用户名: 密码: 验证码:
纳米WS_2环保节能发动机润滑油的研制及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的日益紧缺和石油价格的持续高涨以及世界各地日趋严格的排放与节能法规的出台,节能减排已经成为汽车工业关注的热点。本研究结合纳米摩擦学开发纳米WS:环保节能发动机润滑油,适应目前社会发展的需要,对全国资源节约型和环境友好型社会建设具有重要意义。
     本文首先在通过钨硫直接反应法制备出微米WS2颗粒的基础上,采用强超声/螺旋搅拌球磨多能场复合细化法成功制备出平均激光衍射粒度为95nm的片状纳米WS2颗粒,通过与微米WS2颗粒的性能对比分析发现,纳米WS2颗粒具有更加优良的金属表面吸附特性、分散稳定性、润滑性能和较佳的热稳定性(空气气氛下)。而机理分析初步表明,强超声/螺旋搅拌球磨复合细化法主要通过冲击粉碎作用,辅以摩擦剪切粉碎作用和强超声产生的大量·OH对颗粒细化的促进作用来达到超细化WS2粉末的目的。
     针对润滑油中纳米WS:颗粒易自发团聚的特点,在强超声/球磨搅拌复合作用下采用修饰剂SA对纳米WS2颗粒进行表面修饰处理,发现该方法修饰后的纳米WS2颗粒在PA06、菜籽油和PriEco3004三种环保型基础油中的分散稳定性均最佳,并且当润滑油中纳米WS2颗粒的质量添加量为2%时,SA的最佳用量为0.5%。机理分析表明,强超声/球磨搅拌的复合作用起到对纳米WS:团聚体的解团聚作用,并使解聚后的纳米WS2颗粒表面活性增强,造成颗粒表面的羟基(-OH)与油液中表面修饰剂SA的羧基(-COOH)发生类似于醇与酸的酯化反应,从而使得纳米颗粒表面特性由亲水疏油转变为亲油疏水,经表面修饰后的纳米WS2颗粒表面的长碳链形成的空间位阻层和润滑油分子形成的溶剂化层共同防止了纳米颗粒的碰撞团聚,最终使得解聚后的纳米WS2颗粒长期稳定分散于润滑油介质中。
     通过系列四球摩擦对比实验发现,在基础油PA06、菜籽油中添加2%的纳米WS2颗粒对基础油在常温、高温、低载、高载、低速、高速等工况下润滑性能的改善最显著,且纳米WS2颗粒的改善效果优于纳米MoS2和纳米石墨。此外,纳米WS2颗粒与T462A、T202、T323和T451A等几种常用于发动机润滑油的极压抗磨添加剂在PA06和菜籽油中的配伍性良好,尤其分别与T462A、T202复配时具有增效作用。
     在自制发动机模拟实验台架和真实汽车上进行了纳米WS2颗粒的发动机应用实验,结果经发动机模拟台架实验发现,纳米WS2能减少发动机活塞环磨损量27.6%,能降低发动机油耗13%-28%,能使发动机排放尾气中HC、CO、NOx等有害气体的含量分别降低18.6%-37.6%、7.7%14.3%、8.8%-19.7%;而通过行车实验发现,纳米WS2能提高传统发动机润滑油的使用寿命1.5倍,并能有效降低发动机的燃油消耗,最大节油率可达到38.50%,最小节油率也有16.39%,平均节油率为20.26%,表现出优良的节能减排特性。
     本文在四球摩擦实验机、AW-3型抗磨试验机和发动机模拟实验台架上进一步考察了纳米WS2颗粒的自修复特性,结果表明,PA06和菜籽油中纳米WS2颗粒在常温、100℃和200℃下均能对摩擦副表面的微损伤、微裂纹实现在线原位动态自修复,但在低载下修复效果不明显;此外,纳米WS2颗粒能减少磨粒磨损表面和粘着磨损表面的表面粗糙度,使表面平整,避免磨损加剧,能改善活塞环磨损表面的形貌,使其平整,能减小发动机内部的磨损烈度指数,使发动机内部的磨损严重程度降低,这表明纳米WS2颗粒还能对已存在的磨损表面实现良好的自修复作用。
     为研究环保型润滑油中纳米WS2颗粒的作用机理,对摩擦表面进行了XPS分析、EDS分析和氩离子溅射深度剖析,结果表明,环保型润滑油中纳米WS2颗粒的润滑过程可分为流体润滑阶段和混合润滑阶段,前一阶段主要通过纳米WS2颗粒增加流体润滑油膜厚度来改善润滑,且摩擦过程中,纳米WS2颗粒会逐渐沉积于摩擦表面;后一阶段初期摩擦主要发生在纳米WS2沉积膜内部,在摩擦剪切力的作用下沉积膜中的纳米WS2颗粒发生择优取向分布,从而使得沉积膜的减摩性能得到提高,后期由于摩擦表面温度的升高,沉积的纳米WS2颗粒重新被活化,并随摩擦在表面由富集区(如磨粒磨损表面的犁沟区和粘着磨损表面的凹坑区)向四周转移,在摩擦表面微区高温高压的作用下与金属微凸体作用生成具有低摩擦系数的纳米FeS和纳米FeS04,纳米FeS和纳米FeSO4继而受摩擦剪切作用在摩擦表面滑移铺展,最终将磨损表面修复平整,并在表层形成由纳米W03、纳米FeS、纳米FeS04及纳米WS2组成的致密极压抗磨修复层,该修复层不仅阻止了摩擦表面之间的直接接触,而且拥有很高的承载能力,使得由剪切应力引起的弹性变形和塑性变形局限于修复层,因而有效地抑制了摩擦表面的粘着磨损和接触疲劳,起到保护摩擦表面的作用。此外,发动机缸压分析实验表明,在发动机中纳米WS2颗粒于汽缸-活塞环处密封面形成的自修复层,改善了密封性,提高了缸压,进而保证了更加有效的燃料燃烧,使得燃油消耗和HC、CO、NOx等有害气体的排放降低。
     最后,本文选用精炼菜籽油、多元醇酯PriEco3004、聚α烯烃PA06和高压加氢150BS光亮油按比例调配后加入粘度指数改进剂T618、降凝剂LZL803B和抗氧剂L01、L115后获得综合性能优良的环保型基础油,然后加入纳米WS2颗粒和表面修饰剂SA,经分散处理后配以其它功能添加剂制备出达到15W/40级别油品粘度要求且使用性能与SL级发动机润滑油相当的纳米WS:发动机润滑油,其可生物降解性良好,并且与国内外知名节能型发动机油的对比发现,纳米WS:环保节能发动机润滑油无论是润滑性能还是节能减排性能均更加优良。
Along with the increasing shortage of petroleum resources, the sustaining upsurge of petroleum prices, and the policy making of gradually strict energy-saving and emission regulations around the world, energy-saving and emission reduction have become the research hotspot of auto industry. Combining with nano-tribology, this research developed nanometer WS2 green energy-saving engine lubricating oil, which is accommodated the needs of social development, and will play an important role in national resource-saving and environment-friendly society construction.
