用户名: 密码: 验证码:
海—塔盆地火山碎屑岩复杂岩性的岩石学机理及其测井响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海-塔盆地是松辽外围盆地中最大的一个含油气盆地,是大庆外围勘探开发的一个重点区域。乌尔逊和贝尔凹陷是海拉尔盆地勘探面积最大,勘探程度较高的两个凹陷;塔南凹陷是塔木察格盆地内最大的生油凹陷,具有很大的油气勘探开发潜力。海-塔盆地具有多物源和近物源的特征,火山作用和正常风化作用为盆地提供沉积物。在盆地内的不同区域,来源于火山作用和正常风化作用的沉积物占的比例或者优势不同,形成了不同的岩性组合与结构,成岩作用使得这种差异更加多样化和复杂化,从而造成了岩性的复杂性。这种复杂性严重制约了对储层四性的认识,归结起来主要为“三难问题”,即岩性识别难、储层参数求取难和流体性质识别难。这就导致在岩性解释、储层类型划分和含油性预测等方面,遇到了准确性难有有效提高的问题。反过来,测井又为我们提供了与岩石成分和结构有关的测井地球物理信息,这些信息可能在针对性的研究中才能发掘。这些信息的发掘可以帮助我们解决岩石与测井响应的不适应性,同时为深入了解火山碎屑岩岩性及其变化的岩石学机理提供了有效的支持。
     本文根据岩心描述和薄片分析确定了研究区的岩石类型,在此基础上结合粒度分析进行火山-沉积作用分析,进而探讨了火山碎屑岩的堆积作用。沉积微相研究是单井相分析的基本任务,从而获得可靠的岩心沉积相分析结果。在此基础上结合重矿物、含砂率、古水流分析和岩性分布等,确定了物源-沉积体系和岩性分区。通过普通薄片、扫描电镜和X衍射分析确定了火山碎屑岩的成岩作用类型、特征和序列等,在此基础上结合有机质成熟度、最高裂解温度和古地温等确立了适合于研究区的成岩作用阶段划分标准。在成岩作用阶段的基本框架下,通过电子探针、普通薄片和扫描电镜分析,深入探讨了影响火山玻璃脱玻化的因素以及火山玻璃在成岩过程中的脱玻化行为。岩性的测井响应分析明确了具有不适应性的岩石类型,针对这些岩石类型,综合考虑影响岩石测井响应的因素,采用了在等效伊蒙混层和粉粒级以下凝灰质含量相近背景下,探寻CEC差别较大的原因的研究方法,明确了凝灰质成分对岩石导电能力的影响。在此基础上,寻找电阻率相近而CEC相差较大的岩石样品,探讨岩石在CEC相差较大的情况下电阻率相近的原因,明确了粉粒级以下凝灰质的赋存状态对岩石电阻率的影响。以凝灰质的成岩作用变化为基础,结合凝灰质的导电机理,确立了火山碎屑岩的测井响应模式。从测井响应的角度对火山碎屑岩进行岩石分类,依然未能达到较为满意的结果,这使得分区分层位的测井响应模式分析成为必然,研究表明这种分析模式可以进一步将岩性细区分出来。在孔隙类型分析的基础上,进行分区分层位的压汞实验分析,并结合产能结果,划分了储层类型,并建立了测井储层分类图版。针对储层与岩性的对应关系,分析不同储层相同岩性之间的差异,并探求其原因,为优质储层的确定奠定了岩石学和沉积学基础。
     一、火山-堆积作用
     岩心观察和薄片分析显示,研究区铜钵庙组-南屯组是一套介于正常陆源碎屑沉积岩和火山熔岩之间的过渡类型的岩性,岩石类型为火山熔岩、火山碎屑熔岩、熔结火山碎屑岩、火山碎屑岩类、沉积火山碎屑岩、火山碎屑沉积岩和正常沉积岩。
     有火山作用参与的岩相分带受古地理分区的控制,在沉积物类型、搬运和沉积介质有明显的火山作用烙印,表现为在火山-沉积作用区出现火山碎屑与正常陆源碎屑的混积,从冲积扇到湖泊的沉积相带中包含火山岩相带,形成了正常沉积相带与火山岩复合的特色堆积作用。火山碎屑的特殊沉积作用主要有火山碎屑河道、火山碎屑(扇)三角洲和深水火山灰沉积等类型。冲积平原上的火山碎屑沉积主要有三类,分别是:(1)冲积扇中热基浪成因的片流沉积;(2)辫状河废弃河道中热基浪成因的沙滩沉积和(3)曲流河道中热基浪成因的边滩沉积。三角洲平原上的火山碎屑沉积主要表现为热基浪成因的分流河道和热基浪成因的天然堤,三角洲前缘主要有热基浪成因和热碎屑流成因的水下河道、热基浪成因和热碎屑流成因的河口坝以及热基浪成因的远砂坝四种类型。深水环境的火山碎屑沉积主要有空落成因的静水泥沉积,热基浪成因的浊流沉积和水下扇沉积。
     沉积相、重矿物、含砂率、古水流和岩性分区可以有效确定物源-沉积体系,其中岩性分区可以展示具有特色岩性的分布与构造位置。乌尔逊凹陷内存在变质岩碎屑沉积岩区、火山碎屑岩区和火山碎屑沉积岩区三个单岩性区和其间的混合区。根据岩石中各碎屑组成的含量可将混合区分为正常沉积碎屑占优势的混合区和火山碎屑占优势的混合区。各单岩性区与构造单元相符合,变质岩碎屑沉积岩区对应乌西断阶带,火山碎屑岩区对应巴彦塔拉构造带,火山碎屑沉积岩区为乌东弧形构造带的一部分。贝尔凹陷内存在正常沉积岩区和火山碎屑岩区两个单岩性区和其间的混合区,正常沉积岩区对应苏乃诺尔构造带,火山碎屑岩区对应苏德尔构造带。塔南凹陷内存在火山碎屑岩区、火山碎屑沉积岩区和正常沉积岩区三个单岩性区和其间的混合区,火山碎屑岩区对应东部断阶带,火山碎屑沉积岩区对应西部潜山断裂带北段,正常沉积岩区对应西部潜山断裂带南段。
     二、成岩作用
     薄片分析和扫描电镜分析显示本区的成岩作用类型包括熔结作用、机械渗滤作用、压实与压溶作用、脱玻化作用、重结晶作用、胶结作用、自生矿物转化和溶蚀溶解作用。其中,熔结作用、脱玻化作用以及凝灰质的溶蚀溶解作用为火山碎屑岩所特有的成岩作用类型。
     根据成岩作用中体现出的成岩共生关系,确定了本区成岩共生组合主要有四类,分别是:(1)自生白云母和绿泥石;(2)石英的溶解与硅质胶结;(3)蒙皂石、伊利石和绿泥石以及(4)沸石与自生石英、自生长石。
     根据各种成岩作用发生的先后顺序,成岩序列可以分为熔结作用阶段、机械渗滤作用阶段、脱玻化作用阶段、凝灰质溶蚀溶解作用阶段、粘土矿物混层阶段、自生白云母阶段、沸石胶结阶段、颗粒强烈胶结阶段以及铁白云发育阶段。在此基础上,结合镜质体反射率(Ro)、有机质成熟度、有机质最高裂解温度以及矿物共生组合认为研究区下白垩统为早成岩B期到晚成岩B期,主要为晚成岩A期。
     影响火山玻璃脱玻化的因素较多,包括温压、PH值、EH值、成岩流体和自生成分结构等。本文以研究区广泛发育的酸性火山玻璃为研究对象,从影响火山玻璃脱玻化的因素出发,借助于扫描电镜和电子探针手段,对酸性火山玻璃的脱玻脱化作用进行深入分析。结果显示,火山玻璃脱玻化过程中矿物的晶出顺序实际上是按照氧的脱极化程度从高到低来进行的,其脱玻化行为可以分为5个阶段,分别是:1)水化作用阶段;2)脱硅阶段;3)脱铝阶段;4)富钠/富钾阶段;5)最后结晶阶段。这五个阶段并不是玻屑在蚀变过程中必须要经历的,受控于岩石的温压、PH、EH和流体性质等,火山玻璃可能只经历几种阶段,如凝灰质的溶蚀溶解作用会导致火山玻璃直接被溶解。
     三、测井响应
     电阻率是测井解释的重要参数,研究区凝灰质的导电情况从测井解释上无法得到统一的认识,既存在高电阻的凝灰质,也存在低电阻的凝灰质。为了明确凝灰质的导电能力,本次研究中重点对高、中和低含量凝灰质的岩石进行了电化学实验,包括岩石的CEC(阳离子交换能力)和电阻率。研究表明对于含钠(或者钾)的火山玻璃来说,其表面的机械性能和电性能等与内部有明显差异。由于钾钠离子易于移动,玻屑表面的水中的氢离子将与玻璃中的钠(钾)离子进行离子交换生成氢氧化钠(钾)或者碳酸钠(钾)溶液,生成的氢氧化钠(钾)或者碳酸钠(钾)溶液将吸附在玻屑的表面形成溶液膜。溶液膜中的钠离子(钾离子)具有较高的迁移能力,这些阳离子可以与外面的水溶液进行离子交换,因而具有较高的阳离子交换能力。
