(gcat-h) and the composition of syngas with yH2 0.65-0.75, yCO 0.14-0.20,yCO2 0.04-0.08 in the experiments. The influences of pressure, temperature and WHSV on the once-through conversion of CO, selectivity of DME were studied in detail:The conversion of CO and selectivity of DME increase gradually, yet selectivity of methanol has different changes with increasing pressure and increasing temperature, but both conversion of CO and selectivity of DME decrease gradually with the increasing WHSV.
     A global kinetics model for liquid phase DME direct synthesis based on Langmuir-Hinshelwood mechanism has been proposed by choosing methanol synthesis from CO hydrogenation and CO2 hydrogenation and methanol dehydration as independent reactions. The global kinetics model is suitably fitting experimental data, and its reliability was verified by statistical test and residual error analysis. Bubble characteristic parameters(d32,εG, aL) in air/water/hollow glass beans systems are measured experimentally using dual-tip conductivity probes, and mass transfer coefficient (kLaL,,kL) was determined by the means of a dynamic oxygen physical absorption technique with a polargrafic dissolved oxygen probe in bubble column slurry reactor at ambient temperatures and normal pressures. Empirical correlations by dimensional analysis were obtained to predict bubble characteristic parameters and gas-liquid mass transfer coefficient for air/water/hollow glass beans system. Feed-forward back propagation neural network models with the same 3-layer [3,15-12,1] topology are employed to predict these parameters. The increasing of axial height in the column has little or no influence on local gas holdup and gas-liquid interfacial area and slightly enhanced the Sauter-mean bubble diameter; Local gas holdup, gas-liquid interfacial area and Sauter-mean bubble diameter all increased with the superficial gas velocity increasing, and the Sauter-mean bubble diameter reached gradually stable value in coalesced bubble regime. Gas-liquid interfacial area decreased gradually and Sauter-mean bubble diameter increased gradually with the increasing solid holdup. Local gas holdup decreased with the increasing solid holdup in heterogeneous flow regime and then almost not changed in homogeneous flow regime; With axial height of the column increasing, volumetric mass transfer coefficient has remained approximately constant, while liquid-side mass transfer coefficient was fluctuated for bubble recirculation in bulk slurry phase; Volumetric mass transfer coefficient kLaL increased and liquid-side mass transfer coefficient kL decreased with the increase of superficial gas velocity. kLaL decreased generally with the increasing solid holdup, but have a slight increase in low solid holdup less than<5% which can enhance gas-liquid mass transfer characteristics, and kL has the corresponding changing tendency of the increasing firstly and and then decreasing with the increasing temperature.
     Based on the global kinetics of direct dimethyl ether synthesis and sedimentation-dispersion model of catalyst grains, a steady-state one-dimensional mathematical model for three-phase bubble column slurry reactor with annual output of 100,000 tons dimethyl ether has been established. The influence of operation conditions and reactor structure on catalyst axial concentration distribution with simulation results was discussed. It turns out that the particle diameter and reactor diameter are the main factors influencing concentration distribution uniformity. For ultrafine slurry catalyst, the influence of catalyst content on the catalyst axial concentration distribution has been not obvious. it can be carried out under the slurry catalyst with a higher mass content to achieve higher methanol/DME yield.
     The simulation calculation of bubble column slurry reactor design was carried out for 100,000 t/a dimethyl ether in the typical industrial operating conditions with the composition of coal-based syngas:yH20.70, yN20.10,yCO0.15, yCO20.05, Solid constent 30wt.%, reactor diameter 2.50m, temperature 240℃, pressure 5MPa. The simulation results were listed:static bed height 18.23 m, operating bed height 22.83 m, average gas holdup 0.20, superficial space velocity 0.260m·s-1, mass of paraffin 52.40t, mass of catalyst 22.46t, gas composition in the outlet:yH2 0.6021, yCO 0.0068, yCO2 0.0819, yH2O 0.0703, yM 0.0181, yDME 0.0837, yN2 0.1371, total carbon conversion 0.6765, DME seliectivity 0.8419, methanol yield 16254.65 t/a, DME yield 108351.84 t/a.