     In this thesis, based on the preparation of micrometer WS2 particulates by the method of W-S direct reaction,sheet nanometer WS2 particulates were prepared by the compound thining method of high power ultrasonic/spiral mixing ball-milling, whose average particle size is 95nm. The property contrast analysises between nanometer and micrometer particulates show that, nanometer WS2 particulates have better metal surface adsorption property, dispersion stability, lubricating performances and goodish thermostability. The mechanism analysises preliminarily indicate that, it's mainly through impact comminution and accessorially through friction shearing comminution and the promoter action of-OH free radicals produced by high power ultrasonic for compound thining method of high power ultrasonic/spiral mixing ball-milling to achieve the goal of ultrafine grind micrometer WS2.
     For the spontaneous glomeration characteristic of nanometer WS2 particulates in lubricating oil, this thesis used surface modifier SA to modify the nanometer WS2 particulates surfaces under compound action of high power ultrasonic/ball-milling stir, and the results show that the modified nanometer WS2 particulates by such method possess excellent dispersion stability in green base oil (PAO6, rapeseed oil, or PriEco3004), and when the additive amount of nanometer WS2 particulates is 2wt%, the best additive amount of SA is 0.5wt%. Mechanism analysises indicate that, compound action of high power ultrasonic/ball-milling stir can break up the nanometer WS2 agglomerations and then strengthen the surfactivity of nanometer WS2 particulates, bringing about the esterification reaction between hydroxide radicals on particulates' surfaces and carboxyl group of the modifier SA, and leading to the change of particulates' surface characteristics from hydrophilicity to lipophilicity. After surface modifying, the long carbon chains on surface can form stereo-hindrance layer, combined with solvation layer formed by lubricant molecule, to prevent nanometer particulates from aggregate, and ultimately make nanometer WS2 particulates dispered in lubricating oil stably for long time.
     Series of four-ball tribology tests show that,adding 2wt% nanometer WS2 particulates into green base oil PAO6 or rapeseed oil can improve the lubricating performances of base oil under each working condition such as normal temperature, high temperature, low load, high load, low speed, high speed observably, and the improving effect of nanometer WS2 particulates is better than that of nanometer MoS2 particulates or nanometer graphite particulates. And moreover, in PAO6 or rapeseed oil nanometer WS2 particulates have good compatibility with other antiwear additives such as T462A,T202, T323 and T451A, especially when confected with T462A or T202, nanometer WS2 particulates have synergistic effect.
