用户名: 密码: 验证码:
高速铁路长大隧道热力效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路的快速发展,使得深埋大、距离长的隧道需求日益增长。由于纵向距离很大,列车速度的不断提高以及行车密度和客运量的与日俱增,高速列车能耗及附属设备产生的大量热量将释放到隧道环境中。在通风不畅,土壤及隧道结构散热不是很好的情况下,会引起隧道内热量的积聚和隧道纵深方向温度的不断升高。相当多的热能转换到隧道壁中,导致隧道内壁发生严重的剥蚀现象以及寒区隧道的融沉破坏。论文围绕高速列车隧道系统,考虑长隧道内高速列车运行的三维空气动力学效应,空气与围岩的对流换热以及围岩热传导,对长隧道内温度变化以及隧道周围岩体温度场特征进行了研究。具体表现在:
     1.以流体力学和传热学理论为基础,考虑空气与围岩对流换热,建立了三维粘性、可压缩、不等熵非定常流模型。应用有限体积法,对长隧道内运行的高速列车进行三维空气动力学分析。本文详细分析了不同阻塞比(0.13,0.21,0.32)、不同列车速度(350km/h,432kh/h,500km/h,600km/h)、不同车头形状(30°,45°,60°)下高速列车在长隧道中运行时,隧道内车周三维速度场、压力场,探究了列车运行阻力产生的机理,计算了车头车尾的压差阻力,车身表面的摩擦阻力,比较了不同工况下列车在隧道中运行时的阻力系数,得到了列车克服全部阻力高速运行所需能耗产生的热量。
     隧道内热量的来源主要是用来克服列车运行阻力而消耗的牵引能。热量的积聚与列车隧道系统阻塞比的关系非常大,隧道内热效应受到列车速度的影响仅次于阻塞比,改变列车头部形状,也可改变释放到隧道内的热量。行车密度对温度的影响也是非常关键的,隧道内温度的升高与列车空调放热也密切相关。环境压力水平与列车能耗直接相关,采用低压真空隧道会显著降低长隧道内的温度升高。
     2.将有限体积法与有限元单元法结合,运用传热学、固体力学的基本理论,考虑空气与围岩的对流换热和围岩热传导耦合,建立了温度应力耦合计算模型。温度变化对岩体的应力影响,通过将温度作用产生的初应变转化为初始荷载累加到荷载向量中实现,对隧道内空气与围岩对流换热及围岩热传导耦合问题进行了三维非线性分析。分别求解了阻塞比为0.13,0.21及0.32下高速铁路隧道在不同速度及不同车头情况下,一年期、十年期、二十年期的围岩温度场,热应力场。结果发现,隧道围岩温度场在二十年后都将维持一个比较稳定的状态,围岩等效热应力值在隧道壁四周基本呈均匀分布,温度引起的等效热应力最大值及最大主应力均出现在隧道拱角处。
     3.针对多年冻土地区隧道围岩温度场是具有导热与对流换热耦合边界并伴有相变的非稳态温度场的特点,建立了隧道内空气对流换热的微分控制方程,同时,在非稳态的温度场控制方程基础上,建立了伴有相变的冻土体非稳态温度场控制方程。本文用有限体积法求解隧道内气流及用有限单元法求解冻土体的非稳态温度场偏微分方程,采用了空间域内的有限单元法与时间域内的有限差分法混合求解,进行了围岩温度场的有限元分析。最后通过阻塞比为0.13及0.21,列车速度为500km/h的工况为例,预测了寒区高速铁路隧道在二十五年间长期连续不断地运营后,隧道内温度的升高以及围岩温度场的变化。结果表明,二十年后,寒区高速铁路隧道内环境温度的变化速度将非常缓慢,基本维持稳定,隧道内热量积聚对冻土融化范围的影响将维持在一定的范围,热熔沉降将是寒区高速铁路隧道一个需要考虑的因素。
With the development of high-speed railway, the demand of longer and deeper buried tunnel is highly increased. Because of long lengthways distance, continually increased in train speed, traffic density and passenger capacity grow day by day, a significant amount of thermal energy may be transferred to the tunnel environment. This thermal energy is the result of dissipation caused by aerodynamic drag, mechanical resistances, various electric equipments and air condition etc. Bad air ventilation and not enough heat dissipation with soil and tunnel structure limits the heat driven out timely. As a consequence, heat-accumulating and air temperature in the deep buried long tunnel can be increased continually. Quite a number of this thermal is transferred into the tunnel wall. It will result in bad denudation in tunnel wall and thawy subsidence in Frigid Zone. The subject matter of this paper is in view of high speed train tunnel system. Temperature field generated by high speed train in long tunnel and surrounding rock is studied. Three-dimensional aerodynamic effect induced by train traveling through long tunnel, heat conduction of surrounding rock and heat convection between air and rock wall is taken into account. The concrete manifestation is:
     1. Based on the theory of fluid mechanics and heat transfer, taking into account of heat convection between air and tunnel wall, three-dimensional unsteady viscous, compressible, non-isentropic flow field model is established. Three-dimensional aerodynamic effect induced by high speed train traveling through very long tunnel is analysed by finite volume method. 3-D velocity fields, pressure distribution around train are simulated with different blocking ratio (0.13,0.21, and 0.32), multifarious head shape (30°,45°, and 60°) and various speed conditions (350km/h,432kh/h,500km/h, and 600km/h). Mechanism of aerodynamic drag is investigated and pressure drag between train nose and train tail, friction drag on train suface is calculated. So the resistance coefficients that high speed train running in different cases is compared with each other. As a result, the quantity of heat produced by the train power consumed that train against all resistance is evaluated.