     The influence of temperature, pressure and reactor diameter on total carbon conversion, DME seliectivity, products output and bed height were simulated and analyzed.Total carbon conversion, selectivity of DME and yield of methanol/DME are all increased as pressure increases. Operating bed height is decreased greatly, while static bed height decreases slightly. Total carbon conversion, selectivity and yield of DME decrease slightly with increasing temperature. Static bed height and operating bed height drop suddenly as the temperature increases. Total carbon conversion, selectivity of DME, and yield of methanol/DME keep almost constant with reactor diameter. But both operating bed height and static bed height are increased obviously because average gas holdup and superficial space velocity are increased as reactor diameter decreases. The optimal operation conditions in BCSR were proposed: temperature at 240℃, pressure at 5MPa and reactor diameter of 2.5m.
引文
[1]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M].北京:化学工业出版社,2004
    [2]黄伟,高志华,阴丽华,谢克昌.一种浆状催化剂及其制备方法[P].2007,公开号:CN 1974006A,申请号:200610102268.1
    [3]倪维斗,靳晖,李政等.二甲醚经济:解决中国能源与环境问题的重大关键[J].煤化工.2003,107:3-9
    [4]张海涛,曹发海,刘殿华,房鼎业.合成气直接合成二甲醚与甲醇的热力学分析[J].华东理工大学学报.2001,27(2):198-201
    [5]林荆.甲醇制气溶胶级二甲醚扩大实验通过省级鉴定[J].天然气化工.1992,17(3):60
    [6]Lee S, Goate M.R., Kulik C.J. A novel single-step dimethyl ether (DME) synthesis in a three-phase slurry reactor from CO-rich syngas[J]. J Chem. Eng. Sci.1992,47 (13): 3769-3777
    [7]Yotaro O, Hiroshi Y, Norio I, Keiichi O, Seiji A. Slurry phase DME direct synthesis technology:100 tons/day demonstration plant operation and scale up study. Natural Gas Conversion symposium,2007
    [8]Voss B, Joensen F, Hansen J. Preparation of fuel grade dimethyl ether from synthesis gas [P]. WO96/23755,1996.8
    [9]刘勇,张杰杉,曹宇.二甲醚一步合成技术进展[J].天然气工业.2000,20(5):79-83
    [10]Peng X D, Parris G E, Toseland B A, et al. Use of aluminum phosphate the dehydration catalyst in a single-step process for the comanufacture of methanol and dimethyl ether from synthesis gas with elimination of catalyst coke formation [P]. US 5753716,1998
    [11]贾美林,李文钊.天然气空气部分氧化制合成气/二甲醚集成工艺[D].大连:中科院大连化物所,2002
    [12]王和平.合成气一步法制二甲醚工艺及催化剂研究进展[J].工业催化.2003,11(5):34-38
    [13]刘殿华,徐江,张海涛,房鼎业.三相搅拌反应釜中合成气直接合成二甲醚[J].化工学报.2002,53(1):103-106
    [14]徐江.三相床合成气一步法制二甲醚动力学研究[硕士].上海:华东理工大学2002
    [15]郭俊旺,牛玉琴,张碧江.气-液-固三相合成二甲醚技术进展[J].天然气化工.1996,21(4):38-43
    [16]柯思明,刘殿华,曹发海,房鼎业,林荆.三相搅拌釜反应器中二氧化碳加氢合成二甲醚[J].天然气化工.2000,25(2):15-18