     Application experiments of nanometer WS2 particulates in engine have been done on the self-designed engine simulant bench and true automobile. The results of engine simulant bench tests show that, nanometer WS2 particulates can reduce the abrasion of piston ring in engine by 27.6%, and reduce fuel consumption by 13%~28%, and decrease the contents of harmful gases such as HC, CO, NOx in tail gas respectively by 18.6%-37.6%,7.7%-14.3%,8.8%-19.7%. The results of road test indicate that, nanometer WS2 particulates can improve the service life of traditional engine lubricating oil by 1.5 times, can reduce the fuel consumption observably(by 38.50% to the greatest extent and by 16.39%to the smallest extent, and the average rate of saving fuel is 20.26%). All of tests illustrate that nanometer WS2 particulates have excellent energy conservation & emission reduction properties.
     This thesis investigated the auto-reparing properties of nanometer WS2 particulates ulteriorly on four-ball machine, AW-3 anti-wear machine and engine simulant bench. Results indicate that, nanometer WS2 particulates can realize the on line in-situ dynamic repair to the tiny damages on surfaces in PAO6 or rapeseed oil under normal temperature, 100℃and 200℃, but the repairing effect will become unconspicuous under low load. In addition, nanometer WS2 particulates also can reduce the surfaceness of grain wear surface or adhesive wear surface, smoothing the wear surface and avoiding abrasion from worsen, and nanometer WS2 particulates can better the appearance of piston ring's wear surface, and reduce the index of wear severity in engine, lowering engine's interior abrasion, all of which tell us that nanometer WS2 particulates also can realize good repair effect to the existed wear surface.
     To research the nanometer WS2 particulates'mechanisms of action in green lubricating oil, series of XPS analysises, EDS analysises and argon ion sputtering depth analysises were done. All the results indicate that, in green lubricating oil, the lubricating process of nanometer WS2 can be divided into fluid lubrication stage and mixed lubrication stage. In the former stage, nanometer WS2 particulates mainly increase the thickness of oil film and thus improve the lubrication, and moreover nanometer WS2 particulates can deposit on the friction surface during friction. In the beginning period of the latter stage, friction mainly happens in the nanometer WS2 deposition film, the nanometer WS2 particulates in deposition film occur preferred orientation distribution under the effect of friction shear force, which improves the anti-friction property of the deposition film. In the later period of the latter stage,because of the increasement of friction surface temperature,the deposited nanometer WS2 particulates are activated and transfer from abundant regions (e.g., furrow regions on grain wear surface or concave regions on adhesive wear surface) to perimeter zone, and react with metal convex body affected by tiny area high temperature and high pressure during friction, and generate nanometer FeS and nanometer FeSO4, which are affected by friction shear force and glide on the friction surface, ultimately the wear surfaces are repaired to smooth surfaces, and a compact anti-pressure/anti-wear repair layer which consists of nanometer WO3, nanometer FeS, nanometer FeSO4 and nanometer WS2 is formed, this repair layer not only prevent metal surfaces from direct touch, but also has high carrying capacity, which can limit the elastic deformation and plastic deformation caused by shear stress into the repair layer, and therefore restrain adhesive wear and contact fatigue effectively. In addition, the engine cylinder pressure analysis illustrates that, the repair layer formed by nanometer WS2 particulates on sealing face improves the tightness and increases the cylinder pressure, and then ensures more effective fuel burning, which reduces fuel consumption and emission of the harmful gases such as HC, CO and NOx.
     Finally, this thesis chose and mixed refined rapeseed oil, PriEco3004, PAO6 and 150BS bright stock proportionally,and added viscosity index improver T618, pour point depressant LZL803B, antioxygen L01, L115, then the green base oil with excellent combination properties was prepared.After that, nanometer WS2 particulates and modifier SA were added into green base oil and treated under the compound action of high power ultrasonic/ball-milling stir, then mixed with other functional additives, nanometer WS2 engine lubricating oil was prepared, whose viscosity meets the requirement of 15W/40 level engine lubricating oil,service properties are equivalent to SL level engine lubricating oil, and biodegradability is good. The performances contrasts with the famous domestic and overseas energy-saving engine lubricating oil show that, nanometer WS2 environmental and energy-saving engine lubricating oil has better lubricating performances and energy conservation & emission reduction properties.
引文
[1]童有好.全球汽车产业发展现状与趋势[J].汽车维修与保养,2007,(10):31-33.