     The quantity of heat in the tunnel main consists of power consumed by train traveling at high speed through a long tunnel. The heat-accumulating in long tunnel is more related to blockage ratio. Train speed is next to blockage ratio in influencing thermodynamic effect. As train nose shape varied, quantity of heat released into the tunnel space will be changed too. Traffic density is also very important to tunnel temperature. In addition, temperature in tunnel would be increased further with train air conditioning system. Train energy consumption is directly proportional to the environmental pressure level. Continual temperature rising in long tunnel will be significantly reduced by partial vacuum in contrast to atmospheric conditions.
     2. In this paper, finite volume method is combined with finite element method. A new coupling calculation model of temperature-stress is established based on the theory of heat transfer and solid mechanics, heat convection between air and tunnel wall and heat conduction of the rock surrounding the tunnel has also been comprehensively considered. The rock stress resulted in temperature change is carried out by the way of translating temperature initial strain into initial load, then adding it to load vector. The coupled problem of heat convection between air and tunnel wall, heat conduction of surrounding rock is solved in terms of three-dimensional nonlinear analysis. The temperature and thermal stress fields of surrounding rock in one year, ten year and twenty year is evaluated, under the condition of high speed train tunnel system with blocking ratio (0.13,0.21, and 0.32), various train head shape and differents train speed. As a result, the temperature fields of rock will be keeping relative steady state after twenty years. Equivalent thermal stress is uniform distributed all around the tunnel wall. The maximum principal stress and maximum equivalent thermal stress caused by temperature change all exists in arch corner.
     3. Aiming at the characteristies that the temperature field of permafrost culvert is a non-steady temperature field with phase changing and with conjugated heat transfer on fluid thermal boundary, differential control equations for convective heat transfer of tunnel air are established. The govening equation of the non- steady temperature field with phase changing of the permafrost based on the tradltional equations also formulated. Differential control equations for tunnel air are solved by finite volume method and partial differential equations for frozen soil are solved by finite element method. Rock temperature fields are anlyses with the mixture solution method, by adopting the grid segmentation in space domain with finite element method and format segmentatlon in time domain with finite difference method. With the simulation results of blocking ratio 0.13 and 0.21, train speed 500km/h, the temperature change in tunnel space and the temperature field of surrounding rock is predicted after twenty five years successive train movements in cold region high speed railway tunnel. The results show that the rate of air temperature changing in tunnel is very slowly after twenty years. It will be keeping a relative steady state. The thawed range of the permafrost surrounding the tunnel in cold regions can be maintained under relative conservative ranges. However thawy subsidence is still a factor that needs to be considered in high speed railway tunnel of Frigid Zone.