     通过系统的镜下分析和相关实验,确定了系列具有测井响应的特殊岩性的岩石学机理,包括的岩石类型有:高伽马砂岩、高阻泥岩、低阻凝灰岩和中子密度变关系砂岩等。以高伽马砂岩和低阻凝灰岩为例,高伽马砂岩伽马值的大小与凝灰质、粘土、长石和钙质的含量以及含油有关。凝灰质含量高钍值较高;长石和粘土含量高铀、钍和钾均有富集;含油砂岩富铀。钙质通过影响铀的迁移和沉淀来改变砂岩伽马值,钙质含量高铀值较低。低阻凝灰岩与爆发式火山喷发产生的火山玻璃有关,新生的火山玻璃富含钾钠离子,具有较高的阳离子交换能力,表现为低阻。火山玻璃粘土矿化产生附加导电性也可以使岩石电阻率降低。这些特殊岩性的岩石学机理研究提高了实际生产中部分储层四性解释的准确性。
     测井岩性识别研究表明,利用深侧向电阻率值和密度与中子交会值XD-N做交会图,可以区分出安山岩、火山角砾岩、凝灰质高阻砾岩、泥岩和其它岩性五大类。再利用伽马和声波做交会图可以区分其它岩性分为(凝灰质)砾岩、(凝灰质)砂岩和凝灰岩类。建立的分层分区的岩性-测井响应模式可有效地区分凝灰岩(凝灰岩和沉凝灰岩)、凝灰质砾岩、凝灰质砂岩、普通砾岩、普通砂岩。建立了符合岩石学和测井地球物理标准的火山碎屑岩的分类体系。
     四、储层分类
     铸体薄片观察显示,研究区孔隙类型分为三类:原生孔隙、次生孔隙、混合孔隙,其中次生孔隙最为发育。次生孔隙主要为溶蚀粒间孔、溶蚀粒内孔和溶蚀填隙物内孔。成岩作用对孔隙度具有影响,压实作用和胶结作用会明显减小孔隙度,溶蚀溶解作用会增加孔隙度。利用压汞资料可以将储层分为四类,Ⅰ类储层排驱压力小于0.063MPa,半径均值大于3μm,孔隙度在16~21%之间,渗透率大于60μm2,属于好的储层;ⅡA类储层排驱压力在0.063~0.485MPa之间,半径均值0.50~3μm,孔隙度在10~19%之间,渗透率在0.6~80μm2,属于一般的储层;ⅡB类储层排驱压力在0.2~2MPa之间,半径均值0.1~0.5μm,孔隙度在6~14%之间,渗透率在0.06~0.8μm2,属于差的储层;Ⅲ类储层排驱压力在大于2MPa,半径均值小于0.1μm,孔隙度在3~14%之间,渗透率在小于0.5μm2,属于很差的储层。通过大庆油田试油结论发现,Ⅰ类储层自然高产,ⅡA类储层压后高产,ⅡB类压后低产,Ⅲ类储层压后无产能。
     储层孔隙特征研究表明,Ⅰ类储层的孔隙以溶蚀粒间孔为主,孔喉连通性好,粘土矿物主要是高岭石和伊利石,高岭石以分散式充填于孔隙中,伊利石主要为内衬式充填。ⅡA类储层孔隙主要是粒间孔隙和溶蚀粒内孔隙,孔喉连通性较好,粘土矿物以伊利石为主,伊利石以搭桥式充填于孔隙中或以内衬式吸附于骨架颗粒表面;ⅡB类储层粒间孔隙发育较少,粒内孔和填隙物内孔隙数量增加,连通性较差,粘土矿物以伊利石为主,且以搭桥式充填于孔隙中,粒间广泛发育次生石英;Ⅲ类储层在铸体薄片中几乎观察不到有效的孔隙。
     经研究,声波、密度、中子测井曲线可以作为划分储层类别的主要手段。声波曲线因为受压实影响而不宜直接反映储层物性特征,密度曲线能反映储层孔隙度特征,XD-N能间接反映泥质含量,因此根据密度曲线和XD-N可间接评价储层物性连通性的好坏,进行储层类别判定。Ⅰ类储层的DEN值小于等于2.43g/cm~3,CNL值在12~27%之间,XD-N值在-7~10之间;Ⅱ类储层的DEN值在2.43~2.54g/cm~3之间,CNL值在6~24%之间,XD-N值在-10~6.5之间;Ⅲ类储层的DEN值大于2.54g/cm~3,CNL值在7~23%之间,XD-N在-15~0之间
     对四类储层的岩性进行统计表明,四类储层中各种岩性都有,粗粒级相比细粒级有更好的物性。同一岩性可以在不同的储层类型中出现,其中以砾岩最为典型,从Ⅰ类至Ⅲ类储层均存在,而且含量不低于9%。这与砾岩的形成环境有关,不同环境下形成的砾岩在成分、粒度和分选上有很大的差异。
Hailaer-Tamtsag Basin is the biggest petroliferous basin in the peripheryof Songliao basin, and also a key area in the exploration and development ofDaqing peripheral oilfield. Wuerxun and Beier depressions are two with abigger exploration area and a higher exploration degree in Hailaer basin;Tanan depression is the biggest in petroleum generation in Tamtsag Basin,with prodigious oil-gas exploration and development potential.Hailaer-Tamtsag Basin has the characteristics in multiple and nearby provenance, providing sediments to the basin from volcanism and normalweathering. In different areas within the basin, the proportion or advantage ofsediments from volcanism and normal weathering are different, thus differentlithological associations and textures had formed. Such difference becamemore diversified and complicated due to diagenesis, resulting in lithologicalcomplexity. Moreover, such complexity has seriously restricted theunderstanding to the four characteristics of the reservoir, which can be mainlyconcluded as “three difficult issues”, i.e. lithology identification difficulty,reservoir parameter obtaining difficulty and fluid property identificationdifficulty. Thus the accuracy of the aspects including lithologicalinterpretation, reservoir type classification and oil-bearing ability predictionwould be difficult to achieve effective improvement. On the other way round,logging has provided us the logging geophysical information related topetrographic composition and texture, while such information may be explored in targeted study. The exploration of such information can help us tosolve the inadaptability between rock and logging response; meanwhile, toprovide effective support for us to deeply understand the petrologymechanism of volcaniclastic rock lithology and its variation.