    [2]周治平,钟华,李金林.世界汽车产业发展特点[J].宏观经济管理,2006,(11):72-74.
    [3]张明生.浅析世界汽车工业大格局下的中国汽车工业[J].上海汽车,2007,(11):13~17.
    [4]张先锋,张庆彩,程瑶.汽车消费政策国际比较[M].合肥:合肥工业大学出版社,2006,1-5.
    [5]中国汽车工业协会.2009中国汽车工业发展年度报告[M].北京:年鉴社,2009.
    [6]辛木.中国石油资源现状、发展前景及汽车工业的对策[J].交通世界,2007,(10):26-31.
    [7]尹力军.21世纪中国石油安全现状及对策[J].改革与战略,2008,24(7):47-49.
    [8]唐俊杰.车用发动机油环保和节能的发展趋势[J].石油商技,2006,24(5):12-17.
    [9]杨俊杰,高辉.中国润滑油现状及发展趋势[J].润滑油,2009,24(1):1-10.
    [10]宋昭峥,刘希,罗小斌.世界及中国车用润滑油市场发展趋势[J].润滑油,2008,23(5):7~11.
    [11]董红霞,刘泉山,徐小红.国内外汽车-油品-排放项目研究概述[J].车用发动机,2008,(6):5-7.
    [12]李兴虎.汽车环境保护技术[M].北京:北京航空航天大学出版社,2004,4-33.
    [13]张炳荣,赵丰泽.我国车内空气污染现状与对策[J].城市车辆,2009,(4):21-23.
    [14]谢友柏.摩擦学科学及工程应用现状与发展战略研究-摩擦学在工业节能、降耗、减排中地位与作用的调查[M].北京:高等教育出版社,2009,8-10.
    [15]栾广海.汽车零部件的磨损种类[J].汽车运用,2009,(2):44-44.
    [16]宋传平.润滑对汽车节能的影响[J].润滑与密封,2004,30(2):89-95.
    [17]徐元强.改善润滑对汽车节能的影响及车用润滑油的发展趋势[J].汽车技 术,1997,(3):6-11.
    [18]贾宝军,韩宁,张克铮.汽车的节能要求与润滑剂技术的发展[J].润滑与密封,2006,32(3):175~180.
    [19]杨沿平,郝夏艳,唐杰.我国汽车节油现状及对策分析[J].湖南大学学报(社会科学版),2008,22(2):68~71.
    [20]王毓民,王恒.实用汽车润滑技术手册[J].北京:化学工业出版社,2005,3-13.
    [21]高文,刘波.现代汽车发动机冷却系统的发展趋势[J].交通科技与经济,2007,9(3):49~50.
    [22]马淑芬.汽车工业发展对润滑油提出的新要求[J].汽车工艺与材料,2005,(9):4-5.
    [23]孙志强,胡志华.汽车发动机润滑油技术的发展趋势[J].交通世界,2007,(12):87~88.
    [24]王成勇.车用润滑剂的发展历程[J].润滑油,2000,15(5):7-15.
    [25]潘元青,李雪静.国内外车用润滑油市场现状及需求预测[J].润滑油,2003,(z1):25~31.
    [26]李兴虎.发动机润滑油的环境影响[J].内燃机,2009,(1):32-37.
    [27]Korff, Cristiano A. Requirements for environmentally acceptable according to "blue angel regulation"[J]. NLGI Spokenman,2000,64(8):22~29.
    [28]T.曼格,W.德雷泽尔.润滑剂与润滑[M].北京:化学工业出版社,2003,27~52.
    [29]刘影.润滑油基础油的发展现状及趋势[J].润滑油,2003,16(4):59-62.
    [30]郭瑞华,马传国,张科红,等.植物油基润滑剂的研究进展[J].中国油脂,2009,34(2):52-55.
    [31]N S Batteraby. The biodegradability and microbial toxicity testing of lubricants-some recommendation[J]. Chemosphere,2000,41:1011 ~ 1027.
    [32]N S Batteraby, P Morgan. A nate on the use of the CECL-33-A-93 test to predict the potential biodegradation of mineral oil based lubricants in soil[J]. Chemosphere,1997,35(8):1773~1779.
    [33]Steve Boyde. Green lubricants environmental benefits and impacts of lubrication[J]. Green Chemistry,2002, (4):293~307.
    [34]Puscas C, Bandur G, Modra D, et al. Mixtures of vegetable oils and di-2-ethylhexyl-sebacate as lubricants[J]. Journal of Synthetic Lubrication,2006, 23(4):185~196.
    [35]Adhvaryu A, Erhan S Z, Perez J M. Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants[J]. Wear,2004,257:359-367.