引文
[1]王梦恕.21世纪山岭隧道修建的趋势.铁道工程学报,1998,(增刊):4-7.
    [2]关宝树.21世纪的地下空问利用.铁道工程学报,1998,(增刊):553-557.
    [3]Henson, DA, Lowndes,3FL. Economical design in a tropical climate.4th int symp on the Aerodynamics and Ventilation of Vehicle Tunnels, York, BHRA,1982,295-305.
    [4]王建宇.关于高速铁路隧道设计参数问题.世界隧道1995(5).
    [5]前田达夫.车辆E空气。斗y.RRR.1987.
    [6]Ardy A E, Anandaranjah A. Initial design considerations for rail tunnel aerodynamics and thermodynamics.4 ISAVVT.1982:353-366.
    [7]刘应清、雷波、雷兵.列车在隧道中行驶的空气动力学现象.西南交通大学风工程中心研究报告:1991.
    [8]Ozawa. S, Moritoh. Y, and Maeda, and Kinoshita, M. Investigation of pressure wave radiated from a tunnel exit, RTRI Research Report No.1023, Railway Technical Research Institute, Japan National Railways, Japan(in Japanese).1976.
    [9]S. Ozawa. Present situation and future outlook of aerodynamic and aero—acoustic problems of high—speed trains. QR of RTRI.1992,33(1).
    [10]Arturo Baron, Michele Mossi and Stefano Sibilla. The alleviation of the aerodynamic drag and wave effects of high-speed train in very long tunnels. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89:365-401.
    [11]Vardy, A.E. Reinke, P. Estimation of train resistance coefficients in tunnels from measurements during routine operation. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.1999,213(2):71-87
    [12]Mame William-Louis and Claude Tournier. A wave signature based method for the prediction of pressure transients in railway tunnels. Journal of Wind Engineering and Industrial Aerodynamics.2005, 93(6):521-531.
    [13]海峡隧道列车的空气动力学.世界隧道,1996(2)62-71.
    [14]A HensoB, W M S Bradbury, W S Atkins. The Aerodynamics of Channel Tunnel Trains.1991 Elsevier Science Publishers Ltd England Aerodynamics and Ventilation of Vehicle Tunnels.1991:UK 927-956.
    [15]龙静,王书.地铁车辆空调设计问题的探讨.机车电传动,2003(4):40-42.
    [16]Cockrnm IJ, Bornie GB. The ventilation of London's underground railways.2nd int syrup on the Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge, BHRA.1976, paper H2.
    [17]高速列车在隧道中运行时产生的问题——报告13:最终报告.隧道译丛.1994(9)1-12.
    [18]金学易,陈文英.隧道通风及隧道空气动力学.北京:中国铁道出版社,1983.
    [19]王韦,王建宇,陈正林.隧道中高速列车活塞风及空气阻力计算.中国铁道科学,1999,(20)1:9-16.
    [20]梅元贵,赵海恒,刘应清.高速铁路隧道压力波数值分析.西南交通大学学报,1995,(30)6:667-672.
    [21]王建宇.列车通过隧道时诱发的空气动力学问题和高速铁路隧道设计参数.世界隧道,1995(1):3-13.
    [22]荣深涛,苏红,阎冠民,等.同心情况下列车通过隧道的空气阻力计算.北方交通大学学报,1991,14(1):68-83.
    [23]荣深涛,杨健,唐家龙,等.北京地下铁道列车空气阻力实验报告.北方交通大学学报,1991,14(1):119-128.
    [24]梅元贵,赵海恒,刘应清.隧道内高速列车会车压力波数值模拟方法.兰州铁道学院学报,1996,15(1):1-6.
    [25]梅元贵,周朝晖,许建林.高速铁路空气动力学.北京:科学出版社,2009
    [26]W.A.Wood, C.W.Pope. On the range of validity of simplified one dimensional theories for calculating unsteady flows in railway tunnels. Stephens H S.3rd International Symposium on the aerodynamics and ventilation of vehicle tunnels. Cranfield Bedford England:BHRA, ssoc.,1979 March D2:l 15-150
    [27]Dayman, B., Kurtz, D.W. Experimental studies relating to the aerodynamics of trains travelling in tunnels at low speed. First International Conference on the Aerodynamics and Ventilation of Vehicle Tunnels.1973.