     The rock type was identified as per core description and thin sectionanalysis. Volcanic sedimentation analysis was carried out by rock types andgrain size analysis, to explore the accumulation of volcaniclastic sediments.The study on sedimentary microfacies is a basic work for the single wellfacies analysis to obtain the reliable results of core sedimentary facies. Theprovenance-sedimentary system and lithology division was identifiedcombining with heavy minerals, sand factor, paleocurrent analysis andlithology division. Moreover, the diagenesis type, characteristics andsequence of volcaniclastic rock were identified by thin section analysis,scanning electron microscope (SEM) and X diffraction analysis, and the stage classification standard on diagenesis of study area was then further identifiedby combining with the maturity of organic matter, the highest pyrolysistemperature and paleogeotemperature. Under the basic framework ofdiagenesis stage, the factors which had influence to volcanic glassdevitrification and its behavior during the diagenesis stage were deeplydiscussed via electron probe, general thin section analysis and SEM analysis.The inadaptable rock types were identified by logging response analysis onlithology, and the factors influencing rock logging response wascomprehensive considered; meanwhile, under the background of equivalentmixed-layer minerals of illite and smectite and the similar tuffaceous contentbelow the silt particle grade, the study method of the cause of bigger CECdifference was explored, and the influence of tuffaceous composition to rockelectronic conductivity was identified. On such basis, the rock samples withclose electronic resistivity and bigger CEC difference were sought to study the cause of the closed electronic resistivity of rock under bigger CECdifference, and the influence of the occurrence state of tuffaceous below thesilt particle grade to rock electronic resistivity was identified. Basing on thediagenesis change of tuffaceous and combining with the electronic conductivemechanism of tuffaceous, the logging response mode of volcaniclastic rockwas identified. Rock classification of volcaniclastic rock from the view oflogging response still could not reach the satisfactory results, thus thepartition and layered logging response mode analysis has become inevitable,and the study suggests that such analysis mode can further distinguish somelithologies from others. On the basis of pore type analysis, the partition andlayered pressured-mercury testing analysis was carried out; and combiningwith productivity results, reservoir types were classified, logging reservoirclassification plate is established. Targeting at the corresponding relationbetween reservoir and lithology, the difference among the some reservoirs with the same lithology was analyzed, and the cause was also explored, so asto lay a lithologic and sedimentary foundation for the identification of highquality reservoirs.
     I. Volcanic-sedimentation (accumulation)
     The lithology of Tongbomiao and Nantun formations is a set of rocksbetween normal terrigenous clastic sedimentary rocks and volcanic lava fromcore observation and thin section analysis. The rock types are volcanic lava,pyroclastic lava, welded pyroclastic rock (ignimbrite), pyroclastic rock, sedvolcanic clastic rock, volcanic sedimentary rock, normal sedimentary rock.
     The lithofacies zonation involved with volcanism was influenced bypaleo geographic partition. There were obvious volcanic fingerprints insedimentary type, reflecting special transportation-sedimentary medium,which presented as the mixed accumulation of volcanic clasts and normalterrigenous clasts in volcanic sedimentary area. Moreover, in the sedimentary belts (including volcanic belt) from alluvial fan to lakes, specialaccumulations with volcanic characteristics formed. The special deposition ofvolcanic clasts mainly displays in: volcanic clast channel, pyroclastic (fan)delta and deepwater volcanic ash sedimentation, etc. The pyroclasticsedimentation in alluvial plain mainly include three categories, respectively (1)the sheet flow caused by hot base surge in alluvial fan;(2) beach sand in theabandoned channel of braided river caused by hot base surge; and (3)marginal bank in meandering stream caused by hot base surge. Thepyroclastic sedimentation in delta plain mainly represent in theinterdistributary channel and natural levee caused by hot base surge; and thedelta front mainly include underwater channel caused by hot base surge andhot pyroclastic flow, the mouth bar caused by hot base surge and hotpyroclastic flow, and the distal bar caused by hot base surge. The pyroclasticsedimentation of deepwater environment mainly includes mudstone of still water caused by airfall, turbidity and underwater fan sediment caused by hotbase surge.
     The provenance-sedimentary system can be identified effectively bysedimentary facies, heavy minerals, sand factor, paleocurrent analysis andlithology divisions, moreover, the distribution of the characteristic lithologyand the structure units’ position can be presented by lithology divisions.Wuerxun depression can be divided into three single lithologic areas and amixed area. Three single lithologic areas are sedimentary rock area withmetamorphic rock clastics, pyroclastic rock area and pyroclastic sedimentaryrock area. The mixed area can be divided into two sub mixed areas from thecontents and components of clastics in rocks: the area dominated with normalsedimentary clastic and the area dominated with pyroclastic. Each singlelithologic area corresponds with each structural unit. The sedimentary rocksarea with metamorphic rocks clastics corresponds to Wuxi fault terrace belt, the pyroclastic rocks area correspond to Bayantala structural belt, and thepyroclastic sedimentary rocks area is a part of Wudong arc structural belt.Beier depression can be divided into two single lithologic areas and a mixedarea. Two single lithologic areas are normal sedimentary rocks area andpyroclastic rocks area. The normal sedimentary rocks area corresponds toSunainuoer structural belt, the pyroclastic rocks area corresponds to Sudeerstructural belt. Tanan depression can be divided into three single lithologicareas and a mixed areas. Three single lithologic areas are pyroclastic rocksarea, pyroclastic sedimentary rocks area and normal sedimentary rocks area.The pyroclastic rocks area corresponds to East fault terrace belt, thepyroclastic sedimentary rocks area corresponds to the north of West buriedhill fault belt, and the normal sedimentary rocks area corresponds to the southof West buried hill fault belt.
     II. Diagenesis
     Thin section analysis and SEM analysis show that the diagenesis types ofthis area include welding, mechanical filtration, compaction-pressure solution,devitrification, recrystalization, cementation, authigenic mineraltransformation, corrosion and dissolution. Of which, welding, devitrification,and the corrosion and dissolution of tuffaceous are the typical diagenesistypes of pyroclastic rocks.
     As per diagenetic symbiotic relationship embodied in diagenesis, thecombination of diagenetic symbiosis of this area mainly include fourcategories, respectively:(1) authigenic white mica and chlorite;(2)dissolution of quartz and siliceous cementation;(3) smectite, illite andchlorite; and (4) zeolite, authigenic quartz and authigenic feldspar.
     Based on the occurrence sequence of various diagenesis, diageneticsequence can be classified as welding stage, mechanical filtration stage, devitrification stage, tuffaceous corrosion and dissolution stage, clay minerallayer-mixing stage, authigenic white mica stage, zeolite cementation stage,particle strong cementation stage and ankerite development stage. On suchbasis and combining with vitrinite reflectance (Ro), maturity of organic matter,the highest pyrolysis temperature of organic matter and parageneticassociation of minerals, It is believed that the lower Cretaceous of the studyarea is from eogenetic B phase to telogenetic B phase, mainly in telogenetic Aphase in this paper.
     There are many factors influencing the devitrification of volcanic glass,including temperature, pressure, Ph value, Eh value, diagenetic fluid andauthigenic constituent structure, etc. The extensively developed acid volcanicglass of the rocks in study area was taken as the key studying object, wecarried out in-depth analysis on the devitrification of acid volcanic glass byvirtue of SEM and electronic probe. The result shows that the sequence of crystallization of mineral in the process of devitrification of volcanic glass is,in fact, from the high to low of the oxygen depolarization, and itsdevitrification behavior can be classified into5stages, respectively:1)hydration phase;2) desilication phase;3) dealumination phase;4)Na-rich/Ka-rich phase;5) final crystallization phase. Such five phases are notthe ones that must be undergone by vitroclastic in the process of alteration.Subjected to the temperature, pressure, Ph, Eh and fluid nature, volcanic glassmay experience several phases, for example, the chemical corrosion anddissolution of tuffaceous may result in the direct dissolution of volcanic glass.