    [36]Ravasio N, Zaccheria F, Gargano M, et al. Environmental friendly lubricants through selective hydrogenation of rapeseed oil over supported copper catalysis[J]. Applied Catalysis A:General,2002,223:1-6.
    [37]Andreas Wiling. Lubricants based on renewable resources-an environmentally compatible alternative to mineral oil product[J]. Chemosphere,2001,43:89~ 98.
    [38]李久盛,张雁燕,乌学东.菜籽油环氧化工艺改进和反应条件对粘度影响的研究[J].润滑油,2000,15(6):53~55.
    [39]景恒,陈立功,程鹏,等.菜籽油酯化制备润滑油基础油的研究[J].能源研究与信息,2004,20(3):179-183.
    [40]胡志孟,刘麒荣.硼化植物油的摩擦化学研究[J].润滑与密封,1999,24(2):57~58.
    [41]余磊,王毓民.可生物降解汽油机油的试验性研究[J].西安公路交通大学学报,2001,21(4):81~85.
    [42]孙玉彬,胡丽天,薛群基.环境友好润滑油的发展及其摩擦学研究现状[J].摩擦学学报,2008,28(4):381-387.
    [43]金志良,熊静,王毓民.汽车发动机绿色润滑油的发展[J].公路与汽运,2007,(2):20-22.
    [44]Joachim K, Achin F. Additives for biodegradable lubricants [J].NLGI Spokenman,1993,57(3):19~24.
    [45]Fessenbecker A, Roehrs I, Pegnoglou R. Additives for enviromentally acceptable lubricants[J]. NLGI Spokenman,1996,60(6):9~25.
    [46]Rohr O. Bismuth, the new and'green'extreme pressure-element and the best replacement for lead[J].NLGI Spokenman,1997,61(6):10~17.
    [47]Rohr O. The new ecologically green metal for modern lubricating engineering [J]. Industrial Lubrication and Tribology,2002,54:153~164.
    [48]曹月平,于来贵.磷酸三甲酚酯和亚磷酸二正丁酯添加剂对菜籽油摩擦学性能的影响[J].摩擦学学报,2000,20(2):119-122.
    [49]方建华,陈波水,王九,等.磷氮化改性菜籽油润滑添加剂的制备及其摩擦学性能[J].摩擦学学报,2001,21(5):348-353.
    [50]方建华,陈波水,王九,等.硼氮化改性菜籽油润滑添加剂的制备及其摩擦学性能[J].润滑与密封,2001,26(4):18-20.
    [51]Jiusheng L, Yanyan Z, Tianhui R, et al. Tribological properties of phosphate esters as additives in rapeseed oil[J]. Synthetic Lubrication,2003,20(7):151~ 158.
    [52]Jiusheng L, Yanyan Z,Tianhui R, et al. A study of the tribological behavior of dialkyldithiophosphate esters as additives in rapeseed oil [J]. Synthetic Lubrication,2002,19(7):99~108.
    [53]Jiusheng L, Tianhui R, Yanyan Z, et al. Tribological behaviors of three phosphate esters containing benzotriazole group as additives in rapeseed oil[J]. Synthetic Lubrication,2001,18(10):225~231.
    [54]李久盛,任天辉,张雁燕,等.苯并三氮唑及其衍生物在菜籽油中的摩擦学性能研究[J].摩擦学学报,2001,21(3):187-190.
    [55]Jiusheng L, Yanyan Z, Tianhui R, et al. Tribological evaluation of S-(1H-benzotriazole-1-yl) methyl N,N-dialkyldithiocarbamates as additives in rapeseed oil[J]. Wear,2002,253:720~724.
    [56]李久盛,饶文琦,曾祥琼,等.含硫和磷的苯并三氮唑衍生物作为菜籽油添加剂的摩擦学性能研究[J].摩擦学学报,2002,22(2):122-125.
    [57]李久盛,詹威强,张志军,等.均三嗪荒氨酸衍生物添加剂在菜籽油中的摩擦学性能研究[J].摩擦学学报,2001,21(4):309-311.
    [58]王恒,杨巧丽,冷丽佳,等.绿色润滑油抗磨极压添加剂研究[J].润滑与密封,2007,32(1):143~148.
    [59]石琛,毛大恒.纳米二硫化钨在绿色润滑油中的应用与机理研究[J].应用基础与工程科学学报,2009,17(3):429-437.
    [60]石琛,毛大恒,肖志信.生育酚对绿色润滑油抗氧化性能影响[J].润滑油,2008,23(1):46-50.
    [61]李英勃,王毓民.可生物降解润滑油基础油抗氧化安定性的研究[J].润滑与密封,2003,28(5):43-46.