    [28]W.A.Wood, C.W.Pope. A generalized flow prediction method for the unsteady flow generated by a single-track tunnel. Journal of wind engineering and industrial aerodynamics.1981,(7):331-360.
    [29]C.W.Pope and W.A.Wood. The prediction of thermal effects in railway tunnels. Stephens H S.5rd International Symposium on the aerodynamics and ventilation of vehicle tunnels. Lille, France,1985, paper E3.
    [30]H.Barrow and C.W. Pope. A simple analysis of flow and heat transfer in railway tunnels. Heat and Fluid Flow.1987,8(2):119-123.
    [31]H.Barrow and C.W. Pope. Heat transfer in the gap between a train and the wall of a tunnel.2nd UK National Heat Transfer Conference, Glasgow, Sept.1988.
    [32]H.Barrow and C.W. Pope. Aspects of flow and heat transfer in railway tunnels.6th int symp on the Aerodynamics and Ventilation of Vehicle Tunnels. Durham, BHRA,1988.79-90.
    [33]H.Barrow and C.W. Pope. Theoretical global energy analysis for a railway tunnel and its environment with special reference to periodic temperature change.7th int symp on the Aerodynamics and Ventilation of Vehicle Tunnels, Brighton,1991.267-280.
    [34]Fujii, K.. Unified zonal method based on the fortified solution algorithm. Journal of Computational Physics.1995,118:92-108.
    [35]Fujii, K., Ogawa, T. Aerodynamics of high speed trains passing by each other. Computers Fluids. 1995,24 (8):897-908.
    [36]Takanobu Ogawa, Kozo Fujii. Numerical investigation of three-dimensional compressible flows induced by a train moving into a tunnel. Computers Fluids.1997,26(6):565-585.
    [37]Vardy A E. Aerodynamic drag on trains in tunnels. Part1:Synthesis and definitions. Proc. lnst. Mech. Engrs.1996,210:29-38.
    [38]Vardy A E. Aerodynamic drag on trains in tunnels. Part2:Prediction and validation. Proc. Inst. Mech. Engrs.1996,210:39-49.
    [39]Raghu S. Raghunathan, H-D. Kim, T. Setoguchi. Aerodynamics of high speed railway train. Progress in Aerospace sciences 2002,38:469-514.
    [40]Pierre Ricco, Arturo Baron, Paolo Molteni. Nature of pressure waves induced by a high-speed train travelling through a tunnel. Journal of Wind Engineering and Industrial Aerodynamics,1995(8):781-808.
    [41]Baron, A., Molteni, P., Vigevano, L. High-speed trains:predictions of micro-pressure wave radiation from tunnel portals. Journal of Sound and Vibrancy.2006,296:59-72.
    [42]Ozawa S, Maeda T, Matsumura T, Uchida K, Kajiyama H, Tanemoto K. Countermeasures to reduce micropressure waves radiating from exits of Shinkansen tunnels. Proceedings of the Seventh International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Brighton, UK.1991.
    [43]Kim HD, Setoguchi T. Experimental study on reduction of impulsive noise generating at the exit of high-speed railway tunnel. Korean Soc Mech Eng (KSME).1996,20(7):2375-2385.
    [44]Matsuo,K., Aoki.T.Kashimura, H, lwamoto, K., Noguchi, Y and Tsujimoto, Y. Numerical simulation of an impulsive wave emitted from an exit of high—speed railway tunnel. Computers in Railways Ⅲ. 1992(2):455-463.
    [45]Matsuo, K. Aoki, T. Kashimura, H. Yasunobu and Mashimo, S. Generation mechanism of impulsive wave emitted from high—speed railway tunnel exit, Proc.8 international symposium on the Acredynamics and Ventilation of Vehicle Tunnels. Liverpool UK, BHR Group.1994:199-209.
    [46]M. S. Howe, M. Iida and T. Fukuda. Influence of an unvented tunnel entrance hood on the compression wave generated by a high-speed train. Journal of Fluids and Structures.2003,17(6):833-853.