    [17]刘志坚,廖建军.二氧化碳加氢合成二甲醚(CuO-ZnO-Al2O3/HZSM-5)催化剂的研究[J].工业催化.2002,10(2):46-49
    [18]杨燕,夏代宽,唐文龙.二氧化碳催化加氢合成二甲醚的研究[J].工业催化.2002,10(3),42-46
    [19]郭俊旺,牛玉琴,张碧江.浆态床合成气制二甲醚的宏观动力学研究[J].天然气化工.2000,25(1):4-7
    [20]葛庆杰,黄友梅,李双娣等.合成气直接制取二甲醚催化剂的制备因素及其应用[J].石油化工.1997,26(9):593-597
    [21]Wang Zhiliang, Diao Jie, Wang Jinfu. Study on synergy effect in Dimethyl ether synthesis from syngas [J]. Chinese J. of Chem. Eng.2001,9(4):412-416
    [22]赵宁,陈小平,任杰,孙予罕.浆态床合成二甲醚反应工艺条件的研究[J].天然气化工.2000,25(3):1-4
    [23]Erena J., Garona R., Arandes J. M., Aguayo A.T., Bilbao J. Effect of operating conditions on the synthesis of dimethyl ether over CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst [J]. Catal. Today.2005,107-108:467-473
    [24]Moradi G.R., Ahmadpour J., Yaripour F. Intrinsic kinetics study of LPDME process from syngas over bi-functional catalyst [J]. Chem. Eng. J.2008,144:88-95
    [25]Aguayo A.T., Erena J., Mier D., M.Arandes J., Olazar M., Bilbao J. Kinetic modeling of dimethyl ether synthesis in a single step on a CuO-ZnO-Al2O33/γ-AlO3 catalyst [J]. Ind. Eng. Chem. Res.2007,46(17):5522-5530
    [26]葛庆杰,黄友梅,张天莉.合成气直接制取二甲醚的双功能催化剂[J].天然气化工.1996,21(5):19-22
    [27]葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂Ⅱ.脱水组分对催化剂性能影响的研究[J].天然气化工.1996,21(6):16-19
    [28]葛庆杰,黄友梅,邱凤炎等.合成气直接制二甲醚双功能催化剂助剂的研究[J].分子催化.1998,12(4):308-311
    [29]侯昭胤,费金华,齐共新等.负载型Cu-MnOx催化剂上CO加氢制二甲醚的研究[J].燃料化学学报.2002,8(6):555-559
    [30]齐共新,费金华,侯昭胤等.助剂Mn对Cu/Al2O3催化剂一氧化碳加氢性能的影响[J].燃料化学学报.2000,6(4):382-384
    [31]侯昭胤,费金华,齐共新等.直接合成二甲醚的Cu-Mn催化剂[J].石油化工2000,29(11):819-821
    [32]贾美林,李文钊,徐恒泳等.含氮合成气直接制二甲醚的Cu基催化剂研究[J].分子催化,2002,(1):25
    [33]贾美林,徐恒泳,李文钊等.一种合成气直接制二甲醚的催化剂制备方法[P]. CN: 01136842.X
    [34]Zheng Xiaoming, Fei Jinhua, Hou Zhaoyin. Catalysis for one-step synthesis of Dimethyl ether from hydrogenation of CO [J]. Chinese Journal of Chemistry.2001,19(1):67-72
    [35]李晋鲁.用于由合成气一步法制备二甲醚的复合催化剂及其制备方法[P]. CN: 01132664 A,1995
    [36]徐恒泳.用于由CO加氢制二甲醚的催化剂及应用[P]. CN:01172694A
    [37]黄友梅,葛庆杰,李双娣.由合成气制取二甲醚的催化剂[P]. CN:01103080A,1995
    [38]黄伟,任杰,樊金串,高志华,谢克昌.合成气一步合成二甲醚的催化剂及其制备方法[P].公开号:CN 101157038A,申请号:200710185215.5,2007.6
    [39]高志华,黄伟,王将永,阴丽华,谢克昌.Cu-Zn-Al-Zr合成二甲醚浆状催化剂的完全液相制备及表征[J].化学学报.2008,66(3):295-300
    [40]高志华,黄伟,李俊芳,阴丽华,谢克昌.以拟薄水铝石为铝源制备浆态床二甲醚合成催化剂[J].高等学校化学学报.2009,30(3):534-538
    [41]Gao Zhihua, Hao Lifeng, Huang Wei, Xie Kechang. A novel liquid-phase technology for the preparation of slurry catalysts [J]. Catal. Lett.2005,102(3-4):139-141