    [62]Suzuki A, Ulfiati R, Masuko M. Evaluation of antioxidants in rapeseed oils for railway application[J]. Tribology International,2009,42(6):987~994.
    [63]Judde A, Villeneuve P, Rossiqnol C A, et al. Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols[J].Journal of the American oil Chemists'Society,2003,80(12):1209~1215.
    [64]王阳生,曾友春.纳米:新世纪逐鹿[M].北京:解放军出版社,2004,1~ 10.
    [65]丁秉钧.纳米材料[M].北京:机械工业出版社,2004,1-21.
    [66]姚文新.美国国家纳米计划实施情况[J].新材料产业,2005,(2):41-45.
    [67]陈志刚,顾卓明,顾彩香.纳米润滑材料的研究现状和进展[J].机电设备,2003,20(4):7~11.
    [68]石淼森.固体润滑材料[M].北京:化学工业出版社,2000,50-71.
    [69]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社,2008,10~181.
    [70]王汝霖.润滑剂摩擦化学[M].北京:中国石化出版社,1994,339-353.
    [71]Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide[J].Nature,1992,360:444~446.
    [72]Rothschild A, Sloan J, Tenne R. Growth of WS2 Nanotubes Phases[J] Journal of the American Chemical Society,2000,122(21):5169~5179.
    [73]Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants [J].Nature,1997,387:791~793.
    [74]Feldman Y, Zak A, Popovitz-Biro R, et al. New reactor for production of tungsten disulfide hollow onion-like(inorganic fullerene-like) naoparticles[J]. Solid State Sciences,2000,2:663~672.
    [75]Vollath D, Szabo D V. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma[J].Solid State Sciences,2000,2:663~672.
    [76]Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes [J].Science,1995,267:222~ 225.
    [77]Chhowalla M, Amaratunga A J. Thin film of fullerene-like MoS2 nanoparticles with ultra-low friction and wear[J].Nature,2000,407:164~167.
    [78]Chu G S, Bian G Z, Fu Y L, et al. Preparation and structural characterization of nano-sized amorphous powders of MoS2 by gamma-irradiation method[J].Materials Letters,2001,342:15~21.
    [79]李长生,于云,刘艳清,等.WS2纳米颗粒的合成及摩擦学性能研究[J].无机化学学报,2008,24(2):275-279.
    [80]陈军,陶占良,李锁龙,等.丌口WS2纳米管的制备与表征[J].复旦学报(自然科学版),2003,42(3):262-265.
    [81]黄祥平,段金霞.纳米WS2的制备及其应用探讨[J].三峡大学学报(自然科学版),2003,25(3):282-284.
    [82]Chen X, Sun X M, Li YD. Self-assembling vanadium oxide nanotubes by organic molecular templates[J].Inorganic Chemistry,2002,41(17):4524~4530.
    [83]张俐丽,涂江平,张升才,等.球磨-热诱导法合成WS2纳米棒及其摩擦性能[J].无机化学学报,2006,22(9):1591~1594.
    [84]邓玉荣.ZnS、 WS2和MoS2纳米材料的合成与表征研究[D].武汉:华中师范大学物理科学与技术学院,2002:46-50.
    [85]Wu J F, Fu X. A low-temperature solvothermal method to prepare hollow spherical WS2 nanoparticles modified by TOA[J].Materials Letters,2007,61(21): 4332~4335.
    [86]武继芬.WS2、 MoS2纳米材料的制备、表征及应用[D].青岛:青岛科技大学化学与分子工程学院,2007:63-70.
    [87]黄文轩.润滑剂添加剂应用指南[M].北京:中国石化出版社,2003,85-95.
    [88]Kuznetsov V L, Chuvilin A L, Butenko Y V, et al. Onion-like carbon from ultra-disperse diamond[J].Chemical Physics Letters,1994,222(4):343~348.
    [89]徐向菊,余雪里,夏晓红,等.CVD法制备纳米石墨棒[J].新型炭材料,2006,21(3):273~276.
    [90]文潮,金志浩,关锦清,等.炸药爆轰法制备纳米石墨粉[J].稀有金属材料与工程,2004,33(6):628~631.
    [91]陈岁元,董维国,刘常升,等.脉冲激光液相沉积法制备纳米石墨[J].东北大学学报(自然科学版),2002,23(11):273-276.
    [92]邹艳红.氟化石墨合成新技术[D].长沙:湖南大学材料科学与工程学院,2002:28-38.
    [93]李红,单丹,高德玉,等.金属纳米铜制备技术[J].化学工程师,2007,(12):23-25.
    [94]Pileni M P. Colloidal self-assemblies used as templates to control size,shape and self-organization of nanoparticles[J].Supramolecular Science,1998,5(3):321~ 329.