    [47]Setoguchi, T., Matsuo, K., Hidaka, R and Kaneko, K. Impulsive noise induced by a weak shock wave discharged from an open end of a tube. ASME, FED.1997a,170:57-64.
    [48]Pope C. W., etc. An experimental investigation into the effect of train shape on the unsteady flows generated in tunnels. Proc.4th ISAVVT, BHRA.1982,Paper C2.
    [49]木川田一弥,森井宜治.对超高速列车在隧道内运行时压力变化的试验研究.隧道译丛.1994,(50):1-9.
    [50]Bellenoue M., Moriniere V, Kageyama T. Experimental 3-D simulation of the compression wave due to train—tunnel entry. Journal of Fluids and Structures.2002,16(5):581-595.
    [51]杨宇光,朱克勤,席葆树.高速列车进入隧道时的一维非等熵流.清华大学学报(自然科学版).2000,40(5):95-98.
    [52]梅元贵,周朝晖,耿烽等.高速铁路隧道初始压缩波一维流动模型的数值分析方法.空气动力学报.2006,24(4):508-512.
    [53]余南阳,梅元贵.高速铁路隧道压力波主要影响参数研究.中国铁道科学.2003,24(6):67-69.
    [54]梅元贵,余南阳.高速列车会车压力波的数值模拟.兰州铁道学院学报.1998,17(4):49-53.
    [55]梅元贵,余南阳,赵海恒,刘应清.高速列车隧道会车压力波的数值分析方法.铁道学报.2002,24(2):21-25.
    [56]余南阳.时速160km,200km,列车通过隧道时产生的压力波研究.铁道建筑.2003(12):29-31.
    [57]陈正林,王建宇,魏鸿.高速铁路双竖井隧道列车空气阻力计算.世界隧道.1998(6):1-5.
    [58]许唯临,廖华胜,王韦.隧道中高速列车空气阻力的数值计算.应用力学学报.1998,15(3):124-127.
    [59]王韦,陈正林,魏鸿.高速铁路隧道内列车活塞风和空气阻力的解析计算.世界隧道.1999(1):63-66.
    [60]骆建军,高波,王英学,赵文成.高速列车穿越隧道的二维非定常流数值模拟.铁道学报,2003,25(4):68-73.
    [61]骆建军,高波,王英学,李伦贵.高速列车通过隧道时压力变化的数值模拟.中国铁道科学.2003,24(4):82-86.
    [62]王英学,骆建军,李伦贵,琚娟.高速列车模型实验装置及相似特性分析.西南交通大学学报,2004,39(1):20-24.
    [63]琚娟,高波,赵文成.高速列车通过隧道时洞口瞬变压力的产生机理.现代隧道技术.2003,40(3):11-13.
    [64]王英学,高波,赵文成,骆建军.缓冲结构对列车突入隧道时的瞬变压力的影响.铁道工程学报.2004,81(1):94-98.
    [65]骆建军,高波,王英学.高速列车突入隧道与缓冲结构数值模拟.空气动力学报.2003,21(3):376-381.
    [66]骆建军,高波,王梦恕.高速列车突入隧道时的三维非定常流的数值模拟.中国铁道科学.2005,26(1):15-19.
    [67]骆建军,王梦恕,高波.高速列车穿越又竖井隧道流场的特性分析.计算力学学报.2006,23(4):464-469.
    [68]赵文成,高波,琚娟,王英学.高速列车通过喇叭形入口的试验研究.铁道建筑.2004(7):35-37.
    [69]赵文成, 高波,骆建军. 高速列车通过隧道的三维数值模拟. 中国铁道科学.2003,24(5):96-100.
    [70]赵文成,高波,漆泰岳.高速铁路隧道出口微压波及其主被动减缓措施.石家庄铁道学院学报.2004,17(3):5-9.
    [71]赵文成,高波,王英学,琚娟.高速列车通过隧道时压力波动过程的模型试验.现代隧道技术.2004,41(6):16-19.
    [72]赵文成,高波,王英学,琚娟.高速列车突入隧道引起的压缩波的理论研究.西南交通大学学报.2004,39(4):447-450.