    [42]Villa P., Forzatti P., Buzzi-Ferraris G, Garone G., Pasquon I. Synthesis of alcohols from carbon oxides and hydrogen.1. Kinetics of the low-pressure methanol synthesis [J]. Ind. Eng. Chem. Pro. Des. Dev.1985,24(1):12-19
    [43]Vanden Bussche K. M., Froment G. F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 Catalyst [J]. J. Catal.1996,161(1):1-10
    [44]Lu Wenzhi, Teng Lihua, Xiao Wende. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor [J]. Chem. Eng. Sci.2004,59: 5455-5464
    [45]Graaf G. H., Stamhuis E. J., Beenackers A. A. C. M. Kinetics of the three phase methanol synthesis [J]. Chem. Eng. Sci.1988,43(8):2161-2168
    [46]Bercic G, Levee J. Intrinsic and global reaction rate of methanol dehydration over γ-Al2O3 pellets [J]. Ind. Eng. Chem. Res.1992,31:1035-1040
    [47]Moradi G. R., Ahmadpour, J. Yaripour F. Intrinsic kinetics study of LPDME process from syngas over bi-functional catalyst [J]. Chem. Eng. J.2008,144:88-95
    [48]聂兆广,胡艳芳,房鼎业.含氮合成气制取二甲醚的管壳式反应器模拟[J].青岛大学学报(工程技术版).2004,19(1):35-41
    [49]Ng K.L., Chadwick D., Toseland B.A. Kinetics and modeling of Dimethyl ether synthesis from synthesis gas [J]. Chem. Eng. Sci.1999,54:3587-3592
    [50]杜明仙,郝栩,胡惠民等.CO+H2合成甲醇、二甲醚过程及动力学研究(Ⅰ)实验部 分[J].煤炭转化.1993,16(3):89-95
    [51]杜明仙,李家旺,胡惠民等.CO+H2合成甲醇、二甲醚过程及动力学研究(Ⅱ)动力学模型[J].煤炭转化.1993,6(4):68-75
    [52]肖文德,滕丽华,鲁文质.合成气制备甲醇、二甲醚的反应机理及其动力学研究进展[J].石油化工.2004,33(6):497-507
    [53]江大好,费金华,张一平,郑小明.合成气一步法制二甲醚的动力学研究[J].浙江大学学报(理学版).2003,30(2):167-172
    [54]贾广信,谭猗生,韩怡卓.浆态床二甲醚合成的本征动力学研究[J].石油化工2004,33(12):1124-1129
    [55]张海涛.三相淤浆床中合成气直接制二甲醚的催化反应工程基础研究[D].上海:华东理工大学,2003
    [56]聂兆广.含氮合成气一步法制二甲醚的动力学研究及反应器模拟[D].上海:华东理工大学,2004
    [57]陈甘棠,王樟茂.多相流反应工程[M].浙江:浙江大学出版社,1996
    [58]朱炳辰,翁惠新,朱子彬.催化反应工程(修订版)[M].北京:中国石化出版社,2010
    [59]Fan L.-S. gas-liquid-solid fluidization engineering [M]. Boston:Butterworths publishers,1989;气液固流态化工程.北京:中国石化出版社,1993
    [60]Vial C., Poncin S., Wild G, et al. A simple method for regime identification and flow characterisation in bubble columns and airlift reactors [J]. Chem. Eng. Pro.2001,40: 135-151
    [61]Zuber N., Findlay J.A.. Average volumetric concentration in two-phase flow systems [J]. Journal of Heat Transfer.1969,87:453
    [62]Ranade V.V., Joshi J.B. Transport phenomena in multiphase systems [C]. Proceedings of Symposium on Transport Phenomena in Multiphase Systems. BHU, Varanasi,1988, 113-196
    [63]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟[D].清华大学,2004
    [64]陈祖茂,郑冲,冯元鼎.用于测定多相流动体系内气泡特性的微型电导探针[J].石油化工.1994,23(1):152-158
    [65]余茂强.气液固三相浆态床系统的冷态研究[D].上海:华东理工大学,2003
    [66]李天成.电导法测定气-液鼓泡床反应器内的气泡直径[J].天津大学学报.2002,35(2):231-234