    [95]Arul D N, Paul R C, Gedanken A, et al. Syntheses,characterization, and properties of metallic copper nano-particles[J]. Chemistry of Materials,1998, 10(5):1446~1452.
    [96]王国伟,施树春.铜纳米颗粒的制备与表征[J].云南大学学报(自然科学版),2008,30(4):388~391.
    [97]于梦娇,王玉棉,侯新刚.超声条件下水合肼还原制备纳米铜粉[J].粉末 冶金工业,2007,17(6):19~23.
    [98]徐建林,陈纪东,张定军,等.电化学法制备纳米铜粉[J].兰州理工大学学报,2008,34(3):9-11.
    [99]于坤,罗新民.纳米聚四氟乙烯合成工艺进展[J].润滑油,2002,17(5):18-20.
    [100]Bladel. Aqueous dispersion of fluoropolymers its preparation and use for coating:USA,5576381 [P].1996.
    [101]Wu S. Microemulsion of polytetrafluoroethylene particles:USA,5616648[P]. 1996.
    [102]王鹤寿.纳米级固体润滑剂的研制和摩擦学性能研究[D].上海:上海大学机电工程与自动化学院,1999:46~59.
    [103]John F M. Colloidal lubricant additives [J]. Chemistry and Industry,1987,20: 470~473.
    [104]沃恒洲,胡坤宏,胡献国.纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J].摩擦学学报,2004,24(1):33-37.
    [105]于旭光.纳米MoS2的摩擦学特性[J].有色金属,2006,58(4):5~8.
    [106]邱彬,张辉.润滑油添加剂(MoS2)对发动机性能影响的试验研究[J].天津汽车,2007,(2):19~21.
    [107]Cornitius T. Solid lubricants-solid hold in global industry[J]. Lubricants world,2003,13(9):28~31.
    [108]Gaskell A. Molybdenum Disulfide:New Life for Old Technology [J]. Lubricants world,2003,13(1):40~43.
    [109]Shi C, Mao D H, Feng H.Preparation of tungsten disulfide motor oil and its tribological characteristics [J]. Journal of central south university of technology,2007,14(5):673~678.
    [110]Zhang L L, Tu J P, Wu H M, et al.WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil [J].Materials Science and Engineering A,2007,455:487~491.
    [111]Greenberg R, Halperin G, Etsin I, et al.The effect of WS2 nanoparticles on friction reduction in various lubrication regimes[J].Tribology Letters,2004, 17(2):179~186.
    [112]Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2 nanoparticles under mixed lubrication[J].Wear,2003,255:785~793.
    [113]张平余,薛群基,张治军,等.WS2纳米微粒LB膜的摩擦学性能研究[J].摩 擦学学报,1996,16(3):272~276.
    [114]Zhang P Y, Xue Q J, Du Z L, et al, The tribological behavior of LB films of fatty acids and nanoparticles[J].Wear,2000,242:147~151.
    [115]张平余,齐尚奎.脂肪酸及表面修饰WS2纳米微粒LB膜在摩擦过程中结构变化的XPS研究[J].摩擦学学报,2000,20(3):211-213.
    [116]关耀辉,徐杨,郑仲瑜,等.纳米-亚微米MoS2涂层的结构和摩擦性能[J].焊接学报,2005,26(12):51-54.
    [117]侯越峰,干路平,黄海栋,等.含片状纳米石墨粒子润滑油的制备及其摩擦学行为[J].华东理工大学学报(自然科学版),2005,31(6):743-746.
    [118]黄海栋,涂江平,干路平,等.片状纳米石墨的制备及其作为润滑油添加剂的摩擦磨损性能[J].摩擦学学报,2005,25(4):312-316.
    [119]黄之杰,费逸伟,王鹤寿,等.纳米级氟化石墨作为润滑剂添加剂的摩擦学性能研究[J].润滑与密封,2006,31(3):114-116.
    [120]叶斌,陶德华,孟令和.纳米(CF)x及添加剂在绿色润滑油基础油中的减摩抗磨性能[J].中国粉体技术,2003,9(2):38-40.
    [121]Hisakado T, Suda H, Saitou K, et al, The effects of copper particles and oleic acid on the friction and wear characteristics of ceramics in ethanol[J].Wear,1996,197:280~285.
    [122]夏延秋,金寿日.纳米级金属粉对润滑油摩擦磨损性能的影响[J].润滑与密封,1999,24(3):33~34.
    [123]徐健生,钟康年,常跃,等.纳米润滑剂的制备及特性研究[J].润滑与密封,2002,27(4):13~16.