    [73]赵文成,高波,王英学.高速铁路隧道口微压波减缓措施的分析.地下空间与工程学报.2005,1(2):274-277.
    [74]王英学,高波,李伦贵.高速列车模型实验系统及其测试结果分析.铁道工程学报.2003,77(1):96-100.
    [75]王英学,’高波. 高速列车进出隧道空气动力学研究的新进展. 中国铁道科学.2003,24(2):83-88.
    [76]A Busslinger, P. Reinke, P. Zbinder. Current State Of Climate Prediction for the Gotthard Base Tunnel and Further Steps. HBI Haerter AG, Alptransit Gotthard AG. Bern, CH.2004.
    [77]麦继婷,陈春光.通风速度和外界气温对秦岭隧道温度的影响.石家庄铁道学院学报.1998,11(2):6-10.
    [78]陈尚桥,黄润秋.深埋长隧道温度场的数值模拟.地质灾害与环境保护.1995(4)
    [79]王贤能,黄润秋.深埋长隧洞温度场的评价预测.水文地质工程地质.1996,(6):6-10.
    [80]王贤能,黄润秋.引水隧洞工程中热应力对围岩表层稳定性的影响分析.地质灾害与环境保护.1998,9(1):43-48.
    [81]Bonacina C, Comini G., and Fasano A, et al. Numerical Solution of phase-change problems. Int J Heat Mass Transfer.1973,16(6):1852-1832.
    [82]Comini G., Guldice S. del and Lewis R. W. et al. Finite element solution of nonlinear heat conduction problems with special reference to phase change. Inter. J. for numerical methods in engineering. 1974,8(6):613-624.
    [83]Y. M. Lai etc. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold-region tunnels. Cold Regions Science and Technology.1999,29(1):89-96.
    [84]Y. M. Lai etc. Nonlinear analysis for the coupled problem of temperature, seepage and stress fields in cold-region tunnels. Tunneling and Underground Space Technology.1998,13(4):435-436.
    [85]Lai Yuanming, Liu Songyu, Wu Ziwang, Yu wenbing. Approximate analytical solution for temperature fields in cold regions circular tunnels, Cold Regions Science and Technology.2002,13(4): 43-49.
    [86]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析.岩土工程学报.1999,21(5):529-533.
    [87]赖远明,喻文兵,吴紫汪等.寒区圆形截面隧道温度场的解析解.冰川冻土2001,23(2):126-130.
    [88]张学富,苏新民,赖远明等.寒区隧道三维温度场非线性分析.土木工程学报,2004,37(2):47-53.
    [89]张学富,王成,喻文兵,等.风火山隧道空气与围岩对流换热和围岩热传导耦合问题的三维非线性分析.岩土工程学报,2005,27(12):1414-1420.
    [94]史晓蕾,铁路隧道内湿热环境与通风研究。(硕士学位论文).成都:西南交通大学,2007.
    [95]Hyeok-bin Kwon, Young-Whe Park, Dong-ho Lee, Moon-Sang Kim. Wind tunnel experiments on Korean high-speed trains using various ground simulation techniques. Journal of Wind Engineering and Industrial Aerodynamics.2001,89:1179-1195.
    [96]陶文铨.数值传热学.西安:西安交通大学出版社.2001.
    [97]Launder B E, Spalding B E. Lectures in mathematical model of turbulence. Academic Press. London. 1972:78-115.
    [98]Trylor C, Thomas C E, Morgan K. Analysis of turbulient flow with separation using the finite element method. Computional techniques in transient and turbulent flows. Swansea. Pinerige press,1981: 283-325.
    [99]Carajilescov P, Todreas N E. Experimental and analytical study of axial turbulent flows in an interior subchannel of a bare rod bundle. ASME J Heat Trasfer.1976,98:262-268.
    [100]Gori F, ElHadidy M A, Spalding D B. Numerical prediction of heat transfer to low-Prandtl fluids. Numer Heat Transfer,1979,2:441-454.
    [101]Petukhov B S. Heat transfer and friction in turbulent pipe flow with variable physical properties. Hartnett J P, Irvine T F. eds. Advances in Heat Transfer.1970:504-564.