    [67]王铁锋,王金福.三相循环流化床中气泡大小及其分布的研究[J].化工学报.2001,52(3):197-203
    [68]杨索和.加压浆态鼓泡床中部分流体力学特性的研究[D].北京:北京化工大学, 2004
    [69]Vandu C.O., Koop K., Krishna R. Large bubble sizes and rise velocities in a bubble column slurry reactor [J]. Chem. Eng. Technol.2004,27(11):1195-1199
    [70]陈群来.浆料鼓泡塔反应器部分流体力学参数研究综述[J].化学工业与工程.2001,18(2):358-363
    [71]Sriram K., Mann R. Dynamic gas disengagement:a new technique for assessing the behavior of bubble columns [J]. Chem. Eng. Sci.1976,32:571-580
    [72]Chilekar V. P., Singh C. A gas hold-up model for slurry bubble columns [J]. AIChE J. 2007,53(7):1687-1702
    [73]Martin H. L., Jaap C. S, van den Bleek C. M., Rajamani K. Effect of gas density on large-bubble holdup in bubble column reactors [J]. AIChE J.1998,44(10):2333-2336
    [74]Gandhi B., Prakash A., Bergougnou M A. Hydrodynamic behavior of slurry bubble column at high solids concentrations [J]. Powder Technology.1999,103:80-94
    [75]Miyauchi T, Shyu CN. Fluid flow in bubble columns [J]. Jap. Chem. Eng.1970,34: 958-964
    [76]任欧旭,张少峰等.气(汽)-液-固三相流化床中的气(汽)泡行为研究进展[J].河北工业大学学报.2002,31(5):44-49
    [77]Peterson D.A. Bubble behavior in a three phase fluidized bed [J]. Multiphase Flow. 1987,13(4):477-489
    [78]Kim S.D., Baker C.G.J. Bubble characteristics in three fluidized beds [J]. Chem. Eng. Sci.1977,32(11):1299-1306
    [79]陈祖茂,郑冲,冯元鼎.利用摄像法研究三相流化床中的气泡行为[J].北京化工学院学报.1994,21(2):1-4
    [80]Rigby G.R., Van Blockland G.P., Park W.H., Capes C. E. Properties of bubbles in three phase fluidized beds as measured by an electroresistivity probe [J]. Chem. Eng. Sci. 1970,25(11):1729-1741
    [81]Matguura A. Distributions of bubble properties in a gas-liquid-solid bed [J]. AIChE J. 1984,30(6):894-903
    [82]Warstio A., Fan L.S. Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography [J]. Chem. Eng. Sci.2001,56:6455-6462
    [83]Moujacs S., Dougall R.S. Experimental investigation of current two-phase flow in a vertical rectangular channel [J]. Can. J. Chem. Eng.1987,65(5):705-715
    [84]Han J.H., Kim S.D. Radial dispersion and bubble characteristics in three-phase fluidized beds [J]. Chem. Eng. Commu.1990,94:9-26
    [85]王铁峰,王金福,金涌等.三相循环流化床中气泡上升速度的实验研究[J].高校化学工程学报.2000,14(4):334-339
    [86]Santana D., Macias-Machin A. Local bubble size distribution in fluidized beds [J]. AIChE J.2000,46(7):1340-1347
    [87]Pohorecki R, Moniuk W, Zdrojkowski A. Hydrodynamic of a bubble column under elevated pressure [J]. Chem. Eng. Sci.1999,54:5187-5193