    [124]Hu Z S, Lai R, Lou F, et al, Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive[J].Wear,2002,252:370~375.
    [125]于鹤龙,许一,刘谦,等.纳米铜颗粒作为50CC润滑油添加剂的摩擦学性能研究[J].中国表面工程,2005,18(2):23~26.
    [126]乔玉林,徐滨士,马世宁,等.含纳米铜的减摩修复添加剂摩擦学性能及其作用机理研究[J].石油炼制与化工,2003,33(8):34-40.
    [127]池俊成,乔玉林,于军,等.含纳米材料的减摩修复添加剂的加速强化发动机台架试验[J].摩擦学学报,2002,22(4):19~23.
    [128]Ernie B, Sui M S, Christophe. Effect of PTFE particle size on wear and coefficient of friction[J].NLGI Sporkesman,2001,65(9):23~31.
    [129]Reick F G. Energy saving lubricants containing colloidal PTFE[J].Lubrication Engineering,1982,38(10):635~646.
    [130]谭胜,陈学军,付洪瑞,等.PTFE润滑剂的研制[J].军械工程学院学报,2005,17(2):10-12.
    [131]Masashi O.Tungsten disulfide lubricant[P].US3725276.1973-04-03.
    [132]陈常识,李长青,杨万军,等.超细鳞状晶体二硫化钨的制备方法[P].CN1124718A.1996-06-19.
    [133]应德标.超细粉碎技术[M].北京:化学工业出版社,2006,44-94.
    [134]段希祥,曹亦俊.球磨机介质工作理论与实践[M].北京:冶金工业出版社,1999,29-71.
    [135]Ben Schneider. Processing of Ultra-fine Minerals[J]. Industrial Minerals,1997, 10:91~99.
    [136]张国旺.超细粉碎设备及其应用[M].北京:冶金工业出版社,2005,150-220.
    [137]张国旺.超细搅拌机的流场模拟和应用研究[D].长沙:中南大学资源加工与生物工程学院,2005:39~68.
    [138]张国旺,杨剑波,石德俊,等.立式螺旋搅拌磨矿机的研制及其在钼矿再磨擦洗作业中的应用[J].有色金属(选矿部分),2009,61(1):23-26.
    [139]J.L罗斯.固体中的超声波[M].北京:科学出版社,2001,50~103.
    [140]王纯正.超声学[M].北京:人民卫生出版社,1993,121-252.
    [141]陈思忠.我国功率超声技术近况与应用进展[J].声学技术,2002,21(1):46~49.
    [142]Statnikov,E.Sh.Physics and Mechanism of Ultrasonic Impact[J].Ultrasonics, 2006,44(22):533~538.
    [143]袁易全.近代超声原理及应用[M].南京:南京大学出版社,1996,110-221.
    [144]E.A.Neppiras.Acoustic cavitation[J].Physics Reports,1980,61(3):159~251.
    [145]B.E.Noltingk,E.A.Neppiras.Cavitation produced by ultrasonics[J]. Proceedings of the Physical Society. Section B,1950,63(9):674~685.
    [146]E.A.Neppiras,W.T.Coakley. Acoustic cavitation in a focused field in water at 1 MHz[J]. Journal of Sound and Vibration,1976,45(3):341~373.
    [147]蒋永生,唐华龙.超声波在废水处理中的应用研究现状[J].重庆工商大学学报(自然科学版),2005,22(1):25-29.
    [148]王仪春,陈建林,程莹莹,等.声光催化的研究进展[J].工业水处理,2006,26(5):9-13.
    [149]王公正,吴胜举.超声波对苯酚有机废水降解研究[J].陕西师范大学学报 (自然科学版),2003,31(2):43-46.
    [150]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003,7-21.
    [151]蔡凤田,谢元芒.汽车运行油耗的影响因素与汽车节能技术[J].交通节能与环保,2006,(1):28~33.
    [152]马笑根.汽车使用过程中油耗增加的原因分析[J].节能,2002,(5):45-46.
    [153]季强.国内外汽车油耗控制综述[J].汽车与配件,1999,(6):34~35.
    [154]程飞.汽车油耗的研究[J].化学工程与装备,2009,(3):79-80.
    [155]尚玉东.浅谈轿车油耗过高[J].汽车维护与修理,2007,(6):27-27.
    [156]杨树文.浅谈活塞环对发动机油耗的影响[J].内燃机,2003,(5):30-33.
    [157]田永祥,张锡朝,张济勇,等.发动机活塞温度场三维有限元分析[J].内燃机工程,2004,25(1):62-65.
    [158]李兆福,陈礼璠.汽油机活塞温度场有限元分析[J].上海汽车,2009,(1):21~24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700