    [102]Koelman. A. Simple Lattice Boltaman Scheme for Navier Stokes Fluid Flow. Europhys. Lett. 1991,15(6):17-19.
    [103]White F. Viscous fluid flow. New York:McGraw-Hill,1974.
    [104]Cogotti A. Car-wake imaging using a seven-hole probe [A]. SAE 860214[C],1986:145-148.
    [105]Kei ji Matsunaga, Hideaki Miyata, Kiyohira Aoki, Ming zhu. Finite Difference Simulation of 3D Vertical Flows Past Road Vehicles. SAE Paper 920339.1992:65-83.
    [106]Cogotti A. Car-wake imaging using a seven-hole probe [A]. SAE 860214[C].1986:145-148.
    [107]J.Williams and W.J.Quinian, J.E.Hackett, S.A.Thompson, T.Marinacclo and A.Robertson. A Calibration of CFD for Automotive Shapes and CD. SAE 940323. February 1994.
    [108]H.K.VERSTEEG and W.MALALASEKERA. An Introduction to Computational Fluid Dynamics.世界图书出版社.北京:1998.
    [109]P.Jaray. Der Stromlinienwage-Eine neue Form der Automobile-Karosseries. Der Motorwagen.1972, No.17.
    [110]ANSYS Corp. Installation Guide, Introduction and New Feature Tutorials. CFX5.
    [111]P.Jaray. Grundlagen fur die Berechnung des leistungsaufwandes von Kraftwagen.1934, ATZ:37.
    [112]Scibor-Rylski. Road Vehicle Aerodynamics. Pentch Press,1975.
    [113]P.Jaray. Grundlagen fur die Berechnung des leistungsaufwandes von Kraftwagen. ATZ, Vol.37, 1934.
    [114]钱翼稷.空气动力学.北京航空航天大学出版社.北京:2004.
    [115]徐华舫.空气动力学基础(上、下册).北京航空学院出版社.北京:1987
    [116]Y. Sakuma, M.P. Paidoussis, S.J. Price. Dynamics of trains and train-like articulated systems travelling in confined fluid—Part 1:Modelling and basic dynamics. Journal of Fluids and Structures,2008, 24:932-953.
    [117]傅德薰,马延文.计算流体力学.高等教育出版社.北京:2002.
    [118]朱自强.应用计算流体力学.北京航空航天大学出版社.北京:1998.
    [119]Shih H. New k-ε eddy viscosity model for high Reynolds numbers flows. Computer & Fluids, 1995,24(3):227.
    [120]沈之介.加快我国高速铁路的发展.中国铁路,1993(7)
    [121]王其昌.高速铁路土木工程.西南交通大学出版社.成都:1999
    [122]D. A. Henson et al陈文英译,建议的英法海峡隧道的空气动力学和通风问题.
    [123]王建宇.关于高速铁路隧道设计参数问题.世界隧道,1995(5)
    [124]M. Jufer, SWISSMETRO-Preliminary Study. Ecole Polytechnique Fe 'de' rale de Lausanne.1993.
    [125]Ph. Pot, M. Jufer, Y. Trottet, Demande de concession, Troncon pilote Geneve-Lausanne, Swissmetro. SA, Geneva,1997.
    [126]V. Bourquin, M. Mossi. Rapport final-Etude principale-Groupe Me'canique. Rapport Swissmetro. EPFL 1.0111/1.6210/a.Lausanne,1998.
    [127]A.G.Bendelius. Aerodynamic and thermodynamic evaluation for the Atlanta subway system. Second Inter. Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Paper C1:C1-1-20.
    [128]B. Auvity, M. Bellenoue, T. Kageyama. Structure and evolution of the airflow generated by a slender body enter near a tube. European Journal of Mechanics B/Fluids.2002,21:157-170.
    [129]Joseph A Schetz,高速列车空气动力学.力学进展,2003,33(3):404-423.
    [130]Howe, M. S. Mach number dependence of the compression wave generated by a high-speed train entering a tunnel. Journal of Sound and Vibration 1998a,212:23-36.