    [88]Letzel H M, Schouten J C, Krishna R, et al. Gas holdup and mass transfer in bubble column reactors operated at elevated pressure [J]. Chem. Eng. Sci.1999,54:2237-2246
    [89]丁百全,张吉波.高固含率三相淤浆反应器流体力学研究[J].华东理工大学学报.2000,26(3):228-231
    [90]Vinit P. Chilekar, Chattarbir Singh. A gas hold-up model for slurry bubble columns [J]. AIChE J.2007,53(7):1687-1702
    [91]吕树森.应用电导探针测定鼓泡塔内气泡参数[J].化学反应工程与工艺.2003,19(4):44-50
    [92]张锴,赵玉龙,张碧江.锥形鼓泡浆液反应器内气含率和固含率轴向分布研究[J].燃料化学学报.1993,21(4):400-406
    [93]Li H., Prakash A. Heat transfer and hydrodynamic in a three-phase slurry bubble column [J]. Ind. Eng. Chem. Res.1997,36:4688-4694
    [94]赵玉龙,苏晓丽.锥形甲醇鼓泡浆液反应器的气含率和颗粒浓度分布[J].燃料化学学报.2000,28(4):360-363
    [95]张海涛,侯秋实,丁百全,房鼎业.合成气制二甲醚三相淤浆床反应器气含率[J].化工学报.2002,53(6):651-654
    [96]Alita K, Yochida F. Bubble size, interfacial area and liquid phase mass transfer coefficients in bubble columns [J]. Ind. Eng. Chem. Process Des. Dev.1974,13(1): 84-91
    [97]韩晖,房鼎业,朱炳辰.高固含率三相鼓泡淤浆反应器气液传质研究及其采用两种气体分布器的比较[J].高校化学工程学报.2003,17(4):383-388
    [98]Jin Haibo, Liu Delin, Yang Suohe, et al. Experimental study of oxygen mass transfer coefficient in bubble column with high temperature and high pressure [J]. Chem. Eng. Tech.2004,27(12):1267-1272
    [99]Vandu C. O., Krishna R. Gas holdup and volumetric mass transfer coefficient in a slurry bubble column [J]. Chem. Eng. Tech.2003,26(7):779-782
    [100]Vandu C O., Berg B. V. D., Krishna R. Gas-liquid mass transfer in a slurry bubble column an high slurry concentrations and high gas velocities [J]. Chem. Eng. Technol. 2005,28(9):998-1002
    [101]Behkish A., Men Zhuowu, Inga J. R., Morsi B. I. Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures [J]. Chem. Eng. Sci.2002,57:3307-3324
    [102]白亮,赵玉龙,张碧江.高压搅拌釜中H2、CO在不同液体介质中的溶解度和体积传质系数的研究[J].化学反应工程与工艺.1996,12(2):189-195
    [103]阮国岭,杨宁生,沈自求.化学法测定鼓泡塔中的相界面积和传质系数[J].化学反应工程与工艺.1989,5(4):16-23
    [104]张永强,毛在沙,陈家镛.搅拌反应器中氧气-正癸烷-水溶液体系的气液传质实验[J].化工冶金.2000,21(2):123-127
    [105]Yang Weiguo, Wang Jinfu, Zhao Bin, Jin Yong. Gas-liquid mass transfer in slurry bubble systems-Ⅱ. Verification and simulation of the model based on the single bubble mechanism[J]. Chem. Eng. J.2003.96:29-35
    [106]Jordan U., Terasaka K., Kundu G., Schumpe A. Mass transfer in high-pressure bubble columns with organic liquids [J]. Chem. Eng. Technol.2002.25(1):262-265
    [107]赵玉龙.鼓泡浆液反应器的数学模型[J].化学工程.1991,19(5):13-21
    [108]Ledakowics S., Deckwer W. D., Shah Y. T. Some aspects of design of commercial reactors for direct coal liquefaction [J]. Chem. Eng. Commun.,1984,25(1-6):333-349