     III. Logging response
     Resistivity is the important parameter for well logging interpretation, theconductivity condition of tuffaceous of the study area can not obtain theuniform cognition in well logging interpretation, i.e. not only high resistance tuffaceous exist, but also low resistance tuffaceous exist. For identifying theconductivity ability of tuffaceous, in this study we focus on the rocks withhigh, medium and low tuffaceous content to do electrochemical experiments,including the CEC (cation exchange capacity) and resistivity of rock. Thisstudy suggests that the mechanical and electrical properties of the volcanicglass with Na (or Ka) on the surfaces would have obvious difference from theinside. Since the potassium-sodium ions are apt to move, the hydrogen ions inwater on the surface of vitroclastic shall have ion exchange with sodium(potassium) ion of glass, to generate sodium (potassium) hydroxide or sodium(potassium) carbonate solution, which shall adsorb to the surface ofvitroclastic to form solution film. The sodium ion (potassium ion) in solutionfilm has high transfer ability, and such positive ions can have ion exchangewith external aqueous solution, thus they have high CEC.
     By systematical microscopic sections analysis and relevant experiments, the petrologic mechanism of special lithology of a series of logging responsewas defined, which including high natural gamma sandstone, high resistancemudstone, low resistance tuff and sandstones that have different relationshipbetween CNL and DEN, and so on. Take high natural gamma sandstone andlow resistance tuff for instance, the factors affecting sandstones with highnatural gamma are tuffaceous matter, clay, feldspar, calcium and oil. Hightuffaceous matter led to the enrichment of thorium, high feldspar and clay tothe enrichment of uranium, thorium and potassium, oil-bearing sandstone touranium. Calcareous by influencing the migration and precipitation ofuranium to change the gamma value of sandstone, high calcareous to thedecrease of uranium. Low resistance tuff has relationship to the volcanic glassgenerated by explosive volcanic eruption, anagenetic volcanic glass have highpotassium ion and sodium ion, and have high CEC, meanwhile, they presentlow resistance. Whatever, the additive electro conductibility generated by clay mineralization of volcanic glass can also make the rock resistivity reduce. Thestudy on petrologic mechanism of these special lithology has enhanced theaccuracy of understanding to the four characteristics of part reservoir inpractical production.
     Well logging lithology identification research shows that when utilizingdeep lateral logging resistivity value and density to have crossplot withneutron cross value XD-N, rocks can be classified into five types: andesite,volcanic breccia, tuffaceous high resistance conglomerate, mudstone, andother lithology. And then when making the crossplot with gamma and soundwave, other lithology can be classified into (tuffaceous) conglomerate,(tuffaceous) sandstone and tuff class. The layered and partition lithology-welllogging response mode can effectively distinguish tuff (tuff and sedimentarytuff), tuffaceous conglomerate, tuffaceous sandstone, common conglomerate,common sandstone. And the classification system of pyroclastic rocks was established, which corresponds to petrology and the standard of well logginggeophysical.
     IV. Reservoir Classification
     The observation on cast thin section shows that the porosity type in thestudied area can be divided into three types: primary porosity, secondaryporosity and mix porosity. Secondary porosity is dominated in the three types.Secondary pores are mainly dissolution intergranular porosity, dissolutionintragranular porosity, and dissolution inter-fillings porosity. Diagenesis hadinfluence to porosity. Compaction and cementation would obviously reduceporosity, while corrosion and dissolution would increase porosity. Thereservoir can be classified into four categories by the pressured-mercury data,for class I reservoir, the drainage pressure is below0.063MPa, radius meanvalue above3μm, porosity at16-21%and permeability above60μm2,belonging to the best reservoir; for class IIA reservoir, the drainage pressure is at0.063-0.485MPa, radius mean value at0.50-3μm, porosity at10-19%andpermeability at0.6-80μm2, belonging to the general reservoir; for class IIBreservoir, the drainage pressure is at0.2-2MPa, radius mean value at0.1-0.5μm, porosity at6-14%and permeability at0.06-0.8μm2, belonging tobad reservoir; for class III reservoir, the drainage pressure is above2MPa,radius mean value below0.1μm, porosity at3-14%and permeability below0.5μm2, belonging to very bad reservoir. It can be found from the oil testingconclusion of Daqing oil field that class I reservoir has natural high yield;class IIA has high yield after fracturing; class IIB has low yield afterfracturing; and class III has no yield after fracturing.
     The study on reservoir porosity characteristics shows that the porosity ofclass I reservoir are mainly dissolution intergranular porosity, the pore-throatconnectivity is good, clay minerals are mainly kaolinite and illite; kaolinite ismainly scattered in the pores; illite mainly filled in lining. The porosity of class IIA reservoir are mainly intergranular porosity and dissolutionintragranular porosity, pore-throat connectivity is relatively good, clayminerals mainly is illite; illites are filled in pores in crosslink form oradsorbed to skeleton particle surface in lining form. The intergranular porosityin class IIB reservoir is less, the quantity of intragranular pores and interstitialmaterial pores have increased with poor connectivity; clay minerals mainly isillite and filled in pores in crosslink form; secondary quartz has extensivelydeveloped in granules. For class III reservoir, effective pores almost can notbe found in cast thin sections.
     After study, it is found that acoustic wave, density and neutron loggingcurve can be used as the main measures for classifying the categories ofreservoir. Due to compaction influence, acoustic wave curve is not suitable todirectly reflect reservoir physical property characteristics, density curve canreflect reservoir porosity characteristics, and XD-Ncan indirectly reflect shale content. Therefore, density curve and XD-Ncan be based on to indirectlyassess the fair or foul of physical property connectivity of reservoir and carryout reservoir category judgment. For class I reservoir, DEN value isequivalent to or below2.43g/cm~3, CNL value at12-27%, and XD-Nvalue at-7-10. For class II reservoir, DEN value is at2.43-2.54g/cm~3, CNL value at6-24%, and XD-Nvalue at-10-6.5. For class III reservoir, DEN value is above2.54g/cm~3, CNL value at7-23%, and XD-Nvalue at-15-0.
     The statistics on the lithology of four reservoirs show that variouslithologies exist in such four reservoirs, coarse fraction has better physicalproperty as compared to fine fraction. The same lithology may occur indifferent reservoir category, of which, conglomerate is most typical, whichexists from class I to class III reservoir with content no less than9%. It isrelated to the formation environment of conglomerate, and the conglomerateformed under different environments has great difference in composition, granularity and separation.
引文
[1] Amaefule JO, Altunbay M, Tiab D, et al. Enhanced reservoirdescription: using core and log data to identify hydraulic (flow) unitsand predict permeability in uncored intervals/wells[J]. SPE,1993,206-207.
    [2] Archie GE. The electrical resistivity log as an aid in determiningsome reservoir characteristics[J]. Transactions of the AIME146,1942,146(1):54-62.
    [3] Berg CR. A comparison of Sator I and HB effective mediumconductivity models[J]. The Log Analyst,1998,34-39.
    [4] Berg CR. A simple effective medium model for water saturation inporous rocks[J]. Geophysics,1995,60(4):1070-1080.
    [5] Berg CR. Effective medium model for calculating water saturation inshaly sands[J]. The Log Analyst,1996,16-26.
    [6] Bhatia MR. Rare earth elements geochemistry of Australian Paleozoicgraywackes and mudstones: provenance and tectonic control[J].Sedimentary Geology,1985,45:97-113.
    [7] Brijraj KD, Mikhlafi AS, Kaur P. Geochemistry of Mansar Lakesediments, Jammu, India: Implication for source-area weathering,provenance, and tectonic setting[J]. Journal of Asian Earth Sciences,2006,26:649-668.
    [8] Bursik MI, Woods AW. The dynamics and thermodynamics of largeash flows[J]. Bulletin of Volcanology,1996,58(2):175-193.