    [131]W.A. Woods, C.W. Pope, Secondary aerodynamic effects in rail tunnels during vehicle entry. Proceedings of the Second International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Cambridge.1976:71-86.
    [132]J.R.威尔特,C.E.威克斯,R..E.威尔逊等,动量、热量和质量传递原理.北京:化学工业出版社.2005.
    [133]地铁制冷设计法.隧道译丛.1986(2):30-38.
    [134]钟星灿.地铁空调负荷分析及估算.暖通空调,2006.36(6):72-76.
    [135]D. A. Henson et al建议的英法海峡隧道的空气动力学和通风问题.隧道译丛.
    [136]A.G. Bendelius对亚特兰大地铁系统的气体动力学与热动力的评述.隧道译丛,1990(11):39-47.
    [137]章熙民,任泽霈,梅飞鸣,王中铮.传热学.北京:中国建筑工业出版社.1984.
    [138]俞佐平.传热学.北京:高等教育出版社.1979.
    [139]麦继婷,陈春光.秦岭特长隧道内温度预测.西南交通大学学报,1998,33(2):153-157.
    [140]M.S.Howe. Mach number dependence of the compression wave generated by a high-speed train entering a tunnel. Journal of Sound and Vibration,1998,212(1):23-36.
    [141]De Wolf W B, Demmenie EAFA. A new test facility for the study of interacting pressure waves and their reduction in tunnels for high-speed trains. Proc Int Symp Aerodyn Vent Veh Tunn,9th Aosta Valley, Italy. London:ME Publ,1997.
    [142]Vardy, A.E, Reinke, P, Estimation of train resistance coefficients in tunnels from measurements during routine operation. Proceeding of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1999,213(2) 71-89
    [143]张畲,(译)高速列车在隧道中运行时产生的问题—报告7:在RILLY-MONTAGNE隧道中的空气动力学测量结果.隧道译丛,1994(9):13-23.
    [144]骆建军.高速列车进入隧道产生压缩波的数值模拟及试验研究.(博士学位论文).成都:西南交通大学,2003.
    [145]C. D. Elifritys, A. D. S. Gillies, Y. M. Erter, N. B. Aughenbaugh隧道预热空气的全面试验及设计尺寸考虑.地下空间.1984(4):
    [148]柳澤榮習.地盤の熱的问题—3.土の熱的性質.土と基楚,1989(9)
    [149]柳澤榮習.地盤の熱的问题—6.地下水流の熱的輸送.土と基楚,1989(11)
    [150]A Vardy, J Brown. Influence of seepage water on tunnel heat loads.11th international symposium on the aerodynamics and ventilation of vehicle tunnels.2003,611-630.
    [151]刘文岗,王驹,王广地.高放废物处置库围岩温度应力状态研究.中国岩石力学与工程学会废物地下处置专业委员会成立大会暨首届学术交流大会论文集,北京,2006:87-92.
    [152]王群依,隧洞温度应力的边界元分析.岩石力学在工程中的应用——第二次全国岩石力学与工程学术会议论文集,广州,1989:241-246.
    [153]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究.岩土工程学报,2000,2(3):332-334.
    [154]李现者,贾晓云,朱永全.高海拔、高寒区、冻土隧道施工洞内环境温度场数值模拟.石家庄铁道学院学报,2004,17(4)22-25.
    [155]程国栋,杨成松.青藏铁路建设中的冻土力学问题.力学与实践,2006.28(3)1-8
    [156]杨成松,何平,程国栋,施烨辉.冻土热融下沉研究的现状和进展.工程地质学报,2004(12)147-150
    [157]张旭芝.高原多年冻土涵洞温度场及地基土冻融变形规律研究.(博士学位论文).长沙:中南大学,2007.
    [158]徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社,2001:208-239.
    [159]胡元芳,王建宇.青藏铁路昆仑山隧道冻胀压力计算.现代隧道枝术,2002.39(2)28-32.
    [160]朱正刚,钱江,李南生.寒区路基工程与多年冻土间相互作用问题研究进展.结构工程师,2004.20(6)43-48.
    [161]盛煜,刘永智,张建明等.青藏公路下伏多年冻土的融化分析.冰川冻土,2003.25(1)43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700