    [109]赵玉龙.费托合成鼓泡浆态的多组份轴向分散模型[J].化学反应工程与工艺.1987,3(2):22-32
    [110]Govindarao V. M. H. On the dynamics of bubble column slurry reactors [J]. Chem. Eng. J.1975,9(3):229-240
    [111]Govindarao V. M. H., Chidambaram M. Semi-batch bubble-column slurry reactors: effects of dispersion on the steady-state behavior [J]. AIChE J.1984,30(5):842-845
    [112]Krishnan C., Elliott J.R., Berty J.M. Simulation of a three phase reactor for the solvent methanol process [J]. Chem. Eng. Comm.1991,105:155-170
    [113]王存文,朱炳辰,房鼎业.鼓泡淤浆床甲醇合成(Ⅰ)数学模型及实验验证[J].化工学报.2001,52(11):1006-1011
    [114]王存文,朱炳辰,房鼎业.鼓泡淤浆床甲醇合成(Ⅱ)工业装置的工程分析[J].化工学报.2001,52(12):1090-1094
    [115]王存文,朱炳辰,房鼎业.液相法甲醇合成过程中机械搅拌反应器的模拟[J].化学反应工程与工艺.2001,17(2):112-118
    [116]王弘轼,朱炳辰.三相鼓泡淤浆床环氧乙烷数学模型及工程分析[J].化工学报.2002,53(2):116-121
    [117]宋维端,朱炳辰,王弘轼,朱明交,孙启文,张均利.C301铜基催化剂甲醇合成反应动力学:Ⅰ.本征动力学模型[J].化工学报.1988,38(4):401-408
    [118]张均利,宋维端,王弘轼,房鼎业.C301铜基催化剂甲醇合成反应动力学:Ⅱ.宏观动力学模型[J].化工学报.1988,38(4):409-415
    [119]房鼎业,薛从军,林荆,陈鹏,王小勤.甲醇在CM-3-1催化剂上脱水生成二甲醚的本征动力学[J].燃料化学学报.1997,25(3):271-276
    [120]宋维端,朱炳辰,骆赞椿,余立本,冯国祥,徐汛.应用SHBWR状态方程计算加压下甲醇合成的反应热和平衡常数[J].华东化工学院学报.1981,17(1):11-24
    [121]张琦,杨静,应卫勇,房鼎业.合成气合成二甲醚平衡转化率及选择率计算模型[J].化学工程.2005,33(2):64-68
    [122]Constantinides A., Mostoufi N. Numerical methods for chemical engineers with MATLAB applications [M]. New Jersey:Prentice Hall PTR,2000
    [123]雷英杰,张善文,李续武,周创明.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [124]黄华江.实用化工计算机模拟-MATLAB在化学工程中的应用[M].北京:化学工业出版社,2004
    [125]曹贵平,薛英芝,朱中南,戴迎春.数据处理与实验设计电子教材和通用软件[M].北京:中国石化出版社,2002
    [126]张丽娟.浆态鼓泡床反应器的流体力学研究和甲醇合成反应器的模拟[D].上海:华东理工大学,2008
    [127]Wu Yuanxin, Ong B. C., Aldahhan M. H. Predictions of radial gas holdup profiles in bubble column reactors [J]. Chem. Eng. Sci.2001,56:1207-1210
    [128]Sada E., Kumazawa H., Lee C. H. Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column [J]. AIChE J.1986,32(5): 853-856
    [129]Sada, E., Kumazawa, H., Lee, C. H., Narukawa, H. Gas liquid interfacial area and liquid side mass transfer coeffcient in a slurry bubble column [J]. Ind. Eng. Chem. Res. 1987,26(1):112-116
    [130]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010
    [131]Smith D. N., Ruether. J. A. Dispersed solid dynamics in a slurry bubble column [J]. Chem. Eng. Sci.1985,40 (5):741-754
    [132]陈敏恒.化工原理(上册)[M].北京:化学工业出版社,2000
    [133]丁百全,张吉波,房鼎业,朱炳辰.高固含率三相淤浆床反应器流体力学研究[J].华东理工大学学报(自然科学版).2000,26(3):228-231
    [134]秦惠芳,王世容,朱炳辰,丁百全.医用液体石蜡油得物性数据测定及估算[J].天然气化工.1999,24(3):56-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700