    [9] Burst JF. Diagenesis of Gulf Coast clayey sediments and its possiblerelation to petroleum migration[J]. American Association ofPetroleum Geologists Bulletin,1969,53:73-93.
    [10] Cas RAF, Wright JV. Volcanic succession modern and ancient: Ageological approach to processes, products, and successions[M].London: Allen&Unwin London,1987.
    [11] Charles S. The roles of the organic matter in the formation of theuranium deposits in sedimentary rocks[J]. Ore Geology Review,1996,11(1):54-55.
    [12] Chopra AK. Reservoir Description via pulse[J]. SPE,1988,171-187.
    [13] Choquette PW, Pray LC. Geologic nomenclature and classificationof porosity in sedimentary carbonates[J]. AAPG Bulletin,1970,54(2):207-250.
    [14] Clavier C, Coates G, Dumanoir J. The theoretical and experimentalbases for the “Dual water” model for interpretation of shaly sands[J].Society of Petroleum Engineers Journal,1984,24(2):153-169.
    [15] Dade WB, Huppert HE. Emplacement of the Taupo ignimbrite by adilute turbulent flow[J]. Nature,1996,381(6582):509-512.
    [16] Dickinson WR. Compositions of sandstones in circum-Pacificsubduction complexes and fore-arc basins[J]. AAPG Bulletin,1982,66:121-137.
    [17] Dickinson WR, Suczek CA. Plate tectonics and sandstonecompositions[J]. AAPG Bulletin,1979,63(2):2164-2182.
    [18] Dunoyer de, Segonzac G. The transformation of clay minerals duringdiagenesis and low-grade metamorphism[J]. Sedimentlolgy,1970,15:281-346.
    [19] Edword D, Pittman. Relationship of porosity and permeability tovarious parameters derived from mercury injection-capillary pressurecurves for andstone[J]. AAPG Bulletin,1992,76(2):191-198.
    [20] Einsele G. Sedimentary basins: evolution, facies and sedimentbudget[M]. Berlin: Springer Verlag,2000:64-74.
    [21] Ercill H. Determination of porosity by logging of density, neutronand acoustic[J]. World Oil,1997,(7):173-176.
    [22] Fisher RV, Schmincke HU. Pyroclastic rocks[M]. Berlin: SpringerVerlag,1984.
    [23] Garcia-Romero E, Vegas J, Baldonedo J L, et al. Clay minerals asalteration products in basaltic volcaniclastic deposits of La Palma(Canary Islands, Spain)[J]. Sedimentary Geology,2005,(174):237–253.
    [24] Gencalioglu-Kuscu G, Atilla C, Cas RAF, et al. Base surge deposits,eruption history, and depositional processes of a wet phreatomagmaticvolcano in Central Anatolia (Cora Maar)[J]. Journal of Volcanologyand Geothermal Research,2007,159(1-3):198-209.
    [25] Gifkins CC, Allen RL, McPhie J. Apparent welding textures inaltered pumice-rich rocks[J]. Journal of Volcanology and GeothermalResearch,2005,142(1-2):29-47.
    [26] Herbert TD. Long climatic time series from sediment physicalproperty measurements[J]. Journal of Sedimentary Petrology,1991,61(7):1098-1108.
    [27] Hoffman J, Hower J. Clay mineral assemblages as low grademetamorphic geothermonieter application to the thrust faulteddisturbed belt of moutana[J]. USA SEPW special pub,1979,20:55-79.
    [28] Hower J, Eslinger EV, Hower ME. Mechanism of burialmetamorphism of argillaceous sediment: Minerralogical and chemicalevidence[J]. Geological Society of America Bulletin,1976,87(5):725-737.
    [29] Hughes C J. Igneous petrology[M]. Amsterdam: Elsevier,1983.
    [30] Katz AJ, Thompson AH. Quantirtative prediction of permeability inporous rock[J]. Physical Review Bulletion,1986,34(3):8179-8181.
    [31] Le Maitre RW, Bateman P, Dudek A, et al. A Classification ofIgneous Rocks and Glossary of Terms[M]. London: Blackwell,1989.
    [32] Lirer L, Vinci A, Alberico I, et al. Occurrence of inter-eruption debrisflow and hyperconcentrated flood-flow deposits on Vesuvio volcano,Italy[J]. Sedimentary Geology,2001,139(2):151-167.
    [33] Lube G, Cronin S J, Platz T, et al. Flow and deposition of pyroclasticgranular flows: A type example from the1975Ngauruhoe eruption,New Zealand[J]. Journal of Volcanology and Geothermal Research,2007,161(3):165-186.
    [34] Lynch FE. Mineral/water interaction, fluid flow and sandstonediagenesis: Evidence from the rocks[J]. AAPG Bulletin,1996,80(4):486-504.
    [35] Michol K, Russell J, Andrews G. Welded block and ash flow depositsfrom Mount Meager, British Columbia, Canada[J]. Journal ofVolcanology and Geothermal Research,2008,169(3-4):121-144.
    [36] Morton AC. Geochemical studies of detrital heavy minerals and theirapplication to provenance research[J]. In: DSDP,1991.
    [37] Pettijohn FJ, Raymond Siever, Potter PE. Sand and Sandstone[M].Berlin: Springer,1987.
    [38] Pittman E D. Recent advances in sandstone diagenesis[J]. AnnualReview of Earth and Planetary Sciences,1979,7:39-92.
    [39] Ronald CS, Laura JC, Hagen ES, et al. Organic-inorganic andsandstone diagenesis[J]. AAPG Bulletin,1989,73:1-13.
    [40] Ross PS, White JDL. Debris jets in continental phreatomagmaticvolcanoes: A field study of their subterranean deposits in the CoombsHills vent complex, Antarctica[J]. Journal of Volcanology andGeothermal Research,2006,149(1-2):62-84.
    [41] Schiffman P, Watters RJ, Thompson N, et al. Hyaloclastites and theslope stability of Hawaiian volcanoes: Insights from the HawaiianScientific Drilling Project’s3-km drill core[J]. Journal of Volcanologyand Geothermal Research,2006,151(1-3):217-228.
    [42] Schmidt V, McDonald DA.1979. The role of secondary porosity inthe course of sandstone diagenesis[J]. Sepm Special Publication,1979,26:175-207.
    [43] Schmoker JW,Gautier DL. Sandstone porosity as function ofthermal maturity-an approach to porosity comparison andprediction[J]. Geology,1998,16(11):1697-1703.
    [44] Segschneider B, Landis CA, Manville V, et al. Environmentalresponse to a large, explosive rhyolite eruption: sedimentology ofpost-1.8ka pumice-rich Taupo volcaniclastics in the Hawke’s Bayregion, New Zealand[J]. Sedimentary Geology,2002,150(3-4):275-299.
    [45] Serra O. Diagraphies differrees Bases de I interpretation Tome2Interpretation des donnees diagraphiques[J]. Elf-Aquitaine,1985,1-50.
    [46] She Zhenbing, Ma Changqian, Mason R. Provenance of the TriassicSongpan-Ganzi flysch, West China[J]. Chemical Geology,2006,231:159-175.
    [47] Siever R, Woodford N. Dissolution kinetics and the weathering ofmafic minerals[J]. Geochimica et Cosmochimica Acta,1979,43(5):717-724.
    [48] Sonia Sierra, Carmen Moreno, Emilio Pascual. Stratigraphy,petrographu and dispersion of the lower Permian syn-eruptivedeposits in the Viar Basin, Spain[J]. Sedimentary Geology,2009,217:1-29.
    [49] Sparks RSJ. Grain size variations in ignimbrites and implications forthe transport of pyroclastic flows[J]. Sedimentology,1976,23(147-188).
    [50] Straub S, Schmincke H. Evaluating the tephra input into PacificOcean sediments: distribution in space and time[J]. GeologischeRundschau,1998,87(3):461-476.
    [51] Surdam RC, Crossey LJ, Svenhagen E, et al. Organie inorganicinteractions and sandstone diagenesis[J]. AAPG Bull,1989,73(1):1-23.
    [52] Wardlaw NC. Quantitative determination of pore structure andapplication to fluid displacemement in reservoir rock[C]. Trondheim:North Sea Oil and Gas Reservoir Ⅱ,1990.
    [53] White JDL, Houghton BF. Primary volcaniclastic rocks[J]. Geology,2006,34:677-680.
    [54] Wilson C, Walker G. The Taupo eruption, New Zealand I. Generalaspects[J]. Philosophical Transactions of the Royal Society of LondonSeries A, Mathematical and Physical Sciences,1985:199-228.
    [55]暴艳凤.塔木察格盆地南贝尔凹陷沉积相研究(硕士论文)[D].大庆:大庆石油学院,2009.
    [56]曹瑞成,曲希玉,文全,等.海拉尔盆地贝尔凹陷储层物性特征及控制因素[J].吉林大学学报(地球科学版),2009,39(1):23-30.
    [57]陈军,范晓敏,莫修文.火山碎屑岩岩性的测井识别方法[J].吉林大学学报(地球科学版),2007,37(增刊):99-101.
    [58]陈均亮.海拉尔-塔木察格盆地构造特征与演化研究(博士论文)
    [D].成都:成都理工大学,2011.
    [59]陈均亮,吴河勇,朱德丰,等.海拉尔盆地构造演化及油气勘探前景[J].地质科学,2007,42(1):147-159.
    [60]陈丽华,繆昕,于众.扫描电镜在地质上的应用[M].北京:科学出版社,1986.
    [61]陈一鸣,朱德怀,任康,等.矿场地球物理测井技术测井资料解释[M].北京:石油工业出版社,1994:218-224.
    [62]陈中红,查明.铀曲线在沉积盆地古环境反演中的应用[J].中国石油大学学报(自然科学版),2004,28(6):11-15.
    [63]陈中红,查明,金强.自然伽马及自然伽马能谱测井在沉积盆地古环境反演中的应用[J].地球物理学报,2004,47(6):1144-1150.
    [64]成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1978:55-65.
    [65]程日辉,李飞,沈艳杰,等.火山岩地层地震反射特征和地震-地质联合解释:以徐家围子断陷为例[J].地球物理学报,2011,54(2):611-619.
    [66]程日辉,任延广,沈艳杰,等.松辽盆地营城组火山岩冷却单元及地层结构分析[J].吉林大学学报(地球科学版),2012,42(5):1338-1347.
    [67]程日辉,沈艳杰,颜景波,等.海拉尔盆地火山碎屑岩的成岩作用[J].岩石学报,2010,26(1):47-54.
    [68]戴启德,纪友亮.油气储层地质学[M].北京:石油大学出版社,1996:79-84.
    [69]邸世祥.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1991.
    [70]邸世祥,祝总祺.碎屑岩储集层的孔隙结构及其成因与对油气运移的控制作用[M].西安:西北大学出版社,1991.
    [71]董林森,刘立,蒙启安,等.蒙古国塔木察格盆地塔南凹陷铜钵庙组火山碎屑岩中片钠铝石胶结物的成因[J].吉林大学学报(地球科学版),2011,41(2):421-431.
    [72]冯志强,任延广,张晓东,等.海拉尔盆地油气分布规律及下步勘探方向[J].石油地质,2004,(4):19-23.
    [73]高玉巧.岩浆成因CO2气藏中储集砂岩的热对流成岩作用-以海拉尔盆地乌南凹陷为例(博士论文)[D].长春:吉林大学,2007.
    [74]高玉巧,刘立,曲希玉.海拉尔盆地乌尔逊凹陷片钠铝石及研究意义[J].地质科技情报,2005,24(2):45-50.
    [75]顾家裕.沉积相与油气[M].北京:石油工业出版社,1994:51-58.
    [76]赫金泽,刘国范.石油测井[M].北京:石油工业出版社,1990:93-100.
    [77]何樵登,熊维纲.应用地球物理教程-地震勘探[M].北京:地质出版社,1991:200-204.
    [78]胡菲.塔南凹陷下白垩统南屯组沉积相类型及特征(硕士论文)
    [D].长春:吉林大学,2009.
    [79]黄超义.海拉尔盆地乌尔逊-贝尔凹陷构造特征及演化(硕士论文)[D].长春:吉林大学,2003.
    [80]黄建松,安文武,白武厚.陕北榆林气田山2段高自然伽马储集层特征及其成因分析[J].录井工程,2007,18(4):74-84.
    [81]黄隆基,首祥云,王瑞平.自然伽马能谱测井原理及应用[M].北京:石油工业出版社,1995:48-55.
    [82]纪友亮,蒙启安,单敬福,等.塔南-南贝尔凹陷南屯组下部沉积体系平面展布特征[J].石油实验地质,2011,33(3):260-265.
    [83]蒋恕,蔡东升,朱筱敏,等.辽河坳陷辽中凹陷成岩作用与中深层孔隙演化[J].石油与天然气地质,2007,28(3):362-369.
    [84]姜雪.海拉尔盆地乌尔逊-贝尔凹陷铜钵庙组-大磨拐河组火山-碎屑沉积岩岩性岩相分析(硕士论文)[D].长春:吉林大学,2007.
    [85]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [86]李凤琴,秦菲莉,陈瀚霖,等.自然伽马能谱资料在油田勘探中的应用[J].石油天然气学报,2005,27(6):874-876.
    [87]李贵杰,张建民,岳爱忠,等.砂泥岩地层中气体对补偿中子测井的影响[J].测井技术,2005,29(6):515-527.
    [88]李国欣,欧阳健,周灿灿,等.中国石油低阻油层岩石物理研究与测井识别评价技术进展[J].中国石油勘探,2006,(2):43-50.
    [89]李玲玲.蒙古国东部塔木察格盆地下白垩统储层成岩作用及其对孔隙的影响(硕士论文)[D].长春:吉林大学,2009.
    [90]李萍萍,葛文春,张彦.海拉尔盆地西北部火山岩地层划分的锆石U-Pb年代学证据[J].岩石学报,2010,26(08):2482-2494.
    [91]李思田.断陷盆地分析与煤聚集规律[M].北京:地质出版社,1988:134-239.
    [92]李婷婷,王凤琴,令狐松,等.低渗透储层分类方法研究[J].国外测井技术,2010,(6):23-26.
    [93]李舟波.地球物理测井数据处理与综合解释[M].长春:吉林大学出版社,2003.
    [94]李舟波,潘保芝.测井解释原理与应用[M].北京:石油工业出版社,1991:58-63.
    [95]林承焰,丁圣,李坚,等.贝尔凹陷火山岩相类型及石油地质意义[J].西南石油大学学报(自然科学版),2010,32(33):180-185.
    [96]林仲虔.海拉尔盆地侏罗-白垩系砂岩储集层的成岩作用研究[J].石油实验地质,1992,14(3):227-235.
    [97]刘宝珺.沉积岩岩石学[M].北京:地质出版社,1980:48-54.
    [98]刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社,1992,65-92.
    [99]刘嘉麒,张雯华,郭正府.南极南设得兰群岛中-新生代火山作用与地质环境[J].极地研究,2002,14(1):1-11.
    [100]刘立,高玉巧,曲希玉,等.海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J].岩石学报,2006,22(8):2229-2236.
    [101]刘锐娥,孙粉锦,拜文华,等.苏里格庙盒8气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4):47-49.
    [102]刘堂宴,王绍民,傅容珊,等.核磁共振谱的岩石孔喉结构分析[J].石油地球物理勘探,2003,38(3):328-333.
    [103]刘祥.当代火山喷发碎屑堆积物的研究进展及其主要类型[J].世界地质,1996,15(1):1-6.
    [104]刘新颖.海拉尔盆地乌尔逊凹陷油气生成、运移及成藏(硕士论文)[D].大庆:大庆石油学院,2006.
    [105]刘泽纯,陈晔,袁林旺,等.应用自然伽玛测井曲线反演2.85MaB.P.来古气候变化[J].中国科学(D辑),2000,30(6):609-618.
    [106]刘志宏,柳行军,李传顺,等.海拉尔盆地各二级构造单元关系及断面图编制方法研究.大庆油田有限责任公司勘探开发研究院内部资料,2004.
    [107]刘志宏,万传彪,任延广,等.海拉尔盆地乌尔逊-贝尔凹陷的地质特征及油气成藏规律[J].吉林大学学报(地球科学版),2006,36(4):527-534.
    [108]罗群,庞雄奇.断陷盆地群的含油气系统特征-以海拉尔盆地乌尔逊、贝尔凹陷为例[J].新疆石油地质,2003,24(1):27-31.
    [109]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [110]马红伟.海拉尔盆地盖层分布及断层封闭性评价(硕士论文)
    [D].西安:西北大学,2004.
    [111]马旭鹏.储层物性参数与其微观孔隙结构的内在联系[J].勘探地球物理进展,2010,33(3):21-219.
    [112]马正.油气测井地质学[M].武汉:中国地质大学出版,1994:35-39.
    [113]马中振,庞雄奇,魏建设,等.海拉尔盆地乌尔逊凹陷石油地质特征[J].新疆石油地质,2007,28(3):296-299.
    [114]毛志强,谭廷栋.密度测井和中子测井的相关性及其在识别天然气层中的应用[J].地球物理学报,1996,39(1):125-133.
    [115]穆曙光,张以明.成岩作用及阶段对碎屑岩储层孔隙演化的控制[J].西南石油学院学报,1994,1(63):22-27.
    [116]慕万军,王建明,刘杰烈,等.海拉尔盆地岩性地震勘探方法及攻关方向[J].大庆石油地质与开发,2009,28(5):274-280.
    [117]欧霞,赵志伟,鲁红,等.火山碎屑沉积岩储层泥质与凝灰含量计算方法研究[J].测井技术,2009,33(4):371-373.
    [118]潘保芝,薛林福,李舟波,等.裂缝性火成岩储层测井评价方法与应用[M].北京:石油工业出版社,2003.
    [119]邱家骧,陶奎元,赵俊磊,等.火山岩[M].北京:地质出版社,1996.
    [120]邱隆伟,姜在兴,席庆福.欧利坨子地区沙三下亚段火山岩成岩作用及孔隙演化[J].石油与天然气地质,2000,21(2):139-147.
    [121]邱楠生,冯石,廖兴明,等.辽河盆地东部凹陷构造-热力史分析[J].石油学报,1988,19(2):32-35.
    [122]瞿光明.中国石油地质志(卷二,上册)[M].石油工业出版社,1993,627-740.
    [123]单玄龙,陈玉平,唐黎明,等.火山岩储层综合评价方法与应用-以松南气田营城组旋回三为例[J].山东科技大学学报(自然科学版),2011,30(3):1-6.
    [124]单玄龙,罗洪浩,张洋洋,等.松南长岭断陷火山岩亚相约束下的气层测井识别评[J].地球物理学报,2011,54(2):508-514.
    [125]时孜伟.海拉尔盆地乌尔逊-贝尔凹陷岩石类型及测井响应(硕士论文)[D].长春:吉林大学,2007.
    [126]孙济元,王文祥,雍世和.自然伽马、中子和密度测井[M].北京:石油工业出版社,1987.
    [127]孙佩,张小莉,郭兰,等.相对高放射性砂岩成因及储集性能定性评价[J].西安石油大学学报(自然科学版),2010,25(2):18-21.
    [128]孙善平,刘永顺,钟蓉,等.火山碎屑岩分类评述及火山沉积学研究展望[J].岩石矿物学杂志,2001,20(3):313-317.
    [129]孙晓猛,刘财,朱德丰,等.大兴安岭西坡德尔布干断裂地球物理特征与构造属性[J].地球物理学报,2011,54(2):433-440.
    [130]孙晓猛,鲁宝亮,张梅生,等.海拉尔盆地及盆缘露头区典型构造样式及变形序列[J].吉林大学学报(地球科学版),2011,41(增刊1):1-9.
    [131]孙彦达,张民志.海拉尔盆地碳钠铝石特征及其地质意义[J].石油实验地质,2006,28(5):504-506.
    [132]谭成仟,段爱英,宋革生.基于岩石物理相的储层渗透率解释模型研究[J].测井技术,2001,25(4):284-290.
    [133]唐海燕,莫修文,唐馨,等.乌尔逊地区凝灰质砂岩储集层孔隙度计算方法研究[J].吉林大学学报(地球科学版),2008,38(增刊):121-127.
    [134]唐华风,徐正顺,吴艳辉,等.松辽盆地营城组火山岩储层流动单元特征和控制因素[J].岩石学报,2010,26(1):55-62.
    [135]唐华风,赵密福,单玄龙,等.松辽盆地营城组火山地层单元和地震地层特征[J].石油地球物理勘探,2012,47(2):323-331.
    [136]陶宏根,程日辉,赵小青,等.海拉尔盆地火山碎屑岩的测井响应与应用[J].地球物理学报,2010,26(1):47-54.
    [137]田成,陈翠柏,田崇鲁,等.吉林两井油田下白垩统泉头组四段低渗透储层孔隙成因与储渗单元特征[J].现代地质,2000,14(4):445-450.
    [138]王成善,李祥辉.沉积盆地分析原理与方法[M].北京:高等教育出版社,2003,90-92.
    [139]王海燕,刘立,高玉巧,等.海拉尔盆地贝尔凹陷南屯组火山碎屑岩成岩作用的讨论[J].世界地质,2005,24(3):219-224.
    [140]王海云,李捷.东北含油气盆地储层次生孔隙形成机制[J].大庆石油学院学报,1998,22(4):5-8.
    [141]王剑锋.铀地球化学教程[M].北京:原子能出版社,1986:377-381.
    [142]王建伟,鲍志东,陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响-以鄂尔多斯盆地西北部二叠系为例[J].地质科学,2005,40(3):429-438.
    [143]王江.乌尔逊凹陷南部层序地层格架及岩性油气藏成藏规律研究(博士论文)[D].北京:中国地质大学,2011.
    [144]王年梅.塔木察格盆地塔南凹陷查干组沉积特性研究(硕士论文)[D].大庆:大庆石油学院,2007.
    [145]王鹏,莫修文,王英武,等.火山碎屑岩储层泥质含量的计算[J].吉林大学学报(地球科学版),2008,38(增刊):133-136.
    [146]王璞珺,陈树民,李伍志,等.松辽盆地白垩纪火山期后热液活动的岩石地球化学和年代学及其地质意义[J].岩石学报,2010,26(1):33-46.
    [147]王璞珺,迟元林,刘万洙,等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003,33(4):449-455.
    [148]王璞珺,张功成,蒙起安,等.地震火山地层学及其在我国火山岩盆地中的应用[J].地球物理学报,2011,54(2):597-610.
    [149]王璞珺,郑常青,舒萍,等.松辽盆地深层火山岩岩性分类方案[J].大庆石油地质与开发,2007,26(4):17-22.
    [150]王群,庞彦明,郭洪岩,等.矿场地球物理测井[M].北京:石油工业出版社,2002:153-155.
    [151]王燮培,费琪.石油勘探构造分析[C].武汉:中国地质大学出版社,1990.
    [152]王衍琦,张绍平,应凤祥.阴极发光显微镜在储层研究中的应用
    [M].地质出版社,1992:11-29.
    [153]王曰才,王冠贵.地层倾角测井[M].北京:石油工业出版社,1987,132-144.
    [154]吴河勇,李子顺,冯子辉等.海拉尔盆地乌尔逊-贝尔凹陷构造特征与油气成藏过程分析[J].石油学报,2006,27(增刊):1-6.
    [155]伍英,陈均亮,张莹.海拉尔-塔木察格盆地构造带与油气关系[J].大庆石油学院学报,2009,33(3):31-35.
    [156]鲜本忠,王永诗.基于小波变换基准面恢复的砂砾岩期次划分与对比[J].中国石油大学学报(自然科学版),2008,32(6):1-11.
    [157]肖晨曦,李志忠.粒度分析及其在沉积学中应用研究[J].新疆师范大学学报(自然科学版),2006,25(3):118-123.
    [158]肖佃师,蔺景龙,李占东,等.有效介质HB电阻率模型在海拉尔盆地凝灰质砂岩中的应用[J].大庆石油学院学报,2008,32(5):13-15.
    [159]谢家莹.凝灰熔岩-碎斑熔岩-熔结凝灰岩的对比鉴别[J].火山地质与矿产,1995,16(4):93-94.
    [160]谢家莹,陶奎元,等.中国东南大陆中生代火山地质及火山-侵入杂岩[M].北京:地质出版社,1996.
    [161]邢顺洤,姜洪启.松辽盆地陆相砂岩储集层性质与成岩作用[M].山东:黑龙江科学技术出版社,1993.
    [162]徐惠芬,崔京钢,邱小平.阴极发光技术在岩石学和矿床学中的应用[M].地质出版社,2006:42-63.
    [163]徐敬领,王贵文,刘洛夫.利用小波深频分析方法研究沉积储层旋回[J].中国石油大学学报(自然科学版),2009,33(5):1-5.
    [164]许岩.海拉尔盆地火山碎屑岩、含片钠铝石砂岩与普通砂岩的成岩作用及其比较研究(博士论文)[D].长春:吉林大学,2005.
    [165]杨华蕊.硅锰合金渣玻璃中硅聚合态的研究[J].岩石学报,1985,(5):103-112.
    [166]杨仁超,樊爱萍,韩作振,等.姬塬油田砂岩储层成岩作用与孔隙演化[J].西北大学学报(自然科学版),2007,37(4):626-630.
    [167]杨献忠.酸性火山玻璃的脱玻化作用[J].火山地质与矿产,1993,14(2):73-81.
    [168]杨献忠,元润章.火山玻璃的拉曼光谱研究[J].南京地矿所所刊,1990,11(3):25-36.
    [169]杨修伦,李侠.自然伽马能谱测井曲线在地质上的解释与应用[J].地学工程进展,1999,16(1):48-52.
    [170]袁文芳,陈世悦,曾昌民,等.柴达木盆地西部地区第三系碎屑岩粒度概率累积曲线特征[J].中国石油大学学报(自然科学版),2005,29(5):12-18.
    [171]章成广,秦瑞宝.用毛管压力曲线解释原始含水饱和度[J].江汉石油学院学报,1999,21(4):8-10.
    [172]张荻楠,刘广天.复杂断块油藏残余地层格架的建立及油层细分方法[J].中国石油大学学报(自然科学版),2008,32(1):13-18.
    [173]张凡芹,王伟锋,王建伟,等.苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J].吉林大学学报(地球科学版),2006,36(3):365-369.
    [174]张功成,徐宏,王同和,等.中国含油气盆地构造[M].北京:石油工业出版社,1999:126-139.
    [175]张海军.海拉尔盆地贝尔凹陷油气分布规律及主控因素研究[J].石油地质,2012,(2):8-22.
    [176]张海龙,刘忠海,周灿灿,等.低孔低渗储集层岩石物理分类方法的讨论[J].石油勘探与开发,2008,35(6):763-768.
    [177]张吉光.海拉尔盆地构造特征及含油气性探讨[J].大庆石油地质与开发,1992,11(1):14-20.
    [178]张吉光,陈萍.贝尔湖坳陷构造迁移与油气分布[J].石油勘探与开发,1994,21(2):16-23.
    [179]张吉光,彭苏萍,林景晔,等.乌尔逊凹陷沉积成岩体系与油气分布[J].古地理学报,2002,4(3):74-81.
    [180]张金民,叶大年.几种天然玻璃的氧平均体积[J].岩石学报,1989,(2):9-17.
    [181]张丽媛.塔木察格盆地南贝尔凹陷优质储层特征与形成机理(硕士论文)[D].长春:吉林大学,2010.
    [182]张丽媛,纪友亮,刘立,等.塔木察格盆地南贝尔凹陷异常高孔隙成岩分析[J].武汉:2011年盆地动力学与油气储层研讨会,2011:161-173.
    [183]张美玲,邵阳,高柏原,等.海拉尔盆地含火山岩地层主要岩性分布及测井响应分析[J].中国石油勘探,2009,2:50-54.
    [184]张涛,莫修文.基于交会图与模糊聚类算法的复杂岩性识别[J].吉林大学学报(地球科学版),2007,37(增刊):109-113.
    [185]张晓东,刘光鼎,王家林.海拉尔盆地的构造特征及其演化[J].石油实验地质,1994,16(2):119-127.
    [186]张晓峰,潘保芝,范晓敏,等.海拉尔盆地南屯组凝灰质砂岩储层含水饱和度计算方法[J].测井技术,2009,33(4):345-349.
    [187]张新涛,刘立,魏文艳.海拉尔盆地贝尔凹陷铜钵庙组成岩作用及其对孔隙演化的影响[J].吉林大学学报(地球科学版),2008,38(1):35-42.
    [188]张耀夫,译.火山玻璃的低温蚀变:水化作用及Na、K、18O、Ar的活动性[J].化学地质,1985,52:281-293.
    [189]赵国泉,李凯明,赵海玲,等.鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成[J].石油勘探与开发,2005,32(1):53-55.
    [190]赵建,高福红.测井资料交会图在火山岩岩性识别中的应用[J].世界地质,2003,22(2):136-140.
    [191]赵军龙,谭成仟,刘池阳,等.鄂尔多斯盆地高自然伽马异常特征[J].地球科学与环境学报,2006,28(3):82-86.
    [192]赵杏媛,王行信,张有瑜,等.中国含油气盆地粘土矿物[M].武汉:中国地质大学出版社,1995.
    [193]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006.
    [194]赵追.碎屑岩储层次生孔隙形成机制及其勘探意义[J].河南石油,2001,15(2):11-15.
    [195]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989:110-130.
    [196]钟大康,朱筱敏,张琴.不同埋深条件下砂泥岩互层中砂岩储层物性变化规律[J].地质学报,2004,78(6):863-871.
    [197]钟大康,朱筱敏,张枝焕,等.东营凹陷古近系砂岩储集层物性控制因素评价[J].石油勘探与开发,2003,30(3):95-98.
    [198]中国石油天然气总公司劳资局.矿场地球物理测井[M].北京:石油工业出版社,1998:109-111.
    [199]钟淑敏,刘传平,朱建华,等.应用核磁共振测井进行海拉尔地区储层分类[J].测井技术,2008,32(2):191-195.
    [200]周灿灿,李淑珣,周凤鸣,等.高柳地区新近系地层压力和温度对岩石物性的影响[J].石油勘探与开发,2003,30(1):105-108.
    [201]周越,莫修文,孙凤贤,等.凝灰质砂岩骨架参数确定方法和效果对比[J].吉林大学学报(地球科学版),2008,38(专辑):124-127.
    [202]周张健.蒙脱石伊利石化的控制因素、转化机制及其转化模型的研究综述[J].地质科技情报,1994,13(4):41-46.
    [203]周中毅,盛国英,闵育顺.凝灰质岩生油岩的有机地球化学初步研究[J].沉积学报,1989,7(3):3-9.
    [204]朱平,王成善.海拉尔盆地碎屑储集岩成岩变化与孔隙演化关系[J].矿物岩石,1995,15(2